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Abstract: Out-of-plane wrinkling has a significant influence on the mechanical performance of
composite laminates. Numerical simulations were conducted to investigate the progressive failure
behavior of fiber-reinforced composite laminates with out-of-plane wrinkle defects subjected to
axial compression. To describe the material degradation, a three-dimensional elastoplastic damage
model with four damage modes (i.e., fiber tensile failure, matrix failure, fiber kinking/splitting,
and delamination) was developed based on the LaRC05 criterion. To improve the computational
efficiency in searching for the fracture angle in the matrix failure analysis, a high-efficiency and robust
modified algorithm that combines the golden section search method with an inverse interpolation
based on an existing study is proposed. The elastoplastic damage model was implemented in the
finite-element code Abaqus using a user-defined material subroutine in Abaqus/Explicit. The model
was applied to the progressive failure analysis of IM7/8552 composite laminates with out-of-plane
wrinkles subjected to axial compressive loading. The numerical results showed that the compressive
strength prediction obtained by the elastoplastic damage model is more accurate than that derived
with an elastic damage model. The present model can describe the nonlinearity of the laminate during
the damage evolution and determine the correct damage locations, which are in good agreement
with experimental observations. Furthermore, it was discovered that the plasticity effects should not
be neglected in laminates with low wrinkle levels.

Keywords: elastoplastic damage model; wrinkle defect; progressive failure analysis; fiber kinking;
fracture plane

1. Introduction

Fiber waviness is a type of manufacturing defect that occurs mostly during filament winding.
Ply level out-of-plane waviness can result in severe degradation of mechanical properties, in particular,
such as the compressive strength of composites. Hsiao and Daniel [1] conducted theoretical and
experimental studies on unidirectional composites with out-of-plane wrinkles under compressive
loading. They discovered that the stiffness and strength of the laminates decreases significantly with
increasing fiber waviness. A similar study was conducted by Davidson and Waas [2], who found that
for thick unidirectional carbon fiber polymer matrix composites, there exists a fiber misalignment
angle at which the compressive strength is the global minimum. In a subsequent work, Davidson
and Waas [3] developed a fiber waviness tolerance and criticality assessment framework employing
surrogate modeling and Monte Carlo methods to predict the compressive strength and failure mode of
a composite structure with fiber waviness. Adams et al. [4,5] investigated the effect of fiber wrinkles on
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the compressive strength of symmetric cross-ply laminates. According to their results, the compressive
strength of those laminates was up to 36% lower than that of pristine laminates. Furthermore, various
studies have shown that composites exhibit significant nonlinear behaviors before the final collapse
of their structures, especially for laminates with wrinkles. Wisnom and Atkinson [6] performed
finite-element (FE) analyses and experiments on T800/924 unidirectional laminates. Their results
showed that fiber misalignments could induce shear nonlinearities. Chun et al. [7] discovered
experimentally that DMS 2224 carbon/epoxy composite laminates with wrinkles exhibit both material
and geometric nonlinearities under tension and compression. In addition, Makeev et al. [8] observed a
nonlinear shear behavior in IM7/8552 laminates with fiber wrinkles using digital image correlation, and
they proposed a nonlinear shear stress–strain relation obtained from numerical simulations. Davidson
and Waas [9] used an odd polynomial series fitting obtained from experimental results to model the
nonlinear shear response of the matrix in fiber-reinforced composites. Mukhopadhyay et al. [10]
captured the progressive damage in IM7/8552 laminates with wrinkles using a high-speed video
camera during compression experiments, and then, adopted a nonlinear shear stress–strain relation to
describe the material behavior in a subsequent numerical analysis. However, the above studies focused
only on shear nonlinearity, and disregarded plasticity and nonlinearity in the transverse direction.

In many progressive damage models developed for composite laminates, plasticity has been
introduced to describe material nonlinearity. In a microscale, Prabhakar and Waas [11–13], Sun et al. [14],
and Yuan et al. [15] applied a micromechanics model to predict the compressive failure behavior of
unidirectional fiber-reinforced laminated composites using plasticity to approximate the nonlinearity
of matrices. At the ply level, Lemanski et al. [16] presented a perfectly plastic model based on the
Hill yield criterion and the kinematic hardening rule to simulate the nonlinear behavior of AS4/8552
composite laminates fabricated by Wang et al. [17], although only delamination damage was considered
in their analysis. Wang et al. [18–20] performed off-axis tension and compression tests of IM600/Q133
unidirectional laminates and discovered that a material performs differently under tension and
compression. Therefore, they proposed an elastoplastic constitutive model with distinguished tension
and compression performances as an improvement on the Hill yield criterion. Xue et al. [21,22] applied
this model to analyze the progressive elastoplastic failure behavior of IM600/Q133 and IM7/8552
composite laminates. Chen et al. [23] developed a combined elastoplastic damage model that accounted
for plasticity on both the transverse and in-plane shear directions; however, the model could only
be applied for two-dimensional damage analysis. According to an experiment, in which composite
laminates were subjected to traverse compression [24,25], the fracture plane is not parallel to the
loading direction. Moreover, fibers exhibit kinking or splitting failure under axial compression [26,27].
Therefore, existing damage models cannot be applied for the compression failure analysis of laminates
considering plasticity effects.

To the best of our knowledge, no studies have been conducted on the longitudinal compression
failure of multi-ply laminates with wrinkles that consider plastic damage in the matrix. Therefore,
we extended the elastoplastic damage model described in [23] to a three-dimensional (3D) damage
analysis and conducted a progressive failure simulation of composite laminates with out-of-plane
wrinkle defects subjected to axial compression. To rapidly search for the fracture angle in the matrix
failure analysis, we propose a highly accurate approach that combines the golden section search
method and an inverse interpolation. We implemented the damage model based on the LaRC05
criterion [28] in a modified algorithm using a user-defined material subroutine in Abaqus/Explicit
(VUMAT). To evaluate the effectiveness of the proposed method, we compared the predicted results
with experimental observations [10].

