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Abstract: In this study, ternary ecological concrete (TEC) mixtures were produced with partial
substitution of the ordinary Portland cement (OPC) by 10%, 20%, and 30% of sugar cane bagasse
ash (SCBA) and silica fume (SF); a control mixture (100% OPC) was prepared according to ACI 211.1
standard. The studied TEC specimens were reinforced with AISI 304 stainless steel and AISI 1018
carbon steel rebars. TEC reinforced specimens were immersed in two different electrolytes, a control
(DI-water) and 3.5 wt.% MgSOy solution, for 180 days. The electrochemical corrosion was monitored
by corrosion potential (Ey) according to ASTM C-876-15 standard, and the linear polarization
resistance (LPR) technique using ASTM G59 standard. The Er and current density i, results show
that AISI 304 stainless steel rebars have a high corrosion resistance, with ico,r values below 0.1 tA/cm?,
which is interpreted as a level of negligible corrosion. The best corrosion performance was found for
the TEC mixture made with a 20% addition of blend of sugar cane bagasse ash-silica fume (SCBA-SF)
to the OPC.
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1. Introduction

Concrete is the most widely used building material worldwide, owing to its excellent physical
properties including excellent mechanical properties and durability. Reinforced concrete is of paramount
importance for the development of societies, which demand advanced civil engineering structures and
infrastructure, such as bridges, buildings, pavements, dams, pipelines, and canisters, among others.
However, the corrosion of reinforcing steel in concrete is the main cause of premature deterioration
of the infrastructure and one of the most important issues for the maintenance of the structural
integrity, which dramatically impacts economy [1-6]. The corrosion of steel embedded in concrete is
an electrochemical process influenced by the chloride ingress and carbonation [7].

The use of stainless steel (SS) reinforcement is an efficient method for preventing the corrosion
of reinforced concrete (RC) structures [8,9]. Ferritic and austenitic stainless steels were the first SS
reinforcements developed; currently, the tendency is the use of duplex SS (DSS). The SS passivates in
the atmosphere, but when in contact with the alkaline environment of the concrete, this passive layer
is not stable and a new passivation process takes place [10-12]. Several studies with stainless steels
reported their good corrosion resistance in chloride polluted environments, which vary in function of
the SS chemical composition, the type of test performed (accelerated, natural), and the media (pore
solution, mortar, or concrete) [13-19].

The corrosion process can be caused by several factors, the most significant of which is the
entry of the aggressive ions, such as chlorides present in marine environments [20-22] and sulfates,
which are inorganic salts normally present in the ground [23-26], as well as in groundwater and in
surface water, although the degree of concentration can be highly variable. The presence of sulfates in
water in contact with a hardened cement paste can significantly increase the solubility of components
of the concrete admixture and cause degradation of concrete through leaching; therefore, the steel
remains unprotected [27-29]. This concrete degradation can lead to a severe structural failure as the
reinforcement material is more susceptible to corrosion processes. Through the use of non-destructive
tests (NDTs) and/or analytical formulation, which are fast and high quality methods to assess the
corrosion of reinforcing steel, according to the determination of the lost cross section of the bar, using
novel analytical models [30], the section loss due to corrosion products at the steel/concrete interface
of specimens subjected to different environments has originated a generalized concept of paste filled
with corrosion product (CP) [31]. A widely used strategy to mitigate this reinforcement corrosion is to
use coatings in order to substantially increase the durability of the structure. A similar effect can be
generated using additives to the concrete such as sealants that improve the corrosion protection of the
reinforcement. Moreover, laboratory simulations show that the concrete reinforced with galvanized
steel is better in an aggressive environment, as well as resisting contaminants found present in the
concrete mixture itself [32-34].

