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Abstract: In order to meet the requirement of sustainable development, building materials are
increasingly environmentally friendly. They can be partially or fully bio-based or recycled. This paper
looks at the development of fully bio-based composites where agro-resources are valued as
bio-based aggregates (hemp) and as binding materials (wheat). In a previous work, a feasibility
study simultaneously investigated the processing and ratio of wheat straw required to ensure a
gluing effect. In this paper, three kinds of hemp-straw composites are selected and compared
with a hemp-polysaccharides composite. The gluing effect is analyzed chemically and via SEM.
The developed composites were characterized multi-physically. They showed sufficiently high
mechanical properties to be used as insulating materials. Furthermore, they showed good thermal
performances with a low thermal conductivity (67.9–69.0 mW/(m·K) at 23 °C, dry).

Keywords: sustainable building materials; hemp shiv; wheat straw; green binders; porosity; thermal
properties; mechanical properties

1. Introduction

This work set out to develop new bio-based building insulating materials from the valuation of
locally available agro-resources which are currently minimally or not valued, as part of the European
ISOBIO project [1]. Bio-based composites from the use of agricultural co-products also have the
advantage of storing CO2 (low carbon footprint) during the utilization phase of their life cycle.
Moreover, their hygric and thermal performances have to reduce the energy needs of buildings
and ensure better indoor hygrothermal comfort. Firstly, the co-products of crops from flax, hemp,
corn, rape, and wheat, produced in France, were characterized chemically and multi-physically in
order to identify the possibilities of valuation for the production of building insulating materials.
In particular, these characterizations have highlighted that agro-resources have a very interesting
chemical composition for use as binders. Indeed, they are mainly composed of polysaccharides [2]. So,
the gluing performances of agro-resources were tested with the production of hemp-straw composites.
Furthermore, hemp shivs are light aggregates with high porosity (approximately 77% total accessible
porosity [3]), and their use is interesting from a thermal point of view. Historically, hemp shivs have
been used with mineral binder [4,5] to produce hemp composite with low density and low thermal
conductivity. Investigations have also been performed with alternative mineral binders to reduce
the environmental impact of the material [6–8]. At present, investigations are being performed on
agro-based binders [9–11].

LigniCell® compressed straw panels are an example of a very interesting bio-based composite.
Indeed, no additional components are added to ensure a minimum cohesion between the straws.
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The wheat straws are just cleaned and compressed between two hot plates in order to realize a
hydrothermal treatment at 200 °C [12]. The cohesion of the panels is ensured by the lignin (between
8% and 17%), the hemicellulose (between 28% and 33%), and the cellulose (between 33% and 42%)
contained in the wheat straw [13]. Moreover, moisture control during the production process ensures
a sufficient availability of the water for the reaction. It appears possible to develop a fully bio-based
composites by using only agro-resources. Indeed, the components contained in agro-resources could
ensure the cohesion of the aggregates to one another if a thermal stress is applied to the composite
during the production process.

Following the manufacturing method of compressed straw panels, a preliminary study was
carried out to verify the feasibility of a binder made from agro-resources and showed the interesting
characteristics of these composites from a hygrothermal point of view. So, composites were made with
hemp (used as aggregate) and wheat straw (used as a binder). Their performances were identified to
evaluate whether using agro-resources with this production process is interesting for the development
of rigid and environmentally responsible insulating panels [14].

This paper focuses on the gluing performances of wheat straw after hydrothermal treatment and
the thermal properties of hemp-straw composites. Firstly, the developed materials are presented.
Their physical properties (apparent and absolute densities and porosity) and moisture buffer
value (MBV) are given. Then, the gluing properties are chemically analyzed (Van Soest analysis),
morphologically verified (scanning electron microscopy, SEM) and mechanically tested (compression
test) in order to ensure that the composites are usable. Finally, this paper investigates the thermal
properties of the developed composites, referring to the objectives in terms of the energy efficiency
of buildings.

2. Materials and Methods

2.1. Developed Materials

In order to develop a fully bio-based composite, this study focused on the use of hemp shiv
as aggregate and wheat straw as gluing material. A reference composite was also produced with
polysaccharides as binder.

