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Abstract: The carbon-fiber-reinforced polymer (CFRP) is a mainstream material for lightweight
products from the end of the 20th century to the present day. Its compression molding process has
obvious advantages in mass production. This paper attempts to establish the constitutive models
of compression molding of the CFRP materials and study their mechanism. Based on anisotropic
linear elastic mechanics, viscoelastic mechanics, and thermodynamics, as well as the Maxwell
viscoelastic constitutive model, we first establish the constitutive model of thermorheologically
simple CFRP materials (TSMs). Then, considering the influence of temperature on the initial stiffness
and equilibrium stiffness, the concept of temperature stiffness coefficient is introduced, and the
Cartier coordinate system is converted into a cylindrical coordinate system, thereby establishing
the constitutive model of thermorheologically complex materials (TCMs) using the tensor form.
Finally, by comparing to the structure of the Zocher model, the two constitutive models established
in this study are verified. The research findings have important theoretical research significance for
studying the compression molding mechanism of carbon fiber and further improving the quality of
product molding.

Keywords: CFRP; compression molding; constitutive model; TSMs; temperature stiffness
coefficient; TCMs

1. Introduction

Carbon fiber is one of the most relevant materials from the end of the 20th century to the
present day. Due to its characteristics such as high specific strength, high specific modulus, fatigue
resistance, good molding process, good breakage safety, and strong performance designability,
the carbon-fiber-reinforced polymer (CFRP) has been increasingly applied in aerospace, wind turbine
blades, sports equipment, and automotive parts, etc. It is the mainstream material for lightweight
products in the 21st century [1–3], gradually transiting from secondary load-bearing components to
primary load-bearing components.

Commonly used molding methods of the CFRP materials include compression molding, autoclave,
winding, and the squeezing method, etc. Among them, the compression molding method has the
advantages of low cost, high efficiency, low internal stress, small warpage, good mechanical stability,
and high repeatability, and it has a strong competitive advantage in the batch production of product
parts, especially in large batch production [4,5]. However, the compression molding process is
disturbed by multiple physical fields, multiple process parameters, the characteristics of the material
itself, the thermochemical reaction of the substrate, etc., resulting in residual stress during the molding
process of the product, which directly affects the curing deformation of the material [6,7]. Therefore,
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the constitutive model of the CFRP molding process should be established. It is of great significance
for reasonably predicting the residual stress development of the product molding process, optimizing
the molding process, and improving product quality.

Scholars worldwide have conducted a lot of research based on the constitutive model of the CFRP
materials and achieved rich results. The linear elastic constitutive equation combined with laminate
theory is a commonly used method to predict the residual stress of composite materials. Stango et al. [8]
assumed that the material properties during the curing process were constants and adopted the
laminate theory to study the temperature-induced composite residual stress. Bogetti et al. [9] believed
that the performance of the composite material was related to the curing degree and proposed an
improved linear elastic constitutive model, namely the CHILE (α) model. Johnston [10] stated that the
performance of the composite material during curing is related to the glass transition temperature Tg
of the matrix, and they established the CHILE (tg) model. In essence, both the CHILE (α) and CHILE
(tg) models are linear elastic constitutive models, which cannot reflect the characteristics of material
stress relaxation and creep; the CFRP resin matrix exhibits obvious viscoelastic properties at high
temperatures. Thus, the viscoelastic constitutive model can truly describe the mechanical properties of
composite materials during curing. Zocher et al. [11] used the generalized Maxwell model and Prony
technology to express the relaxation stiffness of composite materials, and they derived the anisotropic
constitutive equation and incremental equation. Kim et al. [12,13] assumed that Poisson’s ratio of
the resin during the curing process was unchanged, and combined the time–temperature-curing
degree equivalence principle to obtain the viscoelastic properties of related resins, which provided
important references for understanding the viscoelastic behavior of the materials during curing.
Zobeiry et al. [14] used a differential type to represent the viscoelastic constitutive equation and its
increment. Abouhamzeh et al. [15] combined the Laplace transform and inverse transform and proposed
a solution to predicting the viscoelastic behavior of anisotropic composite materials. Svanberg et al. [16]
proposed a path-dependent constitutive model and studied the curing and post-curing deformation
mechanism of L-shaped parts.