The production of ordinary Portland cement (OPC) generates between 5% and 8% CO, total
emissions to the environment and could increase to between 10% and 15% in the future [35]. Therefore,
different approaches and solutions to retard or reduce the corrosion process and mitigate emissions
produced from the cement industry have been investigated. The solutions proposed to reduce these
high emissions include new alkali-activated materials, such as fly ash (FA), slags, or metakaolin, among
others [36]. Furthermore, in the last 20 years, sugar cane bagasse ash (SCBA) and rice husks ash
(RHA) have been studied in order to provide a more sustainable and equally performing solution for
reinforced structures [37,38] coming from agricultural waste, as less FA resources were available owing
to the coal regulations [39]. SCBA is a sugar mill byproduct obtained from the bagasse combustion
that, after being treated, can be used a concrete binder thanks to its pozzolanic activity. However, few
corrosion studies have been performed for all these novel reinforced concretes. For that reason, the
most conservative approach, because of the lack of agreement about their corrosion performance, is to
use them as supplementary cementitious materials (SCMs), gradually replacing the OPC with low
quantities of the novel materials. This replacement is an environmentally friendly, and cost-effective
solution owing to the by-products nature of these novel materials [40,41]. Another important factor
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of these novel materials is that they cure faster than OPC [42], making them even more suitable for
precast components.

These SCMs promote a reaction known as the pozzolanic reaction, wherein the Ca(OH), from
the hydration process reacts with these additives, decreasing the porosity and permeability of the
concrete [43]. The benefits were mainly derived from the presence of a high SiO, content and amorphous
mineralogical character in the SCMs, allowing the calcium hydroxide (free lime forms during cement
hydration) to react with the silica content present in the pozzolanic materials and water, which forms
additional calcium silicate hydrate; this is called secondary gel, hence the compressive strength is
enhanced [44]. Ultra-fine particles of silica fume enhance the concrete in the hardened state by acting
as a micro filling material in the concrete, which fills the micro-voids in concrete. Densification of
the interfacial transition zone also takes place, as well as further enhancing of the matrix aggregate
bond—the enhancement in strength due to the additional formation of C-S5-H gel resulting from
the pozzolanic reaction between silica fume and calcium hydroxide [45]. Several SCMs have been
reported to have different behaviors regarding chloride ingress, carbonation, and sulfates resistance.
Even between the same materials, different behaviors were reported, leading to a lack of agreement.
For instance, FA reported a higher chloride ingress resistance than OPC [46,47], but a similar chloride
penetration was also reported by Ganesa et al. [48]. By adding metakaolin to the FA, not only is the
geopolymerisation process enhanced, but also the porosity is decreased, hence improving the chloride
ingress resistance [49,50]. However, the slags contribute to improved carbonation and chloride ingress
resistance, as stated by Navarro et al. [51]. Silica fume (SF) addition to OPC showed decreased chloride
threshold values [52], but an increased chloride resistance performance was shown in different studies
at the same time [53,54]. It also increases the freeze-thaw resistance, as stated by Gruszczynski et al. [55].
Although SCBA has workability issues, an addition between 10% and 30% as an OPC replacement
to the mixture reduces not only the permeability, but also the diffusion of chloride ions through the
concrete [56-61]. However, the post-treatment can also affect these results by increasing the greenhouse
emissions or by decreasing the workability of these concretes, apart from the mechanical and chemical
properties as stated by Franco-Lujan et al. [61]. As can be seen from the literature review, there is an
existing lack of agreement between authors about the corrosion performance of these novel materials.
This lack of agreement might be because of the manufacturing processes, mixture design, curing
conditions, or exposure conditions. For that reason, further development has to be done in order to
determine the mechanisms behind this corrosion performance behavior and to generate a solution to
the high pollutant OPC.

The aim of this work was to study the corrosion behavior of partially substituted SCBA and SF
ternary ecological concrete (TEC) mixtures embedding AISI 304 SS and AISI 1018 carbon steel (CS)
rebars. TEC has been used as an alternative material to OPC in this work owing to its pozzolanic
characteristics [62], as partial substitutes of the OPC, to generate a reduction in CO, and achieve
improvements in the concrete properties to improve their performance against corrosion of the
reinforcing steel, as has been proposed in some recent projects [63,64]; few proposals have used it for
soil improvement [65]. Four concrete mixtures were produced according to the ACI 211.1 standar [66],
the first with 100% OPC, while the remaining three were prepared with substitutions partially in
percentages of 10%, 20%, and 30% of the OPC in combination with SCBA and SF TEC.