The hemp shiv is a commercial product (Chanvribat from LCDA, Avrillé, France) commonly used
to producehemp concrete. More recently, hemp shivs have been used with PLA (polylactic acid) or
with starch [5,15,16]. Its bulk density ranges from 100 to 110 kg/m3. The average width of aggregates
(W50) is 4 mm, and they have a length-to-width ratio of about 4. The particle size distribution obtained
by mechanical sieving is given in Figure 1.

Figure 1. Particle size distribution of hemp shiv (Chanvribat from LCDA–France).
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For the production of composites, wheat straw (provided by the local agriculture of Acigné,
France) was used in different ways. First, the wheat straw was finely chopped, then mixed with
hemp. Then, the hemp-straw mix was moistened, with a dry mix-to-water ratio of 1, compressed
five successive times at 0.25 MPa, and heated in the mold at 180 °C for 100 min. Several hemp
shiv-wheat straw ratios were tested. With such processing, a good cohesion is ensured when the wheat
straw content in the dry mix is at least 15% by weight (Figure 2). For lower wheat straw content,
the specimens were easily breakable by hand. Finally, the selected mix was composed of 80% by
weight of hemp shiv and 20% by weight of milled wheat straw (composite A) to ensure high enough
mechanical resistance and easy handling.

Figure 2. Cohesion versus formulation of hemp shiv-milled wheat straw composites.

After checking the good cohesion of the composites, other tests were carried out from the infusion
of the wheat straw. It was infused for 24 h in water and heated to 80 °C to induce extraction of soluble
components. In a first step, the mix of the infusion with wheat straw and hemp shiv was processed
as previously described (composite B). In a second step, the infused wheat straw was filtered and
only the extracts in solution were mixed with hemp shiv. The mix was then processed as previously
described (composite C). This process allows the quantity of wheat straw to be reduced in order to
ensure the gluing effect. Finally, after the optimization of the production process, four developed
composites were selected: three hemp-straw composites with different wheat straw processing and
one hemp-polysaccharide composite (Table 1). For each formulation, three specimens (numbered i,
ii, and iii) of 10 cm diameter and 7 cm height (Figure 3) were produced.These three specimens were
characterized in the following order: thermal conductivity measurement at (23 °C, dry), compression
test, SEM, and pycnometry.

Table 1. Formulation of composites: component mass (g) and binder processing (wheat straw or
polysaccharides).

Composites A B C D

Hemp shiv 192 192 192 190

Wheat straw 48 48 30 -
Processing Milled Infused and Extracts Extracts -
Polysaccharides - - - 20

Water 240 360 320 200

Figure 3. Surface aspect of developed composites.
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The composites were light, their density ranged from 166 to 188 kg/m3 at 23 °C ; 50%RH (Table 2).
Their skeleton density was about 1500 kg/m3, leading to very high total porosity of about 89%.
For hemp-straw composites, the composite with the highest hemp content showed the lowest density
and the highest porosity (C vs. A and B).

In terms of moisture, the ability of the materials to moderate the variations of indoor humidity in
buildings is characterized by their moisture buffer value (MBV). The MBV of the developed composites
was investigated in a previous study [14]. The average MBV of the developed composites was around
2.27 g/(m2·%RH) (±3%) even though the MBV were similar with the three composites glued with
straw, the MBV was slightly higher for the composite made with polysaccharides [14]. Thus, the MBV
was not impacted by the density of the composite while it seemed to be slightly impacted by the binder.
According the Nordtest classification [17], all these composites are thus excellent hygric regulators
(MBV > 2 g/(m2·%RH)).

Hemp–straw composites had MBVs in the high range of values found in the bibliography. For
hemp–lime composites, the MBVs range from 1.94 to 2.24 g/(m2·%RH) [15,18], while for hemp-PLA,
the MBVs are approximately 1.77 g/(m2·%RH) [15].

Table 2. Physical characteristics of composites: apparent density at 23 °C, 50%RH, and 23 °C, dry state,
skeleton density, porosity, and moisture buffer value (MBV) in absorption, desorption, and average [14].