The contributions of this study are as follows: (1) We conducted a progressive failure analysis
of multidirectional fiber-reinforced polymer laminates with embedded wrinkle defects based on an
elastoplastic damage model. (2) We demonstrated the nonlinearity of the laminate during damage
evolution and correctly determined the damage location through numerical simulations.



Materials 2020, 13, 2422 3 of 26

The remainder of the paper is organized as follows: Section 2 describes the elastoplastic damage
model adopted in the present study. In Section 3, an approach is proposed to determine the orientation
of the fracture plane in the matrix failure analysis. The implementation of the elastoplastic model using
the user-defined subroutine VUMAT is presented in Section 4. Section 5 shows numerical simulation
examples and discusses the predictions by comparing them with test results [10]. Finally, conclusions
are presented in Section 6.

2. Elastoplastic Damage Model

2.1. Stress-Strain Relationships

For composite materials exhibiting a plasticity response, the total strain tensor ε is expressed as
the sum of the elastic and plastic strain parts, εe and εp, respectively, as follows:

ε= εe + εp (1)

According to damage mechanics theories, the Cauchy nominal stress tensor σ and the effective

stress tensor
¯
σ obey the following relationship:

¯
σ=M(d)σ (2)

where
¯
σ = [σ11 σ22 σ33 σ23 σ31 σ12] and σ = [σ11 σ22 σ33 σ23 σ31 σ12] for 3D problems. M(d) =

diag[1/(1-d1) 1/(1-d2) 1/(1-d2) 1/(1-d3) 1/(1-d3) 1/(1-d2)], where d represents the damage variable and
d1, d2, and d3 denote the damage in the fiber and in the transverse and shear directions, respectively.
To ensure the irreversibility of the damage, d1, d2, and d3 are expressed as:

d1 = max(d f t, dkink or dsplit), d3 = 1− (1− d1)(1− d2)d2 = max(dmt, dmc) (3)

where dft is the damage caused by tension in the fiber direction; dkink and dsplit denote the fiber kinking
and splitting, respectively, caused by compression in the fiber direction; dmt represents both the damage
caused by tension in the matrix and the degradation of the interface between the fibers and the matrix
due to decohesion; and dmc denotes the damage caused by compression in the matrix.

The relationship between stress and strain for undamaged orthotropic anisotropy composites is
as follows:

¯
σ=C0ε

e (4)

where C0 is the stiffness tensor of the undamaged unidirectional laminated composite.
By substituting Equation (4) into Equation (2), the relationship between the elastic strain tensor εe

and the Cauchy nominal stress tensor can be expressed as follows:

εe=C−1
0 M(d)σ = S0M(d)σ (5)

where S0 is the undamaged flexibility tensor.
The stress–strain relationship for damaged composite materials can be expressed in the form:

εe = Sdσ (6)

where Sd is the damage flexibility tensor.
By comparing Equations (5) and (6), the relationship between S0 and Sd can be expressed

as follows:
Sd = S0M(d) (7)
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According to Matzenmiller’s assumption [29], the compliance tensor of the damaged lamina can
be obtained by adjusting the Poisson ratios. In the present study, the compliance tensor was degraded
similar to [29]. Therefore, the following form of Sd was adopted:

Sd =



1
(1−d1)E11

−υ12
E11

−υ13
E11

−υ12
E11

1
(1−d2)E22

−υ23
E22

−υ13
E11

−υ23
E33

1
(1−d2)E33

1
(1−d3)G23

1
(1−d3)G13

1
(1−d2)G12


(8)

2.2. Plastic Model

The plastic yield function can be expressed in terms of effective stresses as follows [23]:

F
(

¯
σ, ε̃p

)
= Fp

(
¯
σ

)
− κ(ε̃p) (9)

where Fp is the plastic potential and k is the hardening parameter. The power law proposed by Sun
and Chen [30] is expressed as follows:

ε̃p = Aσ̃n (10)

where A and n are coefficients that can be determined using an approach based on the linear regression
analysis of off-axis tensile tests performed on unidirectional composite laminate specimens. σ̃ and ε̃p

are the equivalent stress and the equivalent plastic strain, respectively.
For simplicity, Chen et al. [23] converted the isotropic hardening law to an equivalent form in

which the equivalent plastic strain ε̃p is used as an internal variable:

κ(ε̃p) = β(ε̃p)m (11)

where the coefficients β and m are related to A and n, respectively, through the relationships β = A−1/n

and m = 1/n.
Here, the 3D general plastic potential proposed by Sun and Chen [30] is employed. Hence, Fp can

be rewritten as:

Fp = σ̃ =

√
3
2

[
(σ22 − σ33)

2 + 4σ2
23 + 2a66

(
σ2

31 + σ2
12

)]
(12)

where a66 is a material parameter that describes the level of plastic deformation developed under shear
loading compared with that under transverse loading and σi j represents the effective stress component.

Assuming the associated plastic-flow rule and the associated hardening rule for composite
materials, the plastic strain rate dεp

ij can be expressed as:

dεp
ij = λ

∂F
∂σi j

(13)

where λ is a plastic consistency parameter.
The plastic work per unit volume dWp is defined as:

dWp = σi jdε
p
ij = σ̃dε̃p (14)

By substituting Equations (12) and (13) into Equation (14), the equivalent strain rate is expressed
as follows:

dε̃p = λ (15)
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2.3. Damage Model

In general, the damage modes in composite structures include fiber failure, matrix cracking,
and delamination. Fiber failure and matrix cracking occur in the plane and can be further categorized
into tensile and compressive modes. Pinho [28] classified the fiber failure caused by compression into
fiber splitting and fiber kinking.

2.3.1. Fiber Tensile Failure

Typically, fiber failure occurs when the longitudinal stress reaches the longitudinal tensile strength.
Therefore, the maximum stress criterion is considered:

f f t =
σ11

XT
= 1, σ11 > 0 (16)

where σ11 is the normal stress in the fiber direction; XT is the axial tensile strength of the composite;
and fft is the exposure factor corresponding to the tension-induced fiber failure.