2. Materials and Methods

2.1. Ternary Ecological Concrete

In this investigation, OPC was used, in accordance with the NMX C-414 standard of the
ONNCCE [67]. SCBA and SF were used as partial substitutes for OPC with replacement percentages
of 10%, 20%, and 30%, thus producing TEC mixtures. The SCBA was obtained from Sugar Mills
Mahuixtlan, located in Coatepec, Mexico. The SCBA was sampled from one of the boilers where the
combustion temperature reached 750 °C. The SF used was purchased from a commercial supplier.
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The physical characterization of the aggregates was performed, according to the following tests:
ASTM C33/C33M-16el (Standard Specification for Concrete Aggregates) to determine the fineness
modulus and maximum aggregate size [68], ASTM C29/C29M-07 (Standard Test Method for Bulk
Density (Unit Weight) and Voids in Aggregate) [69], ASTM standards: ASTM C-127-15 (Standard
Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate) [70], and
ASTM C-128-15 (Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine
Aggregate) [71]. All the results obtained from the physical characterization of the aggregates are
summarized in Table 1.

Table 1. Results of the characterization of the aggregates, obtained according to ASTM standards.

Physical Properties of Materials Standard Aggregate
Coarse Fine
Maximum Aggregate Size (mm) ASTM C33/C33M-16el 19.05 -
Bulk Density (Unit Weight) (kg/m3) ASTM C29/C29M-07 1433 1695
Relative Density (Specific Gravity) ASTM C-127-15 ASTM C-128-15 2.6 22
Absorption (%) ASTM C-127-15ASTM C-128-15 1.7 1.8
Fineness Modulus ASTM C33/C33M-16el - 2.94

2.2. Proportioning of Concrete Mixtures

Concrete mixtures were designed in accordance to ACI 211.1 method [66], the most used design
method for concrete research [72-75]. This method is based on the physical properties for coarse and
fine aggregates, see Table 1.

Four different hydraulic concrete mixtures were prepared, with the control mixture with 100%
OPC and three mixtures with partial substitution of 10%, 20%, and 30% of the OPC with combinations
of SCBA-SF. Table 2 the shows the dosage used for each concrete mixture, considering the four concrete
mixes an F'c = 29.4 MPa (compressive strength).

Table 2. Proportioning of concrete mixtures in kg for 1 m?3 of concrete (F'c = 29.4 MPa). OPC, ordinary
Portland cement; SBCA, sugar cane bagasse ash; FA, fly ash.

Materials 100% OPC 10% SCBA-SF 20% SCBA-SF 30% SCBA-SF
Cement 315 283.50 252.00 220.50
Water 205 205 205 205
SCBA 0 15.75 31.50 47.25

SF 0 15.75 31.50 47.25
Coarse aggregate 886 886 886 886
Fine aggregate 770 770 770 770

2.3. Characterization of Fresh and Hardened Concrete

The characterization of fresh concrete was performed using slump testing, temperature
measurements, and volumetric mass (density) measurements performed according to ONNCCE
and ASTM standards; the results obtained for each mixture can be seen in Table 3.

Table 3. Physical properties of individual employees.

Test 100% OPC 30R 10% SCBA-SF 20% SCBA-SF 30% SCBA-SF
Slump, cm [76] 7.0 6.0 5.5 5.0
Temperature, °C [77] 24.0 23.5 23.5 22.5

Density, kg/m? [78] 2345.83 2307.29 2301.04 2276.04
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Table 4 presents the results of the compressive strength (concrete in the cured state) of the four
mixtures studied, and assays were performed after 7, 14, and 28 days, as indicated by the standard
NMX-C-083-ONNCCE-2002 [79].

Table 4. Compressive strength at 7, 14, and 28 days (F’c in MPa).