Composites A B C D

ρ23°C−50%RH (kg/m3) 179.8 ± 13.2 187.9 ± 3.6 165.9 ± 3.4 181.6 ± 2.8
ρ23°C−dry (kg/m3) 166.5 ± 12.1 174.1 ± 3.3 153.9 ± 3.4 168.8 ± 2.7
ρs (kg/m3) 1529.4 ± 6.0 1509.8 ± 16.9 1496.7 ± 21.2 1475.8 ± 8.0
ntot 89.1% 88.5% 89.7% 88.6%
MBVabs (g/(m2·%RH)) 2.23 ± 0.02 2.17 ± 0.03 2.21 ± 0.02 2.36 ± 0.01
MBVdes (g/(m2·%RH)) 2.30 ± 0.02 2.23 ± 0.02 2.24 ± 0.01 2.47 ± 0.01
MBVav (g/(m2·%RH)) 2.27 ± 0.02 2.20 ± 0.03 2.22 ± 0.02 2.42 ± 0.01

2.2. Characterization Methods

2.2.1. Van Soest Method

The evolution of the chemical composition of wheat straw was studied along the course of
processing: without treatment, after infusion at 80 °C (hydrothermal treatment 1), and then after
infusion at 80 °C and heating at 180 °C (hydrothermal treatment 2).

The Van Soest method [19–22] consists of successive extractions to identify the composition of
agro-resources (Figure 4).

Figure 4. Synthetic sketch of the Van Soest method allowing assay of the biomass composition [20].
ADF: acid detergent fiber; ADL: acid detergent lignin; NDF: neutral detergent fiber.

The agro-resources are crushed, sieved through a 1-mm mesh, and poured into a porous bag.
Then, the sample is exposed to the action of neutral, acidic detergents, and concentrated sulphuric
acid in order to solubilize the solubles, hemicellulose, and cellulose in succession. Weight loss is used
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to determine the content of the various components present in agro-resources. Finally, the content of
lignin is determined following a calcination. The method is given in more detail in Viel et al. [2].

2.2.2. Surface Morphology by Scanning Electron Microscopy

SEM was used to view the impact of the treatment on the aggregates and the gluing between
aggregates and binder. The aggregates were glued with carbon tape whereas the composite samples
were glued with Araldite glue. Then, the specimens (aggregates and composites) were coated with a
layer of palladium (thickness of about 30 nm) before the characterization. Scanning electron microscopy
(SEM) was performed with a JSM 7100F (JEOL, Tokyo, Japan) equipped with an Everhart-Thornley
secondary electron detector and Schottky field emission.

2.2.3. Mechanical Characterization

Compressive tests were performed with a Zwick/Roell ProLine testing machine (Ulm, Germany)
fitted with a 20 kN XForce load cell (load up to 0.02% of its full capacity and 0.05% readability).
The tests were carried out in displacement with a cross-head speed equal to 0.05 mm·s−1. The loading
was monotonic (no loading cycles). The samples were placed between two steel plates in order to
guarantee a homogeneous displacement and pressure. The load was applied by the displacement of
the upper plate. The test was performed on three cylindrical samples of 10 cm diameter and 7 cm
height for each formulation.

The results of the mechanical tests were analyzed using stress–strain curves, according to the NF
EN 826 standard [23]. The stress was assessed by reporting the load to the initial surface of the sample,
and the deformation was relative to the initial height of the the sample. The origin of the stress–strain
curve was adjusted in order to prevent the contact effects between the plates and the surface of the
samples, which was not perfectly flat.

2.2.4. Thermal Characterization

The measurement of thermal conductivity was performed with a transient method: hot wire,
following the method described by Collet and Prétot [24]. The measurement was realized with a
commercial “CT Meter” device (SMEE, Voiron, France) equipped with a five-centimeter-long hot wire.
The power was 142 mW and the heating time was 120 s.

Prior to the measurements, the cylindrical specimens of 10 cm diameter and 7 cm height were
dried at 60 °C in an oven. Then, the measurements were performed after weight stabilization at 23 °C at
dry state in a desiccator and after weight stabilization at 23 °C, 50%RH in a climate chamber. For each
formulation, three pairs of specimens (i&ii, i&iii, and ii&iii) were measured. The thermal conductivity
of a pair was considered to be the average of three values with a coefficient of variation lower than 5%.
The thermal conductivity of a composite was considered to be the average of the values obtained for
the three pairs (Figure 5).

