
materials

Review

Hydrogel Dressings for the Treatment of Burn
Wounds: An Up-To-Date Overview

Alexandra Elena Stoica, Cristina Chircov and Alexandru Mihai Grumezescu *

Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry
and Materials Science, University Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest,
Romania; alexandra.oprea@biointerfaceresearch.com (A.E.S.);
cristina.chircov@biomedicalengineering.international (C.C.)
* Correspondence: agrumezescu@upb.ro or grumezescu@yahoo.com; Tel.: +40-21-318-1000

Received: 16 May 2020; Accepted: 22 June 2020; Published: 25 June 2020
����������
�������

Abstract: Globally, the fourth most prevalent devastating form of trauma are burn injuries. Ideal
burn wound dressings are fundamental to facilitate the wound healing process and decrease pain
in lower time intervals. Conventional dry dressing treatments, such as those using absorbent
gauze and/or absorbent cotton, possess limited therapeutic effects and require repeated dressing
changes, which further aggravate patients’ suffering. Contrariwise, hydrogels represent a promising
alternative to improve healing by assuring a moisture balance at the burn site. Most studies consider
hydrogels as ideal candidate materials for the synthesis of wound dressings because they exhibit a
three-dimensional (3D) structure, which mimics the natural extracellular matrix (ECM) of skin in
regard to the high-water amount, which assures a moist environment to the wound. There is a wide
variety of polymers that have been used, either alone or blended, for the fabrication of hydrogels
designed for biomedical applications focusing on treating burn injuries. The aim of this paper is to
provide an up-to-date overview of hydrogels applied in burn wound dressings.
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1. Introduction

Without discredit, the skin is the most exposed to various impairments, such as injuries, scratches,
and burns, among all human body organs. Injuries of the epithelium and connective structures
are associated with a weakened ability of the human body to assure adequate protection against
harms from the outer environment [1]. As stated by the World Health Organization, burn injuries
represent a major public health crisis, and are among the most severe injuries with over 180,000 annual
deaths worldwide [2–4]. Burns are defined as damages of the skin caused by excessive heat or caustic
chemicals, as the most common causes [3,5,6]. Among the three types of burns, third-degree burns,
also known as full-thickness burns, will destroy the entire thickness of the skin, provoking immediate
cell death and matrix destruction, with the most devastating damage at the surface of the wound
(see Figure 1) [7,8]. During the last years, development in acute burn management has decreased
mortality rate, allowing the survival of patients with burn injuries covering up to 100% of the body
surface [9–12].
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Figure 1. Different depth of invasion for burn injury [13]. Reprinted from an open-access source. 
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burn patients remain vulnerable to various invasive microbial infections [16]. An inappropriate repair 

process could induce severe damage, like the initiation of an infection or the loss of skin, which could 

consequently harm the subjacent tissues and even the whole organism [17,18]. The installation of 

infection represents one of the most usual and inevitable obstacles in the process of wound healing, 

especially in chronic wounds [19–21], and one of the most important and serious complications that 

could appear during the acute period subsequent to burn injury [22,23]. Although numerous 

dressings are already commercially available (Figure 2), there is an urgent need for the development 

of novel wound care treatment options to address the increasing number of burn injuries [1]. 

Figure 1. Different depth of invasion for burn injury [13]. Reprinted from an open-access source.