Concrete Mixture Compressive Strength (MPa)

7 Days 14 Days 28 Days
MC = 100% OPC 24.3 28.3 31.2
M10 = 10% (SCBA-SF) 21.5 25.5 28.6
M20 = 20% (SCBA-SF) 22.4 26.1 30.0
M30 = 30% (SCBA-SF) 16.7 21.1 24.1

2.4. Characteristic and Nomenclature of Test Specimens

The control OPC mixture and the three mixtures of TEC were made a with water-to-cement ratio
of 0.65. The specimens were prisms of with dimensions of 15.0 X 15.0 X 15.0 cm. In all the specimens,
AISI 304 and AISI 1018 steel bars were embedded. The steel bars had a length of 15 cm and 9.5 mm
diameter. The curing of all specimens was carried out by immersion in DI-water for 27 days, according
to NMX-C-159 standard [80]. After the curing period, the eight specimens were placed in the exposure
media, four specimens were immersed in DI-water (control medium), and the remaining four were
immersed in 3.5 wt.% MgSOy solution for 175 days, simulating a sulfated medium or aggressive
medium. The specimens were then subjected to electrochemical tests. Table 5 shows the elemental
composition analyzed by X-ray fluorescence spectroscopy (XRF) of the AISI 304 austenitic stainless
steel (SS) and AISI 1018 carbon steel (CS).

Table 5. Elemental composition (wt.%) by X-ray fluorescence spectroscopy (XRF) analysis of the
reinforcements tested, AISI 1018 carbon steel (CS) and AISI 304 stainless steel (SS).

Element, wt.%
C Si Mn P S Cr Ni Mo Cu Fe

AISI1018 CS 0.20 0.22 072 0.021 0.020 0.13 0.06 0.02 0.18 Balance
AISI 304 SS 0.04 0.32 1.75 0.032 0.001 1820 8.13 0.22 0.21 Balance

Steel

The nomenclature used for the electrochemical monitoring of corrosion potential and corrosion
kinetics of AISI 304 SS and AISI 1018 CS embedded in TEC, exposed to DI-water (control medium) and
3.5 wt.% MgSOy solution (aggressive medium), is shown in Table 6.

Table 6. Nomenclature of specimens tested for a period of 180 days.

Electrolytes
Sample/Concrete Composition DI-Water Solution 3.5 wt.% MgSOy4
AISI 1018 AISI 304 AISI 1018 AISI 304
MC: Control/100% OPC MC-1-18 MC-1-304 MC-2-18 MC-2-304

M10: Mixture/90% OPC, 10% SCBA-SF M10-1-18 M10-1-304 M10-2-18 M10-2-304
M20: Mixture/80% OPC, 20% SCBA-SF M20-1-18 M20-1-304 M20-2-18 M20-2-304
M30: Mixture/70% OPC, 30% SCBA-SF M30-1-18 M30-1-304 M30-2-18 M30-2-304

Prismatic-reinforced TEC specimens were manufactured using AISI 1018 CS and AISI 304 SS
reinforcements, with a 15 cm length and 9.5 mm diameter, as depicted in Figure 1. Each of the bars
were coated 4 cm from the top and 4 cm from the bottom, in order to delimit the area of exposure to
corrosion of steel in concrete with a length of 5 cm.
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Figure 1. Experimental design of the rebars and concrete specimens.

TEC specimens were exposed to two different electrolytes, control medium (DI-water) and 3.5 wt.%
MgSQ; solution, for a period of 182 days.

Electrochemical measurements were performed using a conventional three-electrode cell
configuration. The AISI 1018 CS and AISI 304 SS were used as the working electrodes (WEs).
A standard copper/copper sulfate (Cu/CuSO,) and a AISI 314 SS plate were used as reference (RE)
and counter electrode (AE), respectively. The half-cell corrosion potential (Eo) according to ASTM
C876-15 standard [81] and considering one more range, according to the literature [82]. The linear
polarization resistance (LPR) was recorded at a sweep rate of 10 mV/min at, a potential scan range
was applied between —20 to +20 mV versus (Cu/CuSQOy), according to ASTM G59-97 standard [83].
Electrochemical measurements were performed in a Gill AC Galvanostat/Potentiostat/ZRA (ACM
Instruments, Cark in Cartmel, UK), the results were analyzed using Version 4 Analysis specialized
software from ACM Instruments (Cark in Cartmel, UK) [84,85].