Figure 5. Measurement of thermal conductivity: Schematics of hot wire probe (left) and specimen
coupling (right).
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3. Results

3.1. Binding Component: Treated Wheat Straw

3.1.1. Chemical Composition

The hydrothermal treatment induced a weight loss in the wheat straw, which increased with the
treatment temperature. After treatment and drying, the weight loss was 3.46% after hydrothermal
treatment 1 (infusion at 80 °C) and it was 5.86% after hydrothermal treatment 2 (infusion at 80 °C and
heating at 180 °C). Table 3 and Figure 6 give the relative chemical composition of wheat straw without
treatment, and after hydrothermal treatments 1 and 2. The hemicellulose and ash contents remained
unchanged regardless of the treatment. However, the relative cellulose and lignin contents increased
by 15.25% and by 18.74% after the infusion, respectively, while the soluble content decreased by 30.56%.
These differences can be explained by the weight loss after the treatments. Indeed, the water-soluble
components were removed during the treatments and most of those components were a low fraction
of lignin, ash, and hemicellulose and a larger fraction of pectins, which are included in solubles. On
the other hand, the heat depolymerized water-soluble and insoluble components and released acid
molecules which initiated repolymerization reactions [25–27]. These polymers may play the role of
binder in the composites.

Table 3. Chemical composition of wheat straw without treatment and after hydrothermal treatments 1
and 2 (1: infusion at 80 °C, 2: infusion at 80 °C and heating at 180 °C).

Agro-Resources Cellulose (%) Hemicellulose (%) Lignin (%) Soluble (%) Ash (%)

Without treatment 38.56 ± 1.47 32.45 ± 0.54 4.43 ± 0.26 22.38 ± 0.89 1.11 ± 0.15
Hydrothermal treatment 1 44.44 ± 1.26 33.11 ± 0.62 5.26 ± 0.55 15.54 ± 0.98 1.14 ± 0.12
Hydrothermal treatment 2 44.52 ± 1.07 33.45 ± 0.42 5.49 ± 0.48 16.51 ± 1.94 1.16 ± 0.22

These results were compared with literature values. Rajput et al. [28] also hydrothermally
treated wheat straw at different temperatures. They noted an increase in cellulose, and a decrease
in hemicellulose, lignin, and other components with increasing temperature. Ran et al. [29]
hydrothermally treated washed vinegar residue and found an increase in cellulose, a slight increase
in lignin, and a decrease in hemicellulose with increasing temperature. These results differ between
each other and from what was observed in this paper. Thus, the chemical composition of wheat straw
depends on its origin, including the effects of the area of production, the weather (i.e., sunlight, relative
humidity, temperature, rainfall, and wind), and the variety and maturity of the plant [2]. Moreover,
agro-resources do not always react in the same way during hydrothermal treatment because the
hemicellulose, lignin, and pectins are composed of different monomer units which are not connected
and distributed in the same way. Thus, the polymers have different properties.

Figure 6. Chemical composition of wheat straw without treatment and after hydrothermal treatments
1 and 2.
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3.1.2. Surface Morphology by Scanning Electron Microscopy

Figure 7 presents SEM micrographs of the surface of wheat straw, before and after hydrothermal
treatment 2. The infusion allows the removal of soluble components such as lignin, hemicellulose,
pectins, waxes, and fat from the cell wall. Thus, these components can easily react with each other in
liquid medium under the effect of heat. Indeed, in the SEM micrographs in Figure 7a, the external
surface of the wheat straw is perfectly smooth apart from the presence of a few starch granules,
whereas the external surface was slightly damaged after hydrothermal treatment 2, as shown by the
SEM micrographs in Figure 7b,c.

Figure 7. SEM micrographs of the wheat straw surface: (a) Without treatment; (b,c) After hydrothermal
treatment 2.

3.2. Developed Composites

3.2.1. Surface Morphology by Scanning Electron Microscopy

Figure 8 presents SEM micrographs at the interface between the hemp shiv and the binder. For
all composites, SEM analysis indicated good adhesion at the interface, showing several hemp shivs
well-coated and glued together. There were microstructural differences at the interface between the
hemp shiv and the different binders.

The surface of composite A could not be zoomed further because the sample was charged under
the electron beam. However, the SEM micrograph in Figure 8a shows hemp shiv and wheat straw
glued together. It is supposed that the surface aspect was similar to composite B, but likely with
the hemp shiv less thoroughly coated. Indeed, the two composites contained wheat straw in their
formulation, but the wheat straw was not previously infused in composite A.