Based on the previous research, this paper establishes the CFRP anisotropic viscoelastic
constitutive models of thermorheologically simple CFRP materials (TSMs) and thermorheologically
complex materials (TCMs) by combining with anisotropic linear elastic mechanics, viscoelastic
theory, and thermodynamics, and the Maxwell viscoelastic model. Considering the effect of
material temperature on the stiffness and equilibrium stiffness of the carbon fiber molding process,
the temperature-dependent thermoelastic stiffness coefficient was introduced, and the Cartesian
coordinate system was converted into a cylindrical coordinate system, thereby establishing the
CFRP anisotropic elastic constitutive equation and increment equations of the TCM materials.
The establishment of the CFRP anisotropic viscoelastic constitutive models, especially for TCM
materials, will lay a theoretical foundation for revealing the mechanism of carbon-fiber-reinforced
polymers [17], and then provide theoretical guidance to improve the quality of products molding,
to further speed up the industrialization process of CFRP.

2. Theoretical Basis of CFRP Compression Molding

Generally, if the performance of each point in the object is the same, it is a homogeneous material,
otherwise, a heterogeneous material. In addition, materials that show the same properties in every
direction at every point in the object are called isotropic materials, while those with different properties
at every point in the object are anisotropic materials. For a CFRP material, the matrix is an isotropic
material, and the reinforcing fiber is a transversely isotropic body, so the CFRP material is an anisotropic
material. In the molding process of CFRP materials, the matrix material has undergone a transition
process from the viscous fluid state to rubber state to glass state, etc. It is necessary to combine the
elastic mechanics of the composite material and the viscoelastic mechanics in the research.
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2.1. The basis of Anisotropic Linear Elastic Mechanics

To study the mechanical properties of composite materials and solve the stress and strain of a
continuous elastomer under external load, we need to balance the equations, geometric equations,
constitutive equations, etc.

In the space coordinate system xyz, the stress state of any point in the elastic body under any load
is represented by the normal stress components σx, σy, and σz, and the shear stress components τxy,
τyz, and τzx. According to the theorem of conjugate shearing stress, there is τxy = τyx, τyz = τzy, and
τzx = τxz. Fx, Fy, and Fz respectively represent the external force components received by the elastic
body in the x, y, and z directions. Ignoring the volume force, the equilibrium relationship of any point
in the elastic body along the coordinate axes x, y, and z is:

∂σx
∂x +

∂τyx
∂y + ∂τzx

∂z + Fx = 0
∂τxy
∂x +

∂σy
∂y +

∂τzy
∂z + Fy = 0

∂τxz
∂x +

∂τyz
∂y + ∂τz

∂z +Fz = 0

(1)

Similarly, in the space coordinate system xyz, the strain state of any point on the elastic body can
be represented by the normal strain components εx, εy, and εz and the shear strain components γxy, γyz,
and γzx at that point. If u, v, and w represent the displacement components in the three directions of x,
y, and z, then the geometric equation of any point in the elastic body along the x, y, and z directions is:

εx = ∂u
∂x ,γyz =

∂ω
∂y + ∂v

∂z
εy = ∂v

∂y ,γxz =
∂u
∂z + ∂ω

∂x
εz =

∂ω
∂z ,γxy = ∂v

∂x + ∂u
∂y

(2)

According to Equations (1) and (2), in the space coordinate system xyz, there are 15 unknown
functions, namely 6 stress components, 6 strain components, and 3 displacement components.
Their relationship is shown as:

σx

σy

σz

τyz

τzx

τxy


=



C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66





εx

εy

εz

γyz

γxz

γxy


(3)

Among them, Cmn(m, n = 1, 2, 3, 4, 5, 6) is the stiffness coefficient.
The matrix of the stiffness coefficient is symmetric, and only 21 stiffness coefficients are independent.

Equation (3) establishes the relationship between stress and strain, which is called the generalized
Hooke’s law or elastic constitutive equation.

For the matrix of a CFRP material, the number of independent stiffness coefficients is 2, and its
stress–strain relationship is

σx

σy

σz

τyz

τzx

τxy


=



C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 2(C11 −C12) 0 0
0 0 0 0 2(C11 −C12) 0
0 0 0 0 0 2(C11 −C12)





εx

εy

εz

γyz

γxz

γxy


(4)
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The reinforced fiber has 5 independent stiffness coefficients. Assuming that the xoy coordinate
plane is isotropic, its stress–strain relationship is

σx

σy

σz

τyz

τzx

τxy


=



C11 C12 C13 0 0 0
C11 C23 0 0 0

C33 0 0 0
C44 0 0

symmetric C44 0
1
2 (C11 −C12)





εx

εy

εz

γyz

γxz

γxy


(5)

2.2. The Basis of Anisotropic Viscoelastic Mechanics

The mechanical properties of viscoelastic materials such as shear modulus, loss modulus, and loss
factor, etc. are usually related to ambient temperature, vibration frequency, strain amplitude, etc.
Therefore, the constitutive relationship of viscoelastic materials is very complicated.