Burn injuries cause disruptions of the normal skin barrier and impairments of numerous host
defense mechanisms that prevent infections [14,15]. Consequently, until full epithelialization occurs,
burn patients remain vulnerable to various invasive microbial infections [16]. An inappropriate repair
process could induce severe damage, like the initiation of an infection or the loss of skin, which could
consequently harm the subjacent tissues and even the whole organism [17,18]. The installation of
infection represents one of the most usual and inevitable obstacles in the process of wound healing,
especially in chronic wounds [19–21], and one of the most important and serious complications that
could appear during the acute period subsequent to burn injury [22,23]. Although numerous dressings
are already commercially available (Figure 2), there is an urgent need for the development of novel
wound care treatment options to address the increasing number of burn injuries [1].
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As previously mentioned, there is a great variety of wound dressings on the market that are
used for burn wound healing. While cotton gauze is extensively used for burn care, there are some
disadvantages that must be considered, namely the pain caused by its removal and possible delays
in the wound healing process [22,25]. Since wound healing is a considerably dynamic process, the
performance requirements of dressing should be modified as healing progress [6,26,27]. Nevertheless,
a warm and moist environment has been widely accepted as the key factor that promotes fast healing,
and, therefore, most modern wound care products are designed to assure these conditions [28–30].
Based on the “wet wound healing theory”, a wet healing environment is optimal for the growth of
the granulation tissue and for facilitating skin cells division, further promoting complete wound
healing [31–34]. An optimal dressing (Figure 3) is thus capable of preserving high humidity levels at
the wound site whereas also erasing excess exudates; in addition, it must be non-toxic, non-allergenic,
comfortable, and cost-efficient, allow for oxygen and water vapor exchange and protect against
microbial invasion [19,35–49]. Modern wound dressings are developed as carriers for the delivery
of therapeutic agents at the wound site in a variety of forms, including nanofibrous mats [50–52],
sponges [41,53–55], films [30,56–60], foams [61–65], and hydrogels [1,24,66–73].Materials 2020, 13, x FOR PEER REVIEW 4 of 26 
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Figure 3. Properties of an ideal wound dressing [19]. Reprinted from an open-access source.

Hydrogels are generally obtained by mixing two different polymers in order to achieve a mixture
with excellent wound dressing characteristics compared to the pure polymers. In this manner,
hydrogels could potentially combine the characteristics of moist wound healing with an adequate
fluid absorbance, while also allowing for the monitorization of the healing process owing to their
transparency [28,73,74]. The intrinsic ability of hydrogels for promoting skin healing and regeneration
has been an increasing studying focus, with clinical setting applications since 1980 [75].

As they are capable of satisfying important dressing requirements, wound dressings based on
hydrogels are one of the most promising materials applied in wound care. Such requirements include
maintaining the wound moist whereas absorbing excess exudate, covering the sensitive underlying
tissue without adherence, decreasing pain through cooling effects, and actively intervening in the
wound healing process [1,76,77]. However, as hydrogels cannot eliminate the pathogenic microbes by
themselves, the problem associated with burn wound infections is still challenging [22]. The innovation
in advanced wound care is directed to the development of active dressings, where hydrogels are
combined with components that enhance the primary purpose of providing a beneficial environment
for wound healing [78]. In this regard, novel strategies focus on developing hydrogels as burn wound
dressings with antimicrobial properties. This paper aims to provide an up-to-date overview of the
most recent strategies for developing hydrogel dressings for the treatment of burn wounds and the
prevention of burn wound infections.
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2. Inert Hydrogels for Treatment of Burn Wound Dressings

Owing to their hydrophilic character and properties similar to soft tissues, polymeric hydrogels are
considered as the first biomaterials candidates in the development of wound dressings for the treatment
of burn wounds [1,79–81]. In this context, polymeric hydrogels assure an ideal moist environment
for the healing process, while also being comfortable to the patient owing to their cooling effect and
non-adherent character [20,75]. More importantly, recent studies in the field of regenerative medicine
demonstrate at least a partial skin regeneration in vivo through the action of bioactive hydrogels
(Table 1) [75].

The wound healing process is directly affected by various local factors, oxygenation, and
infection. The development of a suitable material for covering the wound and further prevent infection
is a long-established requirement [82]. Researchers have been using different natural polymers,
such as alginate [81,83–85], chitosan [81,86–88], collagen [89,90], dextran [91,92], hyaluronan [2,93],
xanthan [94,95], konjac [95], and gelatin [96] for the production of hydrogels. Their wide application in
wound dressing fabrication is based on their similitude to the extracellular matrix (ECM), which further
improves acceptance by biological systems through the inhibition of the immunological reactions
frequently observed for synthetic polymers [81,97].

Owing to its good elasticity and capacity to absorb a high amount of fluids, which further induces
adequate moisture at the site of the wound, alginate is considered a great wound dressing material [81].
Stubbe et al. [83] developed a gelatin-alginate hydrogel for burn wound treatment. The hydrogel
dressings proved good biocompatibility with adaptable cell attachment properties. Nuutila et al. [84]
used a Platform Wound Device (PWD) based on alginate hydrogels embedded with high concentrations
of topical antibiotics for studying the immediate treatment of burn wounds. The PWD represents a
platform technology that starts as a first point treatment strategy that protects the wound and allows
for the administration of topical therapeutics. The device can be adjusted to suit any size burn over
any body contour. They proved a safe delivery of the antibiotics in high concentrations embedded in
the alginate hydrogel using the PWD and, therefore, a successful treatment method for burn infections.