The surface of composite B (Figure 8b,c) was rough and well coated by the binder.
The surface of composite C (Figure 8d,e) had a similar roughness to composite B. However,

a fragile smooth film surrounded a small hemp shiv but several fracture zones were visible above.
Some binder granules of 10–20 µm in diameter were also visible on the composite surface. Thus,
the binder distribution was less homogeneous than for composite B.

The surface of composite D (Figure 8f,g) also had a similar roughness to composite B, even if the
density of the binder was lower than for composite B. Besides, some binder granules with diameter of
2–20 µm were also visible on the composite surface, as for composite C. Thus, the binder distribution
was less homogeneous than for composite B and more homogeneous than for composite C.

Therefore, the wheat straw (milled or infused and/or extracts) seemed to have a similar good
gluing performance to polysaccharides.
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Figure 8. SEM micrographs at the interface between the hemp shiv and the binder: (a) composite A,
(b,c) composite B, (d,e) composite C, (f,g) composite D.

3.2.2. Mechanical Characterization

The developed composites showed compacting behavior (Figure 9). So, the mechanical
performance was given by the compressive strength obtained for longitudinal strain ε = 10% [23].
The mechanical properties of composites are presented in Figure 10 and Table 4. Compressive strength
varied between 260 and 339 kPa for the four composites. Composite B had the highest compression
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strength and composite A the lowest. As shown in Figure 10, the compressive strength increased
with apparent density and crosslinking density [30], which were induced by the quantity of binder,
in composites B, C, and D. Composite A did not fit with this curve because the wheat straw was not
previously infused. Thus, it was more difficult to have a homogeneous crosslinking density since the
solubles that allow gluing were not in solution. Apparent elastic modulus could be estimated from the
stress-strain slope at 10% deformation. Values ranged from 2.6 to 3.4 MPa.

Figure 9. Stress-strain curves for composite A.i.

The compressive strength at 10% deformation of all composites was higher than 250 kPa. For stress
induced by density corresponding to walls of 3 m height, the obtained deformations (εh=3m) were
lower than 0.20%. So, the mechanical resistance and rigidity were sufficient for use as self-bearing
insulation panels.

Compared with compressive strength at 10% deformation obtained in the literature, these values
were lower. Indeed, Balčiūnas et al. [31], who studied the hemp-sapropel (sediments that are
rich in organic matter) composites, obtained better results as they ranged from 360 to 2080 kPa
for density ranging from 220 to 410 kg/m3. Additionally, the hemp-starch composites developed
by Bourdot et al. [11] had slightly better mechanical properties. The compressive strength at 25%
deformation ranged from 570 to 630 kPa for density ranging from 182 to 188 kg/m3, whereas for the
same deformation, composites A, B, C, and D had a compressive strength of around 500 kPa.

Figure 10. Stress at 10% deformation versus apparent density at 23 °C and 50%RH of composites.

Table 4. Stress at 10% deformation for each composite.

Composites A B C D

ρ23°C−50%RH (kg/m3) 179.84 ± 13.22 187.85 ± 3.63 165.92 ± 3.40 181.57 ± 2.81
σ10% (kPa) 260.72 ± 10.49 339.07 ± 5.35 276.62 ± 12.71 298.05 ± 5.99
εh=3m (%) 0.19 0.15 0.16 0.16
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3.2.3. Thermal Characterization

Table 5 and Figure 11 give the thermal conductivity of hemp-straw and hemp-polysaccharides
composites. In all cases, the correlation coefficient between experimental data and fitting curve was
very high (>0.9997). Moreover, a great confidence in thermal conductivity measurements was made
possible by a low coefficient of variation (<3% for the nine measurements).

The thermal conductivities of developed composites ranged from 66.8 to 69.3 mW/(m·K) at 23 °C,
dry state and from 71.4 to 75.9 mW/(m·K) at 23 °C, 50%RH. Regardless of the kind of composite (glued
with straw or with polysaccharides), the thermal conductivity increased with the density in the same
trend (Figure 11). So, the method of gluing hemp shiv does not seem to have much impact on thermal
conductivity. The thermal conductivity increased by about 8% from dry state to wet state at 23 °C,
50%RH for all composites.