When describing the viscoelastic behavior of materials, the generalized Maxwell model is generally
used, which consists of multiple Maxwell elements in parallel with a spring, as shown in Figure 1:
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Figure 1. Generalized Maxwell model.

Each Maxwell element contains a spring with elastic modulus E and a viscous strain damper with
strain viscosity η. In the generalized Maxwell model, the modulus is used to measure the performance
of the spring, and the relaxation time is used to express the performance of the damper. The constitutive
equation of anisotropic viscoelastic materials [18–21] is:

σi(t) =
∫ t

−∞

Ci j(α, T, t− τ)
∂εeff

j (τ)

∂τ
dτ i, j = 1 ∼ 6 (6)

where Ci j is the stiffness matrix, εe f f
j is the effective strain tensor, and σi, α, and τ are the stress tensor,

curing degree, and virtual time integral variable of the tensor, respectively.
The effective strain tensor can be expressed by the total strain tensor ε j and the non-mechanical

strain tensor εtc
j , namely:

ε
e f f
j (τ) = ε j(τ) − ε

tc
j (τ) (7)

If the material exhibits simple thermo-rheological properties when cured, the above equation can
be changed to:

σi(t) =
∫ t

−∞

Ci j
(
α = α0, ξt

− ξτ
) ∂
∂τ

[
ε j(τ) − ε

tc
j (τ)

]
dτ i, j = 1 ∼ 6 (8)

where ξ is the time and is expressed as:

ξt =

∫ t

0

ds
αT(α0, T(s))

(9)
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ξτ =

∫ τ

0

ds
αT(α0, T(s))

(10)

Among them, αT is the conversion equation, related to temperature and curing degree; s is the
time integral variable.

The stiffness matrix Ci j is represented by the Prony series:

Ci j(α, ξ) = C∞i j (α) +
n∑

m=1

Cm
ij (α)exp

[
−
ξ(α, T)
τm(α)

]
i, j = 1 ∼ 6 (11)

where C∞i j is the stiffness matrix after the material is completely relaxed, that is, the equilibrium stiffness;
Cm

ij is the stiffness matrix of each m branch in the Prony series; τm is the discrete relaxation time of the
m-th branch.

2.3. The Basis of Thermodynamics

During the molding process of the composite material, the matrix undergoes a curing reaction to
release heat, which is regarded as an internal heat source and controls the entire heat transfer process
together with the applied temperature.

According to the Fourier heat conduction equation, the heat transfer process can be expressed as:

ρCp
∂T
∂t

=
∂
∂x

(
kx
∂T
∂x

)
+

∂
∂y

(
ky
∂T
∂y

)
+
∂
∂z

(
kz
∂T
∂z

)
+Q (12)

where ρ, Cp, kx, ky, and kz respectively represent the density, specific heat, and anisotropic thermal
conductivity of the composite material; T is the temperature at time t; Q is the heat generated by the
curing reaction of the resin, which can be calculated as

∂Q
∂t

= ρm
(
1−V f

)
HT

da
dt

(13)

In Equation (13), ρm is the resin matrix density, V f is the fiber volume fraction, Ht is the total heat
released by the resin during complete curing, and dα

dt is the instant curing rate of the resin. The curing
degree can be expressed as

a(t) =
∫ t

0

da
dt

(14)

The boundary conditions of the heat conduction model are:

Ke f f
∂T
∂n

+he f f (Ts − Tm) = 0 (15)

where Ts and Tm are the surface temperature and heating temperature of the composite material,
respectively; Ke f f and he f f are the equivalent thermal conductivity and equivalent convection heat
transfer coefficients of the composite material surface, respectively.