Moreover, chitosan promotes wound healing through a series of mechanisms, including fibroblasts
activation, deposition, and arrangement of collagen fibers regulation, cell migration, granulation,
and vascularization promotion [81]. Hence, chitosan is one of the most widely used biomaterials for
hydrogel production, which is further applied for wound dressing development [87]. A hydrogel
sheet (HS) composed of chitosan, honey, and gelatin was developed by Wang et al. [86] as a burn
wound dressing. The histological examination showed a complete repair of the epidermis on day
12 after treatment with the HS. In addition, the toxicological evaluations demonstrated that HS is
non-toxic and non-irritant material for the body and skin. Furthermore, Mingcui et al. [88] developed
a porous nanocomposite hydrogel based on keratin, chitosan, and zinc oxide nanoparticles using the
lyophilization technique. The results proved good tensile strength, antibacterial activity, sustained
swelling and biodegradation, and excellent cell feasibility. In addition, the animal model results
confirmed that the developed dressing assures about 92% repair of fractional depth injury in two
weeks. In this manner, they proved that these hydrogels could be used in first-degree burn wound
healing applications.
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Table 1. The properties of the burn devices under inert hydrogels.

Polymeric
Hydrogel Dressing System Description Tensile

Strength
Antibacterial

Activity
Swelling and

Biodegradation
Degree
Burn

Healing
Time Healing Process Reference

Alginate Alginate hydrogel/ZnO NPs -

Against E. coli, S.
aureus, C. albicans, and
methicillin resistant S.

aureus

16–20 swelling ratio;
biodegradation in PBS
(up to 40% in 3 weeks);

3rd degree 48 h

Hemostatic potential evaluated through
blood clotting ability; Ex-vivo

epithelialization shown through
keratinocyte cells proliferation and

migration towards the wounded area; effect
favoured by release of Zn2+

[98]

Gentamicin loaded
Mannuronic

alginate/amidated pectin
blend microparticle

- Against S. aureus and P.
aeruginosa

11.91 ± 0.87–14.81 ± 0.96
swelling ratio 3rd degree -

Optimal healing environment assured
through good poweder flowability, high

fluid absorbing capacity and water
permeability at equiibrum

[99]

Photocrosslinkable
functionalized

gelatine-alginate hydrogels

6–12 kPa storage
modulus - More than 1200%

swelling ratio - -
Good biocompatibility with adaptable cell
attachment properties for HFF-1 foreskin

fibroblast cells
[83,100]

Chitosan Keratin-chitosan/ZnO NPs 0.31 MPa Against S. aureus and
E. coli

Up to 30 swelling ratio in
7 days; Biodegradation

up to 64% in 7 days
1st degree 7–14 days Migration of keratinocytes in epidermis [88]

Crosslinked carboxymethyl
chitosan-dialdehyde-modified

cellulose nanocrystal

4 kPa maximum
storage

modulus
- Up to 350% swelling ratio

Deep partial
thickness
skin burn

14 days

Biocompatibility for normal adult human
primary dermal fibroblasts in vitro in 2D
and 3D cell models; healing at 14 days in
deep partial thickness skin burn in vivo

model; formation of hair follicles and blood
vessels; densely packed collagen fibers with

regular arrangement

[101]

IGF-1C chitosan hydrogel

Collagen
Collagen

hydrogel/Saccharomyces
cerevisiae probiotic

Ultimate tensile
load approx.

60 N
- Complete biodegradation

at 20 days 22 days

Improved the wound closure, cosmetic
appearance and decreased scarring at 12
and 22 days post injury (DPI); Epidermal

proliferaton at 12 DPI, lower inflammation
and granulation tissue formation, complete

re-epithelialization at 22 DPI; normal
appearance of the skin

[89]

Acid soluble collagen/pepsin
soluble collagen - - - 2nd degree 28 days

Formation of new epidermis on day 14;
apparition of hair follicles, sebaceous

glands, dermal papillae and maturation of
skin appendages on day 21; ordered fibrous

tissue and high formation of skin
appendages on day 28

[90]
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Table 1. Cont.