2.3.2. Matrix Failure

According to experimental observations [24,25], a fracture plane appears in the longitudinal
direction of fibers under a transverse stress or/and an in-plane stress acts. Matrix failure occurs in the
fracture plane. Puck introduced a criterion using stress components in the fracture plane. Pinho [28]
adopted the advantages of the Puck criterion and improved it in the second World-Wide Failure
Exercise (WWFE-II). The stress components on the fracture plane, as shown in Figure 1, can be obtained
through a transformation of coordinates using the following formulas:

σN = σ22 cos2 φ+ σ33 sin2 φ+ 2σ23 sinφ cosφ
τT = (σ33 − σ22) sinφ cosφ+ σ23

(
cos2 φ− sin2 φ

)
τL = σ31 sinφ+ σ21 cosφ

(17)

where σ, τ, and τL are the normal, longitudinal shear, and transverse shear stresses in the crack plane,
respectively. φ denotes the angle of the fracture plane.
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Figure 1. Traction components in the fracture plane, based on [31].

If the normal stress in the fracture plane is a tensile stress, i.e., σN; ≥ 0, then matrix tensile failure
will occur; otherwise, matrix compression failure will occur. The matrix failure criteria are expressed
as follows:

fmat =

 fmt =
(
σN
YT

)2
+

(
τT
ST

)2
+

(
τL
SL

)2
= 1 σN ≥ 0

fmc =
(

τT
ST−µTσN

)2
+

(
τL

SL−µLσN

)2
= 1 σN < 0

(18)

where YT is the transverse tensile strength; µL and µT are the friction coefficients in the longitudinal
and transverse directions, respectively; and SL and ST are the in situ longitudinal and transverse shear
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strengths, respectively. It is worth noting that, although SL and ST are not the same as the parameters
S12 and S23, respectively, used in physics, Puck et al. [31] found that the value of SL can be set to that
of S12. The other parameters can be determined by analyzing the pure transverse compression of a
composite laminate, which is calculated as follows [32]:

µT = −
1

tan(2φ0)
, ST =

YC

2 tan(φ0)
, µL =

µT

ST
SL (19)

where φ0 is the angle of the fracture plane for pure compression [24,25], i.e., φ0 = 53 ± 2◦, and YC is the
transverse compressive strength of the composite.

2.3.3. Fiber Compression Failure

Schultheisz and Waas [26] observed a local matrix deformation accompanied by fiber fracture
(i.e., “fiber kinking”) that differs from fiber microbuckling. Furthermore, Argon [27] assumed that
initial microbuckling could result in fiber rotation, matrix shearing, fiber–matrix debonding, fiber
kinking, and splitting in kink bands.

Although the fiber kinking mechanism is similar to that of matrix failure, a major difference is
that in the matrix failure model, the associated stresses are calculated with respect to the fracture plane,
whereas in fiber kinking analysis, stresses are calculated with respect to the kink plane, which is aligned
with the fiber rotation. As shown in Figure 2, system 1–2–3 describes the material coordinates, where ψ
is the angle between the kink plane and axis 2. Fiber kinking occurs on the plane with local coordinate
system 1m–2m–3m, which is obtained by rotating the coordinate system 1–2ψ–3ψ by an angle θ.
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The associated stress transformations in the transformation of the above coordinates are expressed
as follows [28]: 

σ
ψ
22 = σ22 cos2 ψ+ σ33 sin2 ψ+ 2σ23 sinψ cosψ
τ
ψ
12 = σ12 cosψ+ σ31 sinψ
τ
ψ
23 = (σ33 − σ22) sinψ cosψ+ σ23

(
cos2 ψ− sin2 ψ

)
τ
ψ
31 = σ31 cosψ− σ12 sinψ

(20)


σm

22 = σ11 sin2 θ+ σ
ψ
22 cos2 θ− 2τψ12 sinθ cosθ

τm
12 = (σ

ψ
22 − σ11) sinθ cosθ+ τ

ψ
12

(
cos2 θ− sin2 θ

)
τm

23 = τ
ψ
23 cosθ− τψ31 sinθ

(21)
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According to the concept of matrix compression failure, and taking the effect of matrix transverse
tension due to fiber misalignment into account, the fiber kinking/splitting criterion can be expressed
as [28]:

fkink = fsplit =

(
τm

23

ST − µTσm
22

)2

+

(
τm

12

SL − µLσm
22

)2

+


〈
σm

22

〉
YT


2

(22)

where σm
22, τm

12, and τm
23 are the transverse normal stress and the in-plane and out-of-plane shear

stresses, respectively, in the coordinate system 1m–2m–3m, and <·> denotes the Macauley symbol, i.e.,
<x> = (x + |x|)/2. Pinho et al. [28] determined experimentally that fiber kinking takes place only for
compressive stress σ11 ≤ −XC/2; otherwise, fiber splitting occurs.

Angle ψ is expressed by [32]:

tan(2ψ) =
2σ12

σ22 − σ33
(23)

The misalignment frame orientation θ is the sum of the initial misalignment angle θi and the
additional shear strain γ due to loading:

θ =
τ
ψ
12∣∣∣∣τψ12

∣∣∣∣ (θi + γ) (24)

The shear strain γ in the initial misalignment frame is defined as follows:

γ = f−1
CL

(∣∣∣∣∣−σ11 − σ22

2
sin(2θi) +

∣∣∣∣τψ12

∣∣∣∣ cos(2θi)

∣∣∣∣∣) (25)

where fCL is the shear function (i.e., τ = fCL(γ)). For linear shear, Equation (25) can be simplified to:

γ =
θiG12 + |σ12|

G12 + σ11 − σ22
− θi (26)

2.3.4. Damage Propagation Criterion

Damage evolution is accompanied by release of strain energy and degradation of the material
properties. The loading/unloading and softening stress–strain curves for a combined elastoplastic
damage model are shown in Figure 3, where σ0 and ε0 are the initial values of the failure stress and
strain in all directions, respectively.Materials 2020, 13, x FOR PEER REVIEW 8 of 27 
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g