The TEC reinforced specimens were immersed in the 3.5 wt.% MgSOy solution at room temperature,
and Er and iqorr were monitored every two weeks and all experimental measurements were carried
out in triplicate.

The icr and the corrosion rate (vqor) were estimated from the LPR technique using Stern and
Geary Equation (1) [86]:

Z.corr = RA;O (1)
where Rp is expressed in Q-cm? and B in V is a constant resulting from a combination of the anodic
and cathodic Tafel slopes; B is a constant with a recommended value of 0.026 V for active and 0.052 V
for the passive corrosion of steel in concrete [87,88].

Ecorr was used to assess the corrosion condition of reinforced concrete specimens according to
ASTM C-876-15 [81], which establishes the criteria or ranges that relate the E.,, values with the risk

corrosion for embedded steel specimens made with OPC concrete and TEC, see Table 7 [81,82].

Table 7. The measured half-cell corrosion potential (Ey+) versus a Cu/CuSOy in reinforcement
concrete [81,82].

Ecorr vs. CSE Corrosion Condition

Ecorr > —200 Low (10% of risk corrosion)
—200 > Ecorr > —350 Intermediate corrosion risk
—350 > E.orr > —500 High (<90% of risk corrosion)

Ecorr < =500 Severe Corrosion
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To determine v, of steels embedded in the mixtures of conventional concrete and ternary
ecological concrete, the ico,r values were used. The criteria used to analyze the i results are based on
the state of corrosion of steel in concrete reported in the literature [87], as shown in Table 8.

Table 8. Ranges of corrosion current density (icor+), and the corrosion rate (vy) related to corrosion

level [87].
icorr (LA/cm?) Vcorr (Mm/y) Corrosion Level
<0.1 <0.001 Negligible (Passivity)
0.1-0.5 0.001-0.005 Low Corrosion
0.5-1 0.005-0.010 Moderate Corrosion
>1 >0.010 High Corrosion

3. Results and Discussion

3.1. Corrosion Potential

The E .+ of the specimens were monitored in accordance with ASTM C876-15 [81], and interpreted
by the criteria presented in Table 7 [82].

3.1.1. Behavior Ey Specimens in Control Medium (DI-Water)

Figure 2 shows the corrosion potential of the AISI 1018 CS and AISI 304 SS, which are embedded
in different TEC, exposed in control medium (DI-water). The MC-1-18 specimen presented E,» values
of =342 mV in the first 14 days, within the intermediate corrosion risk range. Subsequently, the E.r
values increase to an area of low (10% of risk corrosion) according to ASTM C-876-15, with Er values
of —132 mV at day 56. Moreover, the M10-1-18 specimen presents an Eq,, of =227 mV in the first
28 days, and decreases after day 42, reaching a corrosion potential of —250 mV. Afterwards, Ecor
remains within the area of Intermediate corrosion risk until day 90, and then increases to the area with
low (10% of risk corrosion) until day 180.

I Low (10% corrosion risk)
0r Q.
r o—o~" O\\ o‘\g: O: “8:'8,<8:0 N
O o
N o
: A N
-100 |- / = ./'&G/'\%%
0—10 .-._._./ L4
L . . ol .\.
—— |
’-:Ug 150 L Dr_Ej*/ ] .\
>L> - i ’7 \: =y <
% -200 |- ”o/i 7777777777777 - 2. ::a,./f 7777777777
3 | A *
L ol ¢
250 L A r \ S W
2o A a—Mcls * >~
- —A—M10-1-18
-300 —.I_Irjzg:ijg Intermediate corrosion risk
L ——MC-1-304
n —— M10-1-304
RS [ e —O—M20-1-304 ~ 7T T TTTTTT T AT Tm T
L —O—M30-1-304 ITigh (>90% corrosion risk)
| I | I 1 i 1 ) | 1 | |