Polymeric
Hydrogel Dressing System Description Tensile

Strength
Antibacterial

Activity
Swelling and

Biodegradation
Degree
Burn

Healing
Time Healing Process Reference

Collagen I-hyaluronic acid
hydrogel - Against S. aureus and

E. coli

Up to 95% swelling ratio
at day 3; 59% maximum
degradation at 7 days in
enzymatic medium and

30% in enzyme free
medium

- 14 days

Proliferative activity of HMEC human
microvascular endothelial cells and COS-7
fibroblasts cultured within the hydrogel;
increase of vascular endothelial growth

factor level in HMEC; weak inflammatory
behaviour at 4 days after in vivo

implantation; no systemic toxicity; complete
in vivo wound healing after 14 days;

complete normal structure of the epithelial
tissue and less inflammatory response

[102]

Dextran
Dextran- hyaluronic acid

hydrogel-sanguinarine/gelatin
microspheres

Tensile load 15N
in dry state and

respectively
35N in wet state

Against methicillin-
resistant S. aureus and

E. coli

Swelling ratio 29 (in
water) and 25 (in PBS);
Biodegradation in PBS

31% and in hyaluronidase
24% (at day 21)

- More than
20 days

Enhancement of NIH-3T3 fibroblast cell
proliferation in vitro; improvement of

re-epithelialization and enhancement of
extracellular matrix remodelling in rat
full-thickness burn infection models;

efficient scar inhibition

[92]

Dextran hydrogels - -
Biodegradation promoted

by early inflammatory
cell infiltration

3rd degree 3–5 weeks

Early inflammatory cell infiltration;
Endothelial cell penetration at day 7; mature

epithelium, presence of hair follicles and
sebaceous glands at day 21; new hair

growth and normal epidermal morphology
at 5 weeks

[103]

Dextran/bacterial cellulose
hydrogel

Up to 16 ± 2.3
MPa - 96.7 ± 0.49% water

content - 14 days

In vitro biocompatibility for fibroblast cells;
complete wound healing at 14 days;
significant skin maturation, mature

epithelial layer and formation of
hair follicles

[104]

Hyaluronan

Hyaluronic
acid-benzaldehyde

terminated F127 triblock
copolymer

Adaptable
mechanical

strength
- 2600–4500% swelling

ratio in 3–5 min

Deep
partial-thickness
burn model

21 days

Moderate tissue adhesiveness; good
exudation-absorption; good compatibility
for 3T3 fibroblast cells; increased wound

close rate with time; more typical epidermis
and skin appendages compared to controls

at day 21; complete epidermal wound
healing at day 14

[93]

Hyaluronic acid-poloxamer
hydrogel - Against E. coli

migration - - 14 days

Complete wound healing in rat models by
day 14; promotion of fibroblast cells

accumulation and collagen deposition,
granulation tissue formation, angiogenesis

[105]

Aminoethyl methacrylate
hyaluronic

acid-methacrylated methoxy
polyethylene glycol

hydrogel/chlorhexidine
diacetate-nanogel

- Against E. coli and S.
aureus

Up to 2657.24% swelling
ratio after 24 h 14 days Rapid homeostasis; accelerated

healing process [106]
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As collagen plays fundamental roles in ECM formation and cell and tissue development and
migration, collagen-based hydrogels have been considered as potential wet dressings for wound
treatment. They are highly advantageous in terms of closely fitting the wound and providing adequate
moisturizing, while also preventing bacterial infections. Moreover, collagen molecules may promote
wound epithelialization and accelerate wound healing [90]. Oryan et al. [89] designed a study for
investigating the impact of collagen hydrogel scaffold dressing with or without the topical use of
Saccharomyces cerevisiae on cutaneous burn wound healing in rats. The results proved increased wound
healing by enhancing epithelialization and decreasing scar size, and good biomechanical properties
at the wound site. Using the self-aggregating property of collagen, Ge et al. [90] prepared a novel
hydrogel dressing based on a high concentration of pepsin-soluble collagen. The experiments provide
clear proof and essential data for the use of aquatic origin collagen as hydrogel-based wound dressings
for the treatment of refractory wounds like extensive deep burn wounds (see Figure 4).Materials 2020, 13, x FOR PEER REVIEW 9 of 26 
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Figure 4. Healing of deep second-degree burn of rat skin with different treatments. (A): Photographs of
deep second burn wounds at 0, 7, 14, 21 and 28 days. (B): Wound healing rate with different treatments.
Positive control group, treated with commercial product (3MTM TegadermTM hydrocolloid dressing);
Collagen hydrogels group, treated with collagen hydrogel dressing containing 10 mg/mL PSC; Blank
control group, without any treatment after wound burned [90]. Reprinted from an open-access source.