3. CFRP Constitutive Model of the TSMs

The viscoelastic constitutive modulus can reflect the creep and relaxation characteristics of the
material. In this paper, the generalized Maxwell viscoelastic constitutive equation was used to reflect
the viscoelastic characteristics of the simple thermal-rheological composite material.
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3.1. The Constitutive Model Based on Viscoelastic Theory

For a single Maxwell element, the strain of the element is a combination of spring and viscous
element strain, which is expressed as

dε
dt

=
1

E0

dσ
dt

+
σ
η

(16)

Using the relaxation modulus to express the relaxation characteristics of the material,

E(t) = E0exp−t/τ (17)

where τ = η/E, i.e., the relaxation time.
For the generalized Maxwell model, the stress relaxation modulus is given as

E(t) =
N+1∑
m=1

Emexp−t/τm (18)

Em and τm are the elastic modulus and relaxation time of the m-th branch, respectively.
It can be seen from Figure 1 that the N + 1-th unit has only one spring, the relaxation modulus of

the viscous element is negligible, and its elastic modulus is the modulus E∞ after complete relaxation.
The initial modulus of the generalized Maxwell model is E0, and it can then be expressed as

E(t) = E∞ +
N∑

m=1

Wm
(
E0
− E∞

)
exp−t/τm (19)

where Wm is the weight coefficient, which is expressed as

Wm =
Em

E0 − Em (20)

The stress of the m-th branch in the generalized Maxwell model at time t is expressed as

dσt
m

dt
+

1
τt

m
σt

m = Cm

dεt
e f f

dt
(21)

Its difference form is
σt

m − σ
t−∆t
m

∆t
+

1
τt

m
σt

m = Cm

εt
e f f − ε

t−∆t
e f f

∆t
(22)

where σt−∆t
m and σt

m, εt−∆t
e f f , and εt

e f f represent the stress tensor and effective strain tensor before and

after the time increment ∆t, respectively, tt
m and Cm, respectively represent the relaxation time and

stiffness matrix of the m-th branch of the Maxwell model at time t. The effective stress tensor can be
expressed as

εe f f = εs −Kcte · ∆t−Kccs · ∆α (23)

Among them, εs represents the total stress tensor, Kcte and Kccs represent the effective thermal
expansion coefficient and chemical shrinkage coefficient, respectively, ∆t is the temperature increment,
and ∆α is the curing degree increment.

σm =
1

1 + (∆t/τt
m)

[
Cm

(
εt

e f f − ε
t−∆t
e f f

)
+ σt−∆t

m

]
(24)
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Combining the stresses of all branches of the Maxwell model and the balance spring, we obtain
the total stress at time t:

σt= Ci jε
t
e f f +

n∑
m=1

σt
m= Ci jε

t
e f f +

n∑
m=1

Ci j

(
εt

e f f − ε
t−∆t
e f f

)
+ σt−∆t

m

1 + (∆t/τt
m)

(25)

Based on the above, the stress increment at time t can be expressed as

∆σt = σt
− σt−∆t= Ci j

(
εt

e f f − ε
t−∆t
e f f

)
+

n∑
m=1

Cm

(
εt

e f f − ε
t−∆t
e f f

)
−

(
∆t/τt

m

)
+ σt−∆t

m

1 + (∆t/τt
m)

(26)

where Ci j represents the stiffness matrix of the spring, and the stiffness matrix of the m-th branch can
be expressed as

Ci j =
(
C0

i j −C∞i j

)
Wmexp

[
−ξ(α, T)
τm(α)

]
(27)

C0
i j is the initial stiffness matrix and C∞i j is the stiffness matrix after complete relaxation. Generally,

C∞i j = rC0
i j; r is a constant, and different material systems have different values of r.

The conversion equation can be expressed as

log(αT) =
[
−α1exp

( 1
α− 1

)
− α2

]
(T − Tt) (28)

Among them, α1 and α2 are constants, and different matrices have different values.