The thermal conductivities of developed composites were lower than the values found in our
literature review for hemp-lime composites, mainly thanks to density. Actually, in Collet and Prétot [24],
the thermal conductivities ranged from 93 to 120 mW/(m·K) at 23 °C, 50%RH for respective densities
between 260 and 390 kg/m3. De Bruijn and Johansson [32] found thermal conductivity values ranging
from 100 to 116 mW/(m·K) at 65%RH for two lime-hemp mixes when the densities were between
298.1 and 394.8 kg/m3 respectively. For composites made with hemp shiv and PLA, the thermal
conductivity ranged from 85 mW/(m.K) at 260 kg/m3 to 120 mW/(m·K) at 350 kg/m3 [15].

Moreover, the thermal conductivity of hemp-straw composites were also close to the thermal
conductivity obtained on hemp-starch composites by Tran Le [16] (62 mW/(m·K) for a density of
176 kg/m3 at dry state). Thus, the density of hemp composites is the main factor influencing the
thermal conductivity.

Finally, the thermal conductivities of the developed composites were close to the value needed
to be considered as insulating building material (65 mW/(m·K)) [33]. As the thermal conductivity
decreased with density, one way to reach this value involves reducing the density of composite. This
can be done by reducing compaction during processing, without changing binder content.

Table 5. Thermal conductivity of composites (mW/(m·K)) versus density at (23 °C, 50%RH) and at
(23 °C, dry).

Composites A B C D

ρ23°C−dry (kg/m3) 166.5 ± 5.2 174.1 ± 1.4 153.9 ± 1.5 168.8 ± 1.2
λ23°C−dry ( mW/(m·K)) 69.0 ± 1.3 69.3 ± 1.6 66.8 ± 1.8 67.9 ± 1.0

ρ23°C−50%RH (kg/m3) 181.1 ± 5.8 188.0 ± 1.4 165.7 ± 1.4 181.9 ± 1.3
λ23°C−50%RH (mW/(m·K)) 74.7 ± 1.6 75.9 ± 1.9 71.4 ± 1.3 73.5 ± 1.9

Figure 11. Thermal conductivity of composites at (23 °C, dry) and at (23 °C, 50%RH).
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4. Conclusions

This paper highlights the feasibility of using wheat straw as a binder to produce 100% bio-based
rigid insulating composites. This target was reached thanks to the valuation of local agricultural
wastes: hemp shiv as aggregate and wheat straw as binder.

The minimum quantity required to ensure good cohesion was 15%–20% wheat straw in the
dry mix (and 80%–85% hemp shiv). Indeed, the soluble components of the wheat straw played
the role of binder after the hydrothermal treatment, which initiated their depolymerization and
repolymerization reactions. They were mainly composed of pectins, lignin, and hemicellulose.
Firstly, these components were solubilized in water at 80 °C. Secondly, the polysaccharides degraded,
condensed, then recombined during the hydrothermal treatment at 180 °C.

SEM analysis indicated the good gluing performances of wheat straw on the developed composites
because there was a good adhesion between the aggregates (hemp shiv) and the binder (treated wheat
straw). Indeed, the SEM micrographs highlight that hemp shivs were well coated and glued together.

The apparent density of developed composites was quite low, ranging from 165 to 190 kg/m3,
depending on the processing method. Their mechanical performances were sufficient for use as
rigid insulating panels. Moreover, their mechanical performances increased with apparent density
and crosslinking density, which are induced by the quantity of binder in the case of similar binders.
The thermal conductivity of hemp-straw composites ranged from 67.9 to 69.0 mW/(m·K) at 23 °C,
dry. They were quite low and close to the value needed to be considered as building insulating
material [33]. Furthermore, the developed composites were excellent hygric regulators, with very
close MBV values (higher than 2.20 g/(m2·%RH)) [14].The main factor influencing the multiphysical
properties of the composites was the density. Indeed, the composite with the lowest bulk density
(composite C) also had the best thermal conductivity, whereas the composite with the highest bulk
density (composite B) also had the best mechanical performance.

Thus, these results are encouraging. Hemp-straw composites allow the objectives of the ISOBIO
project to be met, as they are fully bio-based and they show thermal conductivity and hygric
performances which contribute to reducing the energy needs of building projects and to ensure
hygrothermal comfort to users. As thermal conductivity increases with density, one way to improve it
could consist of reducing density. This could be reached by reducing compaction during processing.
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