Dextran, a polysaccharide that can potentially increase hemocompatibility of the associated
materials, has numerous effects on blood coagulation homeostasis, such as diminished fibrin
polymerization, platelet activation inhibition, and erythrocyte rouleaux formation [91,107]. In 2018,
Zhu et al. [92] manufactured a dextran-hyaluronic acid hydrogel enriched with sanguinarine-containing
gelatin microspheres. Characterized by large porosity and high swelling ratio, these systems improved
fibroblast cell proliferation and sustained the release profile of sanguinarine. The results suggest
that the hydrogel provides a potential high-quality strategy for the treatment and scar inhibition of
infected burn wounds. A hydrogel dressing was prepared by Zheng et al. [108] using a solution blend
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comprised of polyvinyl alcohol and dextran-aldehyde, that was crosslinked via the freeze-thaw method
and freeze-drying. Thorough evaluations revealed an excellent acceleration of the wound healing
process and improved wound contraction rate and skin regeneration in a full-thickness skin defect
model. Thus, the suitability of this hydrogel for application as a wound dressing has been proved.

Hyaluronic acid is a natural glycosaminoglycan that may be found in numerous human tissues,
such as connective tissues, skin, synovial fluid, and umbilical cord. As a result of its biodegradability,
biocompatibility, and ease of chemical modification, hyaluronic acid-based biomaterials have
been largely applied in tissue engineering and for the treatment of inflammatory diseases and
wounds [2,109–111]. Li et al. [93] developed a promising hydrogel based on hydrazide-modified
hyaluronic acid and benzaldehyde-terminated F127 triblock copolymers. The obtained hydrogel
combined multiple functions (i.e., adaptable mechanical strength, rapid gelation, liquid-absorption,
self-heal ability, drainage, tissue adhesion, and excellent biocompatibility) in one system, proving
its potential for promoting burn wound healing. Dong et al. [2] developed an improved method of
adipose-derived stem cells (ASCs) delivery for the treatment of burn wounds. Specifically, the method
used an in situ-formed hydrogel system consisting of hyperbranched polyethylene glycol diacrylate
polymer, a commercially available thiol-functionalized hyaluronic acid, and a short RGD peptide. The
developed hydrogels provided an effective niche that could enhance the regenerative potential of ASCs
and promote burn wound healing.

Xanthan gum is a high molecular weight anionic heteropolysaccharide. Its backbone consists
of (1,4)-β-D-glucose residues with a trisaccharide side chain linked at the C3 position to alternate
glucose residues [94,112]. Xanthan gum is a microbial and exo-polysaccharide, which has been
utilized in biomedical applications owing to its great biocompatibility and gelling properties [113,114].
Shawan et al. [94] fabricated xanthan gum and gelatin hybrid composite hydrogels for evaluating
its skin wound healing efficiency using experimental skin burn wounds in rats. The results proved
good polymeric networks, with adequate porosity of the hydrogels, biodegradability, and good wound
healing ability.

Therefore, it can be observed that natural polymers are biomaterials of significant importance for
wound dressings development, as they promote wound repair and healing processes through a variety
of physiological mechanisms. Moreover, their efficiency is also based on their intrinsic antimicrobial
characteristics, which prevent wound infections.