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Without considering plastic deformation in the fiber direction, the material exhibits a linear elastic
behavior before damage. After damage occurs, the stiffness decreases gradually. Before damage is
initiated, although irreversible plastic deformations in both the shear and transverse directions are
observed, the material stiffness is not degraded. Therefore, a nonlinear behavior is shown during
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loading. Unlike in the fiber direction, both plastic deformation and stiffness softening occur beyond
the point of damage initiation. Stiffness softening is expressed by an exponential damage parameter as
follows [33]:

dI = 1−
1
fI

exp[AI(1− fI)], I ∈ (mt, mc, f t, kink or split) (27)

A discrete element is the basic unit of the FE method. Although elements with different sizes
obey the same stress–strain relationship, the energy release rates of different elements are unequal and
proportional to the element size. To alleviate the dependence of the energy release rate on the element
size, an element characteristic length LC is introduced with a critical strain energy release rate of GI,C.
The damage energy dissipated per unit volume, gI,C, can be defined with the exponential factor AI as
an internal variable [23] as follows:

gI,C(AI) −
GI,C

LC
= 0, I ∈ (mt, mc, f t, kink or split) (28)

where GI,C contains Gkink, Gsplit, GIC, and GIIC, which are identical to the fiber kinking and splitting
fracture toughness and modes I and II of the matrix fracture toughness, respectively. gI,C(AI) can be
obtained from the following integration:

gI,C(AI) =

∫
∞

0

∂ψ

∂dI

dI(AI)

dt
dt (29)

By substituting Equation (29) into Equation (28), the following equation is derived, which is used
to solve AI by numerical iterations:

ln
(
A(n+1)

I

)
= ln

(
A(n)

I

)
− ln

(
gI,C

(
A(n)

I

)
LC/GI,C

) ln
(
A(n)

I /A(n−1)
I

)
ln

(
g(n)I,C /g(n−1)

I,C

) (30)

Details on the approach used to determine AI are provided in Chen et al. [23].

2.4. Cohesive Model

A modified cohesive model [34] was adopted to simulate interfacial failure, as shown in Figure 4a.
In this model, mode II and mode III fractures, which were considered as the combined resulting
transverse shear modes, were used with mode I to compose the mixed mode, as shown in Figure 4b.
The total mixed-mode relative displacement is expressed as:

δm =
√
δ2

I + δ2
II (31)

where δI and δII are defined as:

δI = max(0, δ1), δII =
√
δ2

2 + δ2
3 (32)

Here, δ1 is the normal opening relative displacement, and δ2, δ3 are the resulting transverse shear
relative displacements.

A quadratic damage initiation criterion under a multiaxial stress state was used to predict the
onset of delamination in the cohesive zone [34]:√(

max(σI, 0)
σmax

I

)2

+

(
σII

σmax
II

)2

= 1 (33)
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where σmax
I and σmax

II denote the interlaminar tensile and shear strengths (see in Figure 4), respectively,
and σI and σII are the resulting normal interlaminar stress and shear stress of the interface,
correspondingly. Assuming linear softening in the interface elements after the delamination onset,
the fracture energy under mixed-mode loading with the power law criterion [35] is expressed as:(

GI

GIC

)α
+

(
GII

GIIC

)α
= 1 (34)

ddelam = max

0, min

1,
δm − δ0

m

δ
f
m − δ

0
m


 (35)

where α ∈[1.0, 2.0] is an empirical parameter derived from mixed-mode tests, and GIC and GIIC are the
critical energy release rates for pure modes I (opening) and II (shear), respectively. The superscripts “0”
and “f ” indicate the initial and final values of the effective displacement δm, respectively, and the max
function represents the irreversible damage.
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3. Calculation of the Angle of the Fracture Plane

Knops [36] proposed an algorithm to determine the fracture plane in composite laminates.
As shown in Figure 5, the fiber orientation of each ply in the laminate is assumed to be in direction 1.
Subsequently, each ply is divided into discrete equal angular intervals of 1◦ from direction 1 (0◦) to 180◦.
The stress components σN (φ), τT(φ), and τL(φ) on the planes oriented at each angle are determined for
a designated stress state and substituted into Equation (18) to derive the value of fmat. Then, the angle
corresponding to the maximal fmat gives a potential orientation of the fracture plane. If fmat reaches 1.0
with increasing external loading, which indicates matrix failure initiation, then the associated angle of
a potential fracture plane is the real orientation φfp of the fracture plane.

Although the procedure developed by Knops can be used to obtain a precise fracture angle, its
efficiency is low. For a model with N elements and M increments, M × N × 180 iteration steps are
required. Here, we propose a modified algorithm to determine the fracture angle with high efficiency
and robustness based on the studies of Wiegand et al. [37] and Schirmaier et al. [38]. According to the
research of Schirmaier et al. [38], the number of fmat thresholds does not exceed three, and the distance
between two local maxima is always greater than 25◦. Therefore, the fracture angle can be searched
for in [−90◦, 90◦] with a step size of 10◦, as shown in Figure 6. (If the curve increases or decreases
monotonously, which is not shown in Figure 6, the fracture angle is 90◦ or −90◦). The local extrema
intervals (denoted as “range 1” and “range 2”) are determined by applying the golden section search
method and an inverse interpolation.
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For range 1 (see the magnified image at the top left corner of Figure 6), i.e., [φ1, φ4], the golden
section points φ2 and φ3 can be determined as follows:

φ4 −φ2

φ2 −φ1
=

√
5 + 1
2

(36)

φ4 −φ3

φ3 −φ2
=

√
5 + 1
2

(37)

Subsequently, the values of fmat at φ2 and φ3 must be compared. If fmat(φ 2) < fmat(φ3), the local
extremum interval is substituted by [φ 2, φ 4]; otherwise, the local extremum interval is updated by
[φ1, φ3]. For fmat(φ2) < fmat(φ3) in the current case, let φa = φ2, φc = φ4, and φb = φ3. By applying an
interpolation in interval [φa, φc], the function fmat(φ) is approximated as follows:

fmat(φ) ≈ fmat(φa)
(φ−φb)(φ−φc)

(φa−φb)(φa−φc)
+ fmat(φb)

(φ−φa)(φ−φc)

(φb−φa)(φb−φc)

+ fmat(φc)
(φ−φa)(φ−φb)

(φc−φb)(φc−φa)
, φ ∈ [φa,φc]

(38)

Therefore, the maximum point of range 1, φfp1, is expressed as:

φfp1 ≈ φb −
1
2
(φb −φa)

2( fmat(φb) − fmat(φc)) − (φb −φc)
2( fmat(φb) − fmat(φa))

(φb −φa)( fmat(φb) − fmat(φc)) − (φb −φc)( fmat(φb) − fmat(φa))
(39)
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The maximum point in range 2, denoted as φfp2, is obtained by applying a similar procedure on
range 2. Finally, the fracture angle in interval [−90◦, 90◦] is determined as the larger one of φfp1 and
φfp2.