τt
m = αT[α, T(s)]τm(α) (29)

log(Tm(α)) = log(τm(αt))[ f (α) − (α− αt)log(λm)] (30)

3.2. CFRP Viscoelastic Constitutive Equation and Incremental Equation of the TSMs

When the CFRP materials are TSMs, the material’s equilibrium stiffness and initial stiffness are
unrelated with the degree of curing. According to Equations (11), (19), and (27), the relaxation stiffness
of the CFRPs can be expressed as:

Ci j(ξ) = Cξi j = C∞i j +
(
C0

i j −C∞i j

) N∑
m=1

Wmexp
(
−
ξ
τm

)
(31)

For anisotropic materials, the internal stress is expressed as: [13,22,23]

σt
i = σi(t) =

∫ t−t′

i j
Ci j(t− t′)

∂ε j

∂t
dt (32)

Considering the effects of temperature T and curing degree on relaxation stiffness, the above
equation can be expressed as:F

σt
i =

∫ t−t′

i j
Ci j(ξ− ξ

′)
∂ε j

∂t
dt (33)

Considering the stress increment ∆σ∆t
i within the time increment ∆t, there is

∆σi = σt
i − σ

t−∆t
i (34)
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When the time increment is small, the curing degree is considered to be approximately constant,
that is,

∂εi
∂ξ

=
∆εi
∆ξ

(
ξt−∆t

≤ ξ ≤ ξt
)

(35)

Therefore, the stress increment can be expressed as: [24]

∆σi =
(
C∗i j

)
∆εt

i − ∆σ∗i (36)

C∗i j = C∞i j +
N∑

m=1

(
C0

i j −C∞i j

)
Wn

αTτm

∆t

[
1− exp

(
−

∆ξt

τm

)]
(37)

∆σ∗i =
N∑

m=1

St
im

[
1− exp

(
−

∆ξt

τm

)]
(38)

where Sim is a historical state variable; the initial value is 0, which can be expressed as:

St
im

= exp
(
−

∆ξt

τm

)
St−∆t

im
+

(
C0

i j −C∞i j

)
Wn

αTτm∆εt
j

∆t

[
1− exp

(
−

∆ξt

τm

)]
(39)

4. CFRP Constitutive Model of the TCMs

4.1. Thermoelastic Expressions of the TCMs

To simulate the high-temperature viscoelastic behavior of composite materials, it is generally
assumed that the composite material is a simple thermal-rheological material, that is, the equilibrium
stiffness and initial stiffness of the material are related to temperature and curing degree.
Many experiments have shown that the initial stiffness and equilibrium stiffness are related to
the material temperature [25]. In this paper, the viscoelastic materials whose equilibrium stiffness and
initial stiffness change with temperature are called thermorheologically complex materials.

In the curing process of composite materials, the molding temperature and the curing degree of
the matrix change with time, and the elastic modulus of the material is related to the temperature and
the curing degree. On the one hand, it affects the conversion factor and relaxation time, similar to the
performance of the viscous elements; on the other hand, it also affects C0

i j and C∞i j , which is similar to
the elastic properties.

When constructing the viscoelastic model of the material in this paper, the vertical movement
coefficient representing the correlation between C∞i j and temperature was added to be the thermal
viscosity stiffness coefficient. Through the experimental method and data processing method provided
by Kim [12,13], the exponential function was used to express the thermoelastic stiffness coefficient of
an epoxy resin base, and linearly fit it, as shown in Figure 2 below.Coatings 2019, 9, x FOR PEER REVIEW 9 of 13 
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Figure 2. The thermoelastic stiffness coefficient of an epoxy resin.
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4.2. Conversion of Coordinate Systems

For a better description in the study of the CFRP mechanical properties, it is necessary to
establish a local coordinate system for the geometric elements or convert the global coordinate system.
In this paper, the Cartesian coordinate axis was converted into a cylindrical coordinate system for
reducing the amount of calculation.

In the Cartesian coordinate system (x,y,z), the unit base vectors of the coordinate axes are
⇀
i ,
⇀
j ,

and
⇀
k , respectively, and the unit vectors converted into the cylindrical coordinate system are

⇀
e r,

⇀
e ϕ,

and
⇀
e z, respectively. It is shown as 

⇀
i =

⇀
e rcosϕ−

⇀
e ϕsinϕ

⇀
j =

⇀
e rsinϕ+

⇀
e ϕcosϕ

⇀
k =

⇀
e z

(40)

Then, the conversion formula in the Cartesian coordinate system and cylindrical coordinate
system is: 

x1

x2

x3

 =


cosϕ sinϕ 0
−sinϕ cosϕ 0

0 0 1




x
y
z

 = β


x
y
z

 (41)

The stress vector in the cylindrical coordinate system can be expressed by the stress vector σi in
the Cartesian coordinate system, namely:

σc = βσiβ
T (42)

where ββT = 1.