25 50 75 100 125 150 175
Time (days)

Figure 2. E.o;, of specimens exposed to control medium (DI-water).
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Meanwhile, the behavior of M20-1-18 and M30-1-18 specimens maintains a similar behavior for
the first 56 days, having E.. values in the zone of low (10% of risk corrosion), showing potentials of
—107 mV and —105 mV. However, the M20-1-18 specimen maintains a passive behavior with more
positive values of Eqo, until reaching —82 mV on day 180, which indicates a low (10% of risk corrosion).
The M30-1-18 specimen from day 90 to day 180 exhibits a decrease in E.y, to the intermediate corrosion
risk with a value of —246 mV.

For AISI 304 SS specimens, MC-1-304 shows initial values of —144 mV in the region of low (10%
of risk corrosion), maintaining an electropositive growth until the end of monitoring the same area,
to =73 mV in 180 days. The M10-1-304, M20-1-304, and M30-1-304 specimens maintain initial and
final behavior in the region of low (10% of risk corrosion), performing better protection of TEC with
substitutions of 20% and 30% of OPC by SCBA-SF combinations.

3.1.2. Ecorr Behavior of 3.5 wt.% MgSOy Solution

In Figure 3, in the AISI 1018 steel and 304 SS, the risk corrosion increases after being exposed to
magnesium sulfate. The MC-2-18 and M10-2-18 specimens exhibit stable behavior within the area of
low (10% of risk corrosion) with potentials of —198 mV and —175 mV, respectively. Finally, day 180
shows Ey values of =33 mV and —66 mV for MC-2-18 and M10-2-18 specimens, respectively. Because
these specimens are more electropositive, it is apparent that the mixtures provide better protection to
the steel reinforcement.

0+
A
I n—n
B - / & ::/_\.7-5”__ =
>E<D—-—é/. ><O A"“'-A
-100 “"D
’:L,uj -150
>U i / Low (10% corrosion risk)
S
. =200 |- -#----° o ¥t
9 L N
) § ~ /0
-250 | L
—W—MC-2-18 ~—e
r —A—M10-2-18 \\’/‘
-300 + —8—M20-2-18
I _D' 8 tiz(ffj’:;i Intermediate corrosion risk
—/A—M10-2-304
350 |- o poae4 T
F ——M30-2-304 High (>90% corrosion risk)

25 50 75 100 125 150 175

Time (days)

Figure 3. Eo of specimens exposed in 3.5 wt.% MgSOy, solution.

This behavior has been reported in the literature, and is associated with the reaction of sulfates
with hydration products, which causes the matrix of the concrete to be denser, thus reducing the
network of pores and enhancing the behavior against corrosion when exposed to sulfated media [89].
Dehwah et al. reported that the presence of sulphates in chloride solution did not affect the corrosion
initiation time [90]. Meanwhile, the M20-2-18 has an initial E.,; of —231 mV, within the area of
uncertainty until day 28, when the specimen presents a trend towards more positive E.o,, values
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throughout the time of exposure, remaining in a range of =120 mV to —160 mV indicating a low (10%
of risk corrosion), according to ASTM C-876-15. The initial E..y, of sample M30-2-18 exhibits a low
(10% of risk corrosion) and, after day 42, the E., decreases until day 180, with a value —271 mV in
the intermediate corrosion risk range. The MC-2-304 specimen initially presents an E.r value of —68
mV, within the area of low (10% of risk corrosion), maintaining a constant behavior within the zone.
Meanwhile, MC-2-304, M10-2-304, M20-2-304, and M30-2-304 showed initial E.,, values less than
—200 mV, continuing with more electropositive values until day 180. The AISI 304 SS exhibits better
corrosion behavior in each of the tested TEC mixtures, presenting during the 180 days of monitoring,
Ecorr values that indicate low (10% of risk corrosion) according to ASTM C-876-15. Among the TEC
specimens, M10-2-304 showed the best corrosion behaviour.