To verify the effectiveness of the above algorithm, four typical stress states were selected to
determine the angle of the fracture plane: pure shear in-plane and out-of-plane, uniaxial compression,
and arbitrary 3D stress, which are listed in Table 1.

Table 1. Four typical stress states for IM7/8552 composite (units: MPa).

Stress State σ11 σ22 σ33 τ12 τ23 τ13

1 (pure shear) 0.0 0.0 0.0 0.0 73 0.0
2 (pure shear) 0.0 0.0 0.0 94.195 0.0 0.0

3 (uniaxial compression) 0.0 −316.8 0.0 0.0 0.0 0.0
4 (arbitrary 3D) 0.0 −20 50 21 43.3 32.57

The curves of the threshold of the matrix damage onset versus angle φ for IM7/8552 unidirectional
composite laminates under the four typical stress states are shown in Figure 7. It can be seen that
the fracture angles for the four cases are significantly different. For the case of uniaxial compression
(i.e., curve 3), there are two peaks at φ = 54◦ and φ = −54◦, while for the other three cases there is
only one peak. For the two cases of pure shear, these peaks occur at φ = 0◦ and φ = 45◦ It is worth
noting that an inflection point appears at φ = 0◦ in curve 1. In fact, for the case of pure shear associated
with curve 1, the matrix tensile failure (i.e., σN ≥ 0) occurs in the interval [0◦, 90◦], while the matrix
compressive failure (i.e., σN < 0) occurs in the interval [−90◦, 0◦]. Therefore, φ = 0◦ is the separation
point for the tensile and compressive failure modes, which leads to an inflection point in the curve.
Similar to curve 1, there is an inflection point in curve 4 at φ = −60◦. This implies that for curve 4,
the matrix failure is dominated by tensile stress in the interval [−60◦, 30◦] and by compressive stress in
the intervals [−90◦, −60◦] and [30◦, 90◦].
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A comparison between the proposed algorithm and Knops’ algorithm [36] in terms of efficiency
and accuracy is shown in Table 2, where N is the number of calculation points and “time” represents
the real calculation time. As shown in Table 2, the angles calculated using the proposed algorithm are
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similar to those derived with Knops’ algorithm with step size 0.1◦, whereas the associated calculation
time is reduced to between 1/10 and 1/15 of the latter. It can be concluded that the algorithm proposed
here is highly accurate and efficient.

Table 2. Comparison of the efficiency and accuracy of the proposed algorithm with those of
Knops’ algorithm.

Stress State
Knops’s Algorithm Proposed Algorithm

Step Size (o) φfp (o) N Time (s) φfp (o) N Time (s)

1 (pure shear) 1 45 180 0.0625
45.0114 22 0.01130.1 45 1800 0.1250

2 (pure shear) 1 0 180 0.0781
4.44 × 10−16 22 0.01420.1 0 1800 0.2344

3 (uniaxial compression) 1 54 180 0.0625
54.271 25 0.01560.1 54.5 1800 0.2561

4 (arbitrary 3D) 1 68 180 0.0732
67.8691 22 0.01560.1 67.9 1800 0.1094

4. VUMAT Subroutine

Discontinuity problems do not easily converge in implicit solvers, such as damage problems and
nonlinear problems. Hence, we developed a 3D elastoplastic damage algorithm implemented in the
user-defined subroutine VUMAT as an extension to that of Chen et al. [23], which is suitable for a
plane stress state. To accommodate compressive failure analysis, we replaced the LaRC criterion with
the Hashin criterion [39]. In addition, the cohesive model was implemented in Abaqus/Explicit [40]
using the user-defined subroutine VUMAT. The flow chart of the subroutine VUMAT is shown in
Figure 8, which includes VUMAT-1 and VUMAT-2 for the elastoplastic damage and cohesive zone
models, respectively.Materials 2020, 13, x FOR PEER REVIEW 13 of 27 
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Figure 8. Flow chart of subroutine VUMAT.

4.1. Elastoplastic Damage Algorithm

Similar to the study by Chen [23], the user-defined subroutine VUMAT of the elastoplastic damage
algorithm was driven by a strain increment, in which the loading history was discretized into a
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sequence of time intervals, i.e., [tn, tn+1](n = 1, 2, 3). Therefore, the discrete backward Euler algorithm
was applied to update the effective stress and strain components, and this process can be described as

follows: the Abaqus/Explicit main program yields
{
∆εn+1, εn, εe

n, εp
n, ε̃p

n,σn,
¯
σn, σ̃n, d1,n, d2,n, d3,n,φfp,n

}
,

a result of the n th increment, used as the initial condition to the n+1 th increment, which is updated

to a novel set variable
{
εn+1, εe

n+1, εp
n+1, ε̃p

n+1,σn+1,
¯
σn+1, σ̃n+1, d1,n+1, d2,n+1, d3,n+1,φfp,n+1

}
at the end

of the increment. Therefore, the incremental elastoplastic constitutive algorithm using the backward
Euler explicit integration procedure is formulated as follows:

εn+1 = εn + ∆εn+1

ε
p
n+1 = ε

p
n + ∆λn+1∂ ¯

σn+1
Fp

n+1

εe
n+1 = εn+1 − ε

p
n+1

ε̃
p
n+1 = ε̃

p
n + ∆λn+1

¯
σn+1 = C0 : εe

n+1

Fn+1 = F
(

¯
σn+1, ε̃p

n+1

)
≤ 0

(40)

The nonlinearity in Equation (40) can be solved by applying the Newton–Raphson method.