3. Active Hydrogels for Treatment of Burn Wound Dressings

Although a moist environment is required at the wound site, it may also increase the risk of
microbial infections, which will further extend the wound and/or affect the wound healing process [115].
Microbial colonization is not desired, as it may conduct serious infections, which can result in disease,
disability, or even death [116]. The natural reparative and regenerative phases implicated in the
healing process fail to occur when wounds are colonized by opportunistic microbes [117]. Additionally,
uncontrolled infections may impede the regeneration of the anatomical and physiological structures
and culminate in chronic non-healing wounds [70]. To prevent and combat infections, advanced
medicine relies on antimicrobial agents like antibiotics, which act by either destroying pathogens
or inhibiting their growth [118]. Hence, hydrogels with antibacterial characteristics have great
potential in clinical applications [119]. Unfortunately, the wrong use of antibiotics has led to the
development of increasingly multi-resistant microbes [118]. The rise of multi-resistant bacterial and
fungal infections in burn wounds has increased the need for novel burn wound treatment strategies’
development [120]. Generally, there are two categories of antimicrobial agents, namely organic agents,
including antibiotics and organic mineral salts, and inorganic agents, including silver [120–122],
zinc [88,119], and copper [119,123]. In recent years, antimicrobial agents-embedded wound dressings
have appeared as a viable alternative to decrease wound microbial colonization and infection for
improving the healing process [19].
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3.1. Active Hydrogels Based on Quaternary Ammonium Salts for Wound Dressings

In this context, Gharibi et al. [91] developed quaternary ammonium salts (QAS)-containing wound
dressing membrane and utilized dextran to counterbalance the adverse effects of the antimicrobial
agent. Despite the high antimicrobial efficiency of quaternary ammonium salts, their hostile hemolytic
effect on red blood cells is a challenging problem for using them as an active antiseptic agent in wound
dressings. Wound dressings were prepared using the sol-gel hydrolysis and polycondensation reaction
of a methoxysilane-functionalized quaternary ammonium compound and a methoxysilane-terminated
polyurethane prepolymer, at various concentrations, and subsequently surface-modified with dextran.
The antimicrobial activity of the dextran-grafted samples was maintained, while also proving potential
hemocompatibility and good cytocompatibility in fibroblast cell cultures.

Additionally, Li et al. [124] evaluated the potential of maleopimaric acid quaternary ammonium
cation (MPA-N+) based on rosin acid as a bactericide for modified cotton textiles (CT) considering
the fact that antimicrobial CT show great promise for wound dressings. Obtained results confirmed
that MPA-N+ modified CT (CT-g-MPA-N+) can be applied for wound dressings and CT modification
using MPA-N+ demonstrates a new strategy for using renewable resources to control the spread of
infectious diseases.

Furthermore, Zhou et al. [125] prepared an eco-friendly dressing using a chitin-derived membrane
with amphipathic anion/quaternary ammonium salt designed for antibacterial purposes. Successfully
prepared chitin-amphiphilic ion/quaternary ammonium salt dressing present antibacterial and
antipollution effects and promote wound healing. Overall, this study reveals a promising new
material for a natural dressing for wound application.

3.2. Active Hydrogels Based on Silver for Wound Dressings

Many silver-based products have become effective substitute agents in burn management in
order to avoid the use of antibiotics, with an increased number of studies stating their effectiveness
against a large range of microbes [126–129]. The important antimicrobial activity of silver nanoparticles
has been previously reported [120–122,130]. As silver treatments applied in burn wound care
have also been associated with toxicity for human cells [120], the balance between cytotoxicity and
antimicrobial activity of wound dressings must be considered when applied at the wound site [120,130].
Nonetheless, the increase of antibiotic-resistant bacteria has forced to re-evaluate the character of
silver and silver derivatives as antibacterial agents for restraining the colonization of bacteria in burn
injuries [131]. Boonkaew et al. [120] compared the antimicrobial efficiency of a novel silver hydrogel
dressing with two commercially available silver wound dressings for burns, namely Acticoat™ and
PolyMem Silver®. They proved that after 24-h exposure, the silver hydrogel decreased most of the
tested microbial strains below the detection limit and reduced the viability of bacteria by 94–99%.
Furthermore, a thermo-sensitive hydrogel consisting of methylcellulose and embedded silver oxide
nanoparticles was prepared by Kim et al. [121] through the one-pot synthesis method in which a
silver acetate precursor salt induces a salt-out effect in the methylcellulose solution. They proved
that the obtained thermo-responsive methylcellulose hydrogel has important potential for wound
regeneration, considering its great antimicrobial and burn wound healing activity. In a study performed
by Banerjee et al. [122], a novel treatment for promoting vascularization in burn wounds was proposed.
They developed a two-step treatment method based on the controlled time and dose release of silver
sulfadiazine and the subsequent delivery of ASCs, which aids in preventing silver toxicity related to
traditional topical delivery methods and stimulates the regeneration of the wound. A PEGylated fibrin
hydrogel containing 50 mg of silver sulfadiazine-loaded chitosan microspheres was applied on the
wounds and results demonstrated that the proposed sequential treatment for infected burn wounds
reduces bacterial infection, while also promoting neo-vascularization and improved matrix remodeling.