3.2. Corrosion Current Density

The results of the i, values of the AISI 304 SS and AISI 1018 CS embedded in the TEC were
interpreted according to the criterion of the Table 8.

3.2.1. Behavior of ico;y Specimens in Electrolyte: Control Medium (DI-Water)

Figure 4 shows the behavior of i, of the specimens exposed to control medium (DI-water).
The specimens reinforced with AISI 1018 steel, MC-1-18, M-10-1-18, M20-1-18, and M30-1-18 show
high iz values, ranging from 0.53 to 0.28 uA/cm?, thus indicating a moderate corrosion according
to criterion of the Table 8. The i.y+ values related to the formation of the passive layer that occurs in
this stage of concrete mixtures (28 days) display a steady decline in values for all specimens. By day
84 of exposure to the control medium, the ic, values of the specimens were less than 0.1 1A/cm?,
indicating a negligible level of corrosion or a passivation state of the system. A small influence is
identified between the concrete types, OPC and TEC, but owing to values below 0.1 pA/cm?, both are
considered passive.

Moderate Corrosion
R | o e
L —B—MC-1-18
—A—M10-1-18
G4 = —@—M20-1-18
—4—M30-1-18
| —O— MC-1-304
——M10-1-304
0.3 —O=—M20-1-304
= —O— M30-1-304
s
(o]
E J
2
s 0.2
—
= [ Low Corrosion
0.1 N "T:i:__“:.:i_--":_;":/" T
— .‘_'.""'--‘
Fgg;@m:g
0.0
Negligible Corrosion
| | . ] ) l ) l ) ] . ] .

25 50 75 100 125 150 175
Time (days)

Figure 4. iz specimens exposed to control medium (DI-water).
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Furthermore, the MC-1-304, M10-1-304, M20-2-304, and M30-1-304 specimens exhibit an initial iz,
less than 1.0 pA/em?, which indicates a negligible level of corrosion from day 14 to day 180. The igor, for
specimens with AISI 304 SS coincide with values reported in the literature [91,92], monitoring below
0.03 pA/cm?, as well as for AISI 1018 CS when concrete is exposed in non-aggressive environments [93].

3.2.2. Behavior of Specimens i in Electrolyte: (3.5 wt.% MgSOy4 Solution)

Figure 5 presents the ico, of AISI 304 SS and AISI 1018 CS embedded in the TEC after 180 days of
exposure to the aggressive medium (3.5 wt.% MgSOy solution). The MC-2-18, M10-2-18, M20-2-18, and
M30-2-18 specimens present passivity during the curing stage (up to 28 days), according to Table 6, with
icorr values ranging from 0.48 to 0.08 1A/cm?. With increasing time, a trend towards values closer to
0.1 pA/cm? can be observed, associated with passivation of the system, in agreement with the literature
of concrete reinforced with AISI 1018 CS exposed to sulfates [94]. However, after 84 days of exposure,
an increase in the ic,r was observed in the M30-2-18 specimen, reaching values greater than 0.1 1A /cm?
for day 112 and 0.167 pA/cm? for day 180, indicating a low level of corrosion and the activation of the
M30-2-18 specimen. For the MC-2-18, M10-2-18, and M20-2-18 specimens, an increase in ico;r values
was observed for day 112 of exposure to the sulphates medium, associated with the activation of
the steel-concrete system of the three specimens. However, the MC-2-18 specimen presents similar
values to those of the M30-2-18 specimen, which exhibits an i, value of 0.135 1A/cm? at 180 days,
thus displaying a better performance against corrosion than the specimen with OPC, MC-2-1. The
MC-2-18 specimen shows an ico, passing the 0.1 1A /cm? threshold after 140 days of exposure, ending
with an icop value of 0.127 pA/cm? at 180 days of exposure, indicating the system activation and a low
level of corrosion. Lastly, the specimen reinforced with AISI 1018 carbon steel, which presented the
greatest resistance to corrosion when exposed to a sulphates medium, was M20-2-18, which started
with an increase in its corrosion rate on day 112. Despite the increase, the specimen exhibited an iz
value of 0.0875 pA/cm? by 180 days of monitoring, indicating a negligible level of corrosion. This is
associated with a denser matrix and with sulfate resistance properties by replacing OPC with 10% of
SCBA and 10% SF, this percentage has been reported as optimal for the improvement of the durability
of ecological concrete, partially because of the pozzolanic reaction and partially to high specific surface
area and the presence of reactive silica in the combination SCBA-SF [95].