The iteration was performed until the yield criterion F
(

¯
σ

k+1

n+1, ε̃p,(k+1)
n+1

)
≤ tol was satisfied at the k+1 th

iteration, where tol is the error tolerance of 1 × 10−6. The implementation procedure is as follows:

(1) Initial conditions:

∆εn+1, εn, εe
n, εp

n, ε̃p
n,σn,

¯
σn, σ̃n, d1,n, d2,n, d3,n,φfp,n.

(2) Elastic predictor: 

εn+1 = εn + ∆εn+1

ε
p,trial
n+1 = ε

p
n

εe,trial
n+1 = εn+1 − ε

p,trial
n+1 = εe

n + ∆εn+1

ε̃
p,trial
n+1 = ε̃

p
n

σ̃trial
n+1 = σ̃n

¯
σ

trial

n+1 =
¯
σn + C0 : ∆εn+1

(41)

(3) Yield judgment and plastic corrector:

Ftrial
n+1 = Fp

(
¯
σ

trial

n+1

)
− σ̃

(
ε̃

p,trial
n+1

)
≤ 0 (42)

If Ftrial
n+1, then

εe
n+1 = εe,trial

n+1 , εp
n+1 = ε

p
n, ε̃p

n+1 = ε̃
p
n

¯
σn+1 =

¯
σ

trial

n+1, σ̃n+1 = σ̃n
(43)

Else

a. initialize parameter:

k = 0, ∆λ(0)n+1 = 0,
¯
σ
(0)

n+1 =
¯
σ

trial

n+1, ε̃p,(0)
n+1 = ε̃

p,trial
n+1 , εp,(0)

n+1 = ε
p,trial
n+1 (44)

b. calculate F(k+1)
n+1 = F

(
∆λ(k+1)

n+1

)
= F

(
¯
σ

(
∆λ(k+1)

n+1

)
, ε̃p

(
∆λ(k+1)

n+1

))
,
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c. do while F(k+1)
n+1 ≥ tol then

δ
(
∆λ(k+1)

n+1

)
= −

F
(
∆λ(k)n+1

)
F′

(
∆λ(k)n+1

)
∆λ(k+1)

n+1 = ∆λ(k)n+1 + δ
(
∆λ(k+1)

n+1

)
ε̃

p,(k+1)
n+1 = ε̃

p,(k)
n+1 + δ

(
ε̃

p
n+1

)
¯
σ
(k+1)

n+1 = C0 :
(
εn+1 − ε

p,(k+1)
n+1

)
F(k+1)

n+1 = F
(

¯
σ
(k+1)

n+1 , ε̃p,(k+1)
n+1

)
= F

(
¯
σ

(
∆λ(k+1)

n+1

)
, ε̃p

(
∆λ(k+1)

n+1

))
k = k + 1

(45)

End do

End.

(4) Damage judgment and corrector:

a. Search for the fracture plane:
If fmat,n < 1 then
Calculate φfp,n+1 (Equation (39))
Else

φfp,n+1 = φfp,n (46)

End.
b. Calculate the effective stress on the fracture plane σN, τL, and τT (Equation (17)) and the

effective stress in the fiber misalignment frame σm
22, τm

12, and τm
23 (Equation (21)).

c. Damage judgment:

(1) Check the fiber failure criterion:
If σ11,n+1 ≥ 0 then
Calculate f f t (Equation (16)) and d f t
Else
Calculate fkink or fsplit Equation (22) and d f c
End.

(2) Check the matrix failure criterion:
If σN,n+1 ≥ 0 then
Calculate fmt (Equation (18)) and dmt

Else
Calculate fmc (Equation (18)) and dmc

End.

(5) Correct the nominal Cauchy stress:

a. Update the state dependent variables:

d1,n+1 = max(d1,n, d f tord f c)

d2,n+1 = max(d2,n, dmtordmc)

d3,n+1 = 1− (1− d1,n+1)(1− d2,n+1)

(47)

b. Calculate the nominal stress tensor σn+1 (Equation (6)).
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4.2. Cohesive Zone Algorithm

The numerical algorithm for the cohesive zone implemented in the user-defined subroutine
VUMAT is based on [34]. According to the flow chart of VUMAT-2 in Figure 8, the algorithm primarily
comprises the calculation of the relative displacement, evaluation of initial and ultimate failure, and
derivation of the damage parameter d, which reflects the failure evolution. Therefore, the details of FE
implementation in the cohesive zone are as follows:

(1) Obtain material properties: KI, KII, σmax
I , σmax

II , GIC, GIIC, T0.
(2) Relative displacement computation:

a. Calculate the relative displacement in the local orthogonal coordinate system:

δi,n+1 = T0(εi,n + ∆εi,n+1) i = 1, 2, 3 (48)

b. Calculate the mixed-mode relative displacement δm and its components:

δI,n+1 = max(0, δ1,n+1), δII,n+1 =
√
δ2

2,n+1 + δ2
3,n+1, δm,n+1 =

√
δ2

I,n+1 + δ2
II,n+1 (49)

c. Calculate the relative displacement of mixed mode δ0
m,n+1 at the initial failure using

Equation (33):

δ0
m,n+1 = 1/

√√√√√
〈
KIδI,n+1/δm,n+1

〉
σmax

I


2

+

(
KIIδII,n+1

δm,n+1σmax
II

)2

(50)

(3) Verify the initial failure criterion:

finitial = δm,n+1 − δ
0
m,n+1 ≤ 0 (51)

If finitial ≤ 0, then set dn+1 = 0; otherwise, the damage evolves. Therefore, calculate the relative
displacement of mixed mode δ f

m,n+1 at the ultimate failure using Equation (34):

δ
f
m,n+1 =


KIδ0

m,n+1(δI)
2

2GIC(δm)
2


α

+

KIIδ0
m,n+1(δII)

2

2GIC(δm)
2


α
−1/α

(52)

(4) Verify the ultimate failure criterion:

fultimate = δm,n+1 − δ
f
m,n+1 ≤ 0 (53)

If fultimate ≤ 0, then set dn+1 =
δm,n+1−δ

0
m,n+1

δ
f
m,n+1−δ

0
m,n+1

. Otherwise, dn+1 = 1.