4.3. CFRP Viscoelastic Constitutive Equation and Enhancement Equation of the TCMs

As the anisotropic viscoelastic constitutive model of TCMs contains many factors, the tensor was
used in this paper to express the three-dimensional viscoelastic constitutive model and incremental
equations of TCMs.

For the one-dimensional Maxwell element, the stress relaxation under unit constant strain is equal
to the relaxation modulus of the model. In view of the thermoelastic stiffness coefficient, the relaxation
modulus of the element at time t is:

E(t) =
E0(T)

E0(T(0))
E(ξ) = dE(ξ) (43)

where d is the thermoelastic stiffness coefficient, d = E0(T)/E0(T(0)).
E0(T) is the spring stiffness and E0(T(0)) is the spring stiffness at t = 0.
For the three-dimensional generalized Maxwell model, the Cartier coordinate system was

converted into a cylindrical coordinate system to express the relaxation modulus. At this time,
it appeared to be isotropic on the xoy plane. When calculating, the three-dimensional generalized
model is equivalent to the two-dimensional generalized model, which can be compared to the relaxation
modulus representation of a one-dimensional Maxwell element,

Ct
ϕkl =

Cϕkl(T)

Cϕkl(T(0))
Cξ
ϕkl︸             ︷︷             ︸

no sum onϕ,k and l

=
Cϕkl(T)

Cϕkl(T(0))

C∞ϕkl +
(
C0
ϕkl −C∞ϕkl

) N∑
m=1

Wmexp
(
−
ξt

τm

) (44)
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Then, the thermoelastic stiffness coefficient is dT(t)
ϕkl = Cϕkl(T)/Cϕkl(T(0)).

According to Equation (32), the stress value at time t is:

σt
ϕ =

∫ t

0
Cξ−ξ

′

ϕkl
∂εkl
∂ξ′

dξ′ (45)

According to Equations (44) and (45), the stress σt
ϕ at the reduced time ξ′ can be rewritten as:

σt
ϕ =

∫ ξ′

0
dT(t)
ϕkl

C∞ϕkl +
(
C0
ϕkl −C∞ϕkl

) N∑
m=1

Wmexp
(
−
ξt
− ξ′

τm

)∂εkl
∂ξ′

dξ′ (46)

The relaxation modulus Ct
ϕkl is expressed as:

Ct
ϕkl = dT(t)

ϕkl Cξ
t

ϕkl = Ct
ϕkl

C∞ϕkl +
(
Cu
ϕkl −C∞ϕkl

) N∑
m=1

Wmexp
(
−
ξt

τm

) (47)

Referring to (46), the stress σt
ϕ at the reduced time ξt is expressed as:

σt
ϕ =

∫ ξt

0 dT(t)
ϕkl

[
C∞
ϕkl +

(
C0
ϕkl −C∞

ϕkl

) N∑
m=1

Wmexp
(
−
ξt
−ξ′

τm

)]
∂εkl
∂ξ′ dξ′

=
∫ ξt−∆t

0 dT(t)
ϕkl

[
C∞
ϕkl +

(
C0
ϕkl −C∞

ϕkl

) N∑
m=1

Wmexp
(
−
ξt
−ξ′

τm

)]
∂εkl
∂ξ′ dξ′

+
∫ ξt

ξt−∆t dT(t)
ϕkl

[
C∞
ϕkl +

(
C0
ϕkl −C∞

ϕkl

) N∑
m=1

Wmexp
(
−
ξt
−ξ′

τm

)]
∂εkl
∂ξ′ dξ′

(48)

In the formula, the reduced time ξt is discretized for the sum of the reduced time ξt−∆t at time t
and the reduced time increment ∆ξt at time ∆t, that is:

ξt = ξt−∆t + ∆ξt (49)

Thus, ∆ξt =
∫ t

t−∆t
dτ
αT

The stress increment equation ∆σt
ϕ at time t is expressed as:

∆σt
ϕ = σt

ϕ − σ
t−∆t
ϕ

=

H1ϕ
{∫ ξ′

0

(
dT(t)
ϕkl − dT(t−∆t)

ϕkl

)
C∞
ϕkl

∂εkl
∂ξ′ dξ′

+

H2ϕ
{∫ ξt−∆t

0

(
C0
ϕkl −C∞

ϕkl

) N∑
m=1

Wmexp
(
−
ξt
−ξ′

τm

)[
dT(t)
ϕkl exp

(
−
ξt

τm

)
− dT(t−∆t)