For the specimens reinforced with AISI 304 SS, MC-2-304, M10-2-304, M20-2-304, and M30-2-304,
exposed in magnesium sulfate medium (3.5 wt.% MgSOy solution), there is a homogeneous behavior
in the four specimens, with ico,r values less than 0.025 tA/cm? from the start of the monitoring, which
indicates a negligible level of corrosion according to Table 6. The four specimens, MC-2-304, M10-2-304,
M20-2-304, and M30-2-304, display ico;r values in the range of 0.022 to 0.011 tA/cm? in the first 28 days
(curing stage). This decrease after 98 days to ic, values in a range of 0.016 to 0.009 nA/cm?, owing
to the formation of a denser concrete matrix caused by the formation of ettringite that fills the pore
network, which some authors have identified as a greater resistance to compression [96,97]. However,
after day 112, a trend is identified in the four specimens. The OPC specimen, MC-2-304, and those
made with TEC, M10-2-304, M20-2-304, and M30-2-304, show an increase in i.,;, values until the end
of the monitoring (180 days). In particular, the AISI 304 steel reinforced specimen that presented the
greatest protection against magnesium sulfate corrosion with the lowest icor values was the M20-2-304
specimen, which presented i+ values that varied from 0.01 1A/cm? on day 112 to 0.024 nA/cm? at
the end of the monitoring. Next, the specimen M10-2-304, which increased from 0.016 tA/cm? on
day 98 to 0.045 tA/cm? on day 182. The MC-2-304 and M30-2-304 specimens show very similar ico
values, and also presented the greatest increases in iz after day 98 of exposure, with iz values of
0.016 pA/cm? and 0.017 pA/cm? for MC-2-304 and M30-2-304, respectively. By 180 days of monitoring,
the iz values increased to 0.051 pA/cm? and 0.061 pA/cm? for MC-2-304 and M30-2-304, respectively.
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Figure 5. ¢ specimens exposed to 3.5 wt.% MgSO; solution.

The benefit of using pozzolanic materials for protection against sulfate corrosion in reinforced
concrete can be identified, with 304 SS displaying a greater protection in TEC with replacement of 20%
of OPC with the combination of SCBA-SF, followed by concrete with 10% substitution. However, it
should be noted that the greatest resistance to sulfate corrosion to the specimens is provided by the use
of AISI 304 SS, with all specimens having values less than 0.1 uA/cmz, which indicates a negligible level
of corrosion, owing to the high resistance that this steel presents when used as reinforcement in concrete,
as has been shown by various investigations [98-101]. The sustainability of construction based on
alternative materials to cement can be increased to produce concrete durable and resistant to corrosion
by incorporating alternate reinforcements to common AISI 1018 CS has also been demonstrated by the
use of galvanized steel [102].

4. Conclusions

The AISI 304 SS, when exposed to 3.5 wt.% MgSQO,, shows excellent corrosion performance
with Eor values less than —200 mV throughout the exposure period, indicating a 10% of probability
of corrosion.

The corrosion rate and iqy for all specimens, including OPC and TEC, show i, values below
0.1 pA/cm?, thus indicating that, after 180 days of exposure to solution at 3.5 wt.% of MgSQOy, the level
of corrosion is negligible. AISI 304 SS presented better corrosion performance in TEC (M20-2-304) with
an icorr value of 0.024 pA/cm? at the end of the monitoring.

These results demonstrate that the development of TEC reinforced with AISI 304 SS increases the
corrosion resistance when exposed to sulfated media compared with OPC and reinforced with carbon
steel AISI 1018 CS. This would significantly contribute to creating a more sustainable concrete industry.
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