(5) Update the nominal Cauchy stress:

σ1,n+1 = (1− d)KIδ1,n+1, σ2,n+1 = (1− d)KIIδ2,n+1, σ3,n+1 = (1− d)KIIδ3,n+1 (54)

5. Numerical Examples

To verify the elastoplastic damage model developed in this study, numerical simulations
of the progressive failure of composite laminates with fiber waviness were performed.
Mukhopadhyay et al. [10] conducted an experimental and numerical study of the compressive
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failure of IM7/8552 laminates with wrinkles. For comparison, the IM7/8552 laminates with a layup of
[452/902/−452/02]3s used by Mukhopadhyay et al. [10] were selected in the present simulation. Thus,
the numerical and experimental results in [10,41] can be used for comparison with the results obtained
from the proposed elastoplastic damage model. The geometry of the laminates and the profile of the
embedded wrinkles are described in the following.

The elastic properties [10] and plastic parameters [22] are listed in Table 3, where the plastic
parameters a66, β and m were converted using Equation (11).

Table 3. Material properties of IM7/855 and model parameters [10,22].

E11 (MPa) E22 (MPa) E33 (MPa) G12 (MPa) G13 (MPa) G23 (MPa)

161000 11380 11380 5170 5170 3980

XT (MPa) XC (MPa) YT (MPa) YC (MPa) SL(MPa) θi (o)

2560 1590 73 250 113 1.5

µ12 µ13 µ23 β m a66

0.32 0.32 0.43 1059.955 0.2041 2.6

GIC (N/mm) GIIC (N/mm) Gkink (N/mm) Gsplit (N/mm)

0.26 1.002 80 80

First, the profile of the embedded wrinkles was plotted in MATLAB; subsequently, the associated
FE model was generated using a Python script run by Abaqus GUI, shown in Figure 9. The profile of
the wrinkles can be described with a cosine function as follows [10]:

hw = h0 + ∆h

∆h =

 Bδ
2 cos

(
2πx

L

)
for −L

2 ≤ x ≤ L
2

0 otherwise
(55)

where hw is the nodal coordinate of the through-thickness in the wrinkled configuration; h0 is the
nodal coordinate in a wrinkle-free flat laminate; L is the wavelength of the wrinkle; and δ is the wave
amplitude. The value of B is unity on the centerline and decreases linearly with the thickness, with a
ratio of 1.0:0.63:0.39:0.0 [42].
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A 3D quasi-static progressive failure simulation was implemented in Abaqus/Explicit using the
user-defined subroutine VUMAT. To reduce the computational cost, two adjacent plies with the same
orientation were modeled using continuum 3D eight-noded reduced integration (C3D8R) elements,
with one element through the thickness of the laminate, without considering delamination failure
between those two plies. Layers of eight-noded 3D cohesive (COH3D8) interface elements with zero
thickness were inserted between the plies at different orientations to model delamination failure, with the
cohesive material properties shown in Table 4. Usually, there are cohesive elements with zero and finite
thickness, as shown in Figure 10. The roles of the two types of cohesive element are identical. However,
a finite-thickness cohesive element must be meshed using extremely small thickness intervals, which
greatly increases the computation time in Abaqus/Explicit. To avoid extremely dense grids in thickness,
which reduce the computing efficiency, zero-thickness elements were used in the present work.

Table 4. Material properties of cohesive layers [10].

KI (N/mm3) KII (N/mm3) σI
max (MPa) σII

max (MPa) GIC (N/mm3) GIIC (N/mm3) α

105 105 60 90 0.26 1.002 1
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The laminate dimensions were 30× 30× 6 mm, with a nominal ply thickness of 0.125 mm, as shown
in Figure 11a. A fine mesh with in-plane dimensions of 0.25 × 0.25 mm was applied at the location of
the wrinkle and towards the laminate edges, whereas comparatively coarser meshes of dimensions
0.5 × 0.25 mm and 0.75 × 0.25 mm were used elsewhere for computational efficiency. A typical model
of the compression specimen comprised approximately 270,000 C3D8R elements and 260,000 COH3D8
elements. The boundary conditions shown in Figure 11b are as follows: fully constrained boundary
conditions were applied on the left end (fixed) through reference point 1, and displacement boundary
conditions were applied to the load direction by constraining the other directions to reference point 2
on the right end.

5.1. Compressive Failure Stress

Three levels of wrinkle severity, with a maximum waviness angle of 5.6◦, 9.9◦, and 11.4◦,
were investigated. The predicted compressive stresses versus the displacement curves calculated using
three models are illustrated in Figure 12. As shown, both the predicted stiffness and the strength
decrease with increasing wrinkle level for the three models. The stiffness predicted by the elastic
model is the highest, while that obtained with the model described in [10] is the lowest. The strength
calculated with the model of [10] is higher than that derived with the elastic model and the proposed
elastoplastic model for defect angle 5.6◦, but an opposite trend is observed for the higher angle of
11.4◦. The model in [10] considers the effects of both shear nonlinearity and residual thermal stress.
The above opposite trends might be an effect of the residual thermal stress on the stiffness and strength
of laminates with different wrinkle levels. It can be seen that the displacement at final failure predicted
by the elastoplastic model is significantly greater than those of the other two models, owing to the
plastic effects.
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To demonstrate the effectiveness and predictive accuracy of the elastoplastic model,
the compressive strengths predicted by the three models for different wrinkle severities are compared
with test data [10,41] in Figure 13. As shown, the discrepancy between the results of the elastoplastic
model and the test data for the three levels of wrinkle severity are 1.07%, 8.45%, and 1.97%. The errors
of the elastic model are 6.93%, 12.04%, and 5.28%, and the prediction errors of the model in [10] are
10.73%, 3.64%, and −2.79%. The elastoplastic model provided better predictions than the elastic model.
Compared with the model proposed in [10], the elastoplastic model achieved more accurate results for
wrinkle levels 5.6◦ and 11.4◦. Theoretically, the compressive strength of the laminate with wrinkle level
9.9◦ should be greater than that of wrinkle level 11.4◦, but the opposite was observed in the experiment
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reported in [10] (as shown in Figure 13). The authors of [10] explained in [41] that this test result was a
statistical average value of the compressive strength. They found that the test error for wrinkle level
9.9◦ was greater than those for 5.6◦ and 11.4◦, owing to the strong fluctuations in the dataset obtained
at wrinkle level 9.9◦. This may be the reason that the model in [10] seems superior to the elastoplastic
model in the compressive strength comparison for wrinkle level 9.9◦.
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The predicted curves of compressive strength versus the wrinkle severity by the three models
were shown in Figure 14. As can be seen, the computed compressive strengths by the elastoplastic
model match better with the measured data [10] than those by the other two models. It should be
noted that the discrepancy between the prediction by the elastoplastic model and the elastic model
decreases with the increase of wrinkle severity.
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5.2. Failure Mechanism