ϕkl

]
∂εkl
∂ξ′ dξ′

+

H3ϕ
{∫ ξt

ξt−∆t dT(t)
ϕkl

(
C∞
ϕkl

(
C0
ϕkl −C∞

ϕkl

) N∑
m=1

Wmexp
(
−
ξt
−ξ′

τm

))
∂εkl
∂ξ′ dξ′

(50)

Among them, H1ϕ can be written in recursive form,

H1ϕ =
2∑
k

(
dT(t)
ϕkl − dT(t−∆t)

ϕkl

)
At
ϕkl (51)
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At
ϕkl =

∫ ξt

0
C∞ϕkl

∂εkl
∂ξ′

dξ′ =
∫ ξt−∆t

0
C∞ϕkl

∂εkl
∂ξ′

dξ′ +
∫ ξt

ξt−∆t
C∞ϕkl

∂εkl
∂ξ′

dξ′ (52)

At very small time increments, the temperature T and the curing degree are extremely small and
negligible, and the conversion factor is constant, so it can be expressed as:

∆ξt =

∫ t

t−∆t

dτ
αT

=
∆t
αT

(53)

In addition,
∂εkl
∂ξ′
≈

∆εkl
∆ξ′

(
ξt−∆t

≤ ξ′ ≤ ξt
)

(54)

Then,

At
ϕkl =

∫ ξt−∆t

0
C∞ϕkl

∂εkl
∂ξ′

dξ′ +
∫ ξt

ξt−∆t
C∞ϕkl

∂εkl
∂ξ′

dξ′ = At−∆t
ϕkl + C∞ϕkl∆ε

t
kl (55)

Use the same method to deal with H2ϕ and H3ϕ.
Finally, the stress increment ∆σt

ϕ at time t is expressed as:

∆σt
ϕ = C

∗

ϕkl∆εt
i j +

2∑
k

2∑
l

(
dT(t)
ϕkl − dT(t−∆t)

ϕkl

)
At
ϕkl

+
2∑

k=1

2∑
l=1

N∑
m=1

[
dT(t)
ϕkl exp

(
−

∆ξt

τm

)
− dT(t)

ϕkl

]
St
ϕklm

(56)

In addition,

C
∗

ϕkl = dT(t)
ϕkl

C∞ϕkl +
N∑

m=1

CϕklWm
αTτm

∆t

[
1− exp

(
−

∆ξt

τm

)] (57)

At
ϕkl = At−∆t

ϕkl + C∞ϕkl∆ε
t
kl (58)

St
ϕklm

= exp
(
−

∆ξt

τm

)
St−∆t
ϕklm

+ C
∗

ϕklWm
αTτm∆ξt

kl
∆t

[
1− exp

(
−

∆ξt

τm

)]
(59)

5. Verification of the Constitutive Models

To verify the constitutive models of both TSM and TCM CFRP materials, this paper selects the
molded flat structure of a CFRP material based on Kim’s research [12,13]. Four layers were molded
in the layering angle of [0/90/90/0]. Compared to the viscoelastic constitutive model proposed by
Zocher [11], the curing degree change of the center point (0, 0, 0) of the laminate during the curing
process is shown in Figure 3 below:Coatings 2019, 9, x FOR PEER REVIEW 12 of 13 
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It can be seen from Figure 3 that the three curves are basically coincident, verifying the constitutive
models given in this paper.

6. Conclusions

This paper studies the constitutive models of the CFRP during the compression molding process.
The main content and conclusions are as follows:

• On the basis of the constitutive model of CFRP molding and viscoelastic theory, viscoelastic
mechanics, and thermodynamics, the CFRP viscoelastic constitutive equation and incremental
equation of the TSMs were established, which lays a foundation for explaining the solidification
and relaxation behavior of the molding process.

• Considering the effects of temperature on the initial stiffness and equilibrium stiffness, the
thermoelastic stiffness coefficient was introduced, and the Cartesian coordinate system was
converted to the cylindrical coordinate system. Thus, the viscoelastic constitutive equation and
incremental equation of the TCMs were established, and the accuracy and application range of
the constitutive model were improved while the calculation scale was reduced.

• On the basis of the viscoelastic constitutive model proposed by Zocher, the correctness and validity
of the constitutive models for TSMs and TCMs were verified by comparing the change in curing
degree under the anisotropic viscoelastic constitutive model.
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