To further demonstrate the advantages of considering the elastoplastic effect, the damage evolution
is examined in this section. Mukhopadhyay et al. [10] used high-speed imaging to record the failure
behavior of IM7/8552 composite laminates with fiber waviness subjected to compressive loading.

Figure 15a,b show the damage evolution at wrinkle level 5.6◦ predicted by the elastic model and
the elastoplastic model, respectively, and the corresponding high-speed camera images of the damage
sequence reported in [10] are shown in Figure 15c. It can be seen that the predictions of the elastoplastic
model agree better with the test images than those of the elastic model. According to the prediction of
the elastoplastic model and the test images, fiber failure first occurred in one of the 0◦ plies, followed
by delamination in the interface between the 90◦ and −45◦ plies. Subsequently, further fiber failure and
through-thickness delamination occurred when the loading was increased. It is clear that the damage
locations predicted by the proposed model match well with those in the test images.
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The elastoplastic damage prediction results for laminates of wrinkle levels 11.4◦ and 9.9◦ are shown
in Figures 16 and 17, respectively. The same damage sequence was observed in these two cases. Inter-ply
delamination initiated earlier than fiber failure for the wrinkle severity levels 11.4◦ and 9.9◦, in contrast
to the case of wrinkle level 5.6◦. This is in accordance with the results of Mukhopadhyay et al. [10];
they reported that fiber compressive failure was the dominant mechanism for lower-severity wrinkles
(wrinkle severity lower than 8.7◦ for the laminates discussed), whereas inter-ply delamination was
the driving mode of damage for higher-severity wrinkles (wrinkle severity exceeding 8.7◦ for the
laminates discussed).

Figure 18 shows the damage location prediction of a laminate with wrinkle level 11.4◦. As shown,
similar to the case of wrinkle level 5.6◦, the fiber failure and delamination locations obtained with the
elastoplastic model match better with those in the test image than the elastic model.
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5.3. Plastic Effects

The curves of equivalent stress versus equivalent strain for the location of the matrix damage
initiation are shown in Figure 19, with clusters of the damage evolution sequence shown together.
As shown in Figure 19a,b, matrix damage was initiated in phase 1O, where the associated equivalent
plastic strains were 2.032 × 10−4 and 1.5 × 10−4. This indicates that plasticity occurred before damage
initiation. The matrix damage was initiated at the location of the maximum misalignment angle for
these two cases, as shown in the damage cloud in phase 1O. As loading proceeded, regions of fiber
wrinkles underwent deformation owing to the large strain in the matrix and then triggered the next
damage mode, i.e., fiber failure (see Figure 19a in phase 2O) or delamination (see Figure 19b in phase
3O). At the later stage of damage development, the strains experienced within the kind band were large

(4.43 × 10−4 and 3.42 × 10−4 for wrinkle levels 5.6◦ and 11.4◦, respectively), as shown in phase 5O. This is
similar to the compressive failure mechanism in unidirectional composite laminates [11]. The nonlinear
deformation characteristics of the matrix were described well by the proposed elastoplastic damage
model, which could not be achieved with the elastic damage model.
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For comparison, the predicted compressive stress versus displacement curves obtained using
the elastic model and the elastoplastic model are plotted in Figure 20 for wrinkle levels 5.6◦ and
11.4◦, with clouds of damage development sequences shown together. For the two wrinkle levels, the
initiations of matrix damage, fiber failure, and delamination were delayed in the elastoplastic model
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compared with the elastic model. It is worth noting that the ultimate displacement at final failure for
wrinkle level 5.6◦ was larger than that for 11.4◦. This indicates that the laminate with wrinkle level 5.6◦

is relatively ductile, whereas that with wrinkle level 11.4◦ exhibits a brittle behavior. Moreover, the
discrepancy between the ultimate displacements obtained from the elastic model and the elastoplastic
model for wrinkle level 5.6◦ are much greater than those for wrinkle level 11.4◦. Combined with the
predicted curves of compressive strength versus wrinkle severity in Figure 14, it may imply that the
plastic effect should not be neglected for laminates with lower wrinkle levels, at least for the laminate
with the ply sequence discussed herein.
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6. Conclusions

The progressive failure of multidirectional fiber-reinforced polymer laminates with embedded
wrinkle defects was numerically simulated using an elastoplastic damage model. Damage evolution
analysis was performed according to the LaRC05 criterion with four damage modes (i.e., fiber tensile
failure, matrix failure, fiber kinking/splitting, and delamination). A modified algorithm with high
efficiency and robustness was proposed based on a previous study to rapidly search for the fracture
angle in the matrix failure analysis. This algorithm achieves high accuracy and significantly improved
computational stability by combining the golden section search method and an inverse interpolation.
The elastoplastic damage model was applied to simulate the compressive failure behavior of IM7/8552
[452/902/−452/02]3s composite laminates with out-of-plane wrinkles. The results showed that the model
can reproduce the nonlinearity of the laminate during the evolution of the damage and provide more
accurate compressive strength predictions than the elastic model and a previous model [10]. In addition,
the proposed model could determine the damage locations during the progressive failure process by
comparing with test images. Based on the comparison of the compressive stress–displacement curves
predicted by the elastoplastic and elastic models, it can be concluded that plasticity effects should not
be neglected for laminates with low wrinkle levels.
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