The hydrogels based on 2-hydroxyethyl acrylate and itaconic acid were synthesized by
Vuković et al. [132] and used for silver(I) ions incorporation. The obtained hydrogels presented
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promising antibacterial activity against methicillin sensitive S. aureus (MSSA) and methicillin resistant
S. aureus (MRSA), indicating the capacity to treat the life-threatening infections.

Therefore, it can be observed that silver nanoparticles are widely applied in wound dressings due
to their low toxicity for human cells, naturally availability, and strong antimicrobial effects.

3.3. Active Hydrogels Based on Zinc for Wound Dressings

Zinc is a highly necessary element for the human body, and, owing to its complex antibacterial
mechanisms, it is significantly efficient on various antibiotic-resistant strains [119]. Zinc oxide
nanoparticles possess bactericidal character, and it is currently applied as a part of a large variety of
restorative materials [133,134]. Mingcui et al. [88] fabricated a nanocomposite hydrogel consisting of
keratin, chitosan, and zinc oxide nanoparticles as an antimicrobial strategy for burn wound healing. The
mechanical properties, swelling ability, bactericidal effect, and biocompatibility of the nanocomposite
were evaluated for its effectiveness for burn wound treatment. Khorasani et al. [135] incorporated
zinc oxide nanoparticles into heparinized polyvinyl alcohol/chitosan hydrogels for wound dressing
applications. Based on the results, the obtained bionanocomposite hydrogels improved the performance
in the wound healing process as it efficiently protected the surface of the wound against exudate
accumulation and dehydration, while impeding bacteria growth and infection development.

Furthermore, Rakhshaeia and Namazi [136] prepared flexible nanocomposite hydrogel films
through combination of zinc oxide impregnated mesoporous silica (ZnO-MCM-41) as a nano drug
carrier with carboxymethyl cellulose (CMC) hydrogel. The antimicrobial property of the obtained
CMC/ZnO-MCM-41 samples is a result of intrinsic antibacterial activity of ZnO nanoparticles and
confirmed the prolonged release of TC. The authors affirm that the obtained hydrogels could serve as a
kind of promising wound dressing with sustained drug delivery properties.

Additionally, Khorasani et al. [137] prepared polyvinyl (alcohol)/chitosan/nano zinc oxide
nanocomposite hydrogels using the freeze-thaw method. The results of toxicity and antibacterial
activity of samples indicated that obtained hydrogels were non-toxic and biocompatible and were
significantly capable to protect the wounds against microorganisms.

3.4. Active Hydrogels Based on Growth Factors, Cytokines, and Cells for Wound Dressings

Regardless of the great number of active compounds that could be considered as therapeutics for
promoting wound healing, the wound inflammatory environment inhibits their activity to improve
healing, with a limited number of candidates proving clinical effects [1,2]. Analgesics such as
morphine [138], ibuprofen [139,140], or lidocaine [141,142] are of significant interest in extensive burns,
infected wounds, or in palliative medicine [1,143]. Additionally, hydrogels may also deliver growth
factors [1,144,145], stem cells [2,146], peptides [147–149], and various drugs, such as anti-inflammatory
drugs [144,150,151], amino acids [152], antioxidants [70,153], vitamins [154,155] and nutrients [135,156],
which may decrease the inflammatory reaction, nourish the wound tissue, and promote wound
healing [119,126]. One of the recent classes of bioactive hydrogel wound dressings is based on the
healing properties provided by growth factors [1,157], cytokines [158], or cells [1,158]. This section
also contains recently published literature studying the effects of applying natural alternatives, such as
honey, bacterial cellulose, or aloe vera as regenerative and antibacterial agents that further accelerate
wound healing processes.

Nimal et al. [126] prepared an injectable hydrogel comprising nano tigecycline and chitosan
platelet-rich plasma with an anti-staphylococcal activity using Drosophila melanogaster model for
infectious wounds. This hydrogel provided an appropriate medium for the delivery of antibiotics and
effectively prevented skin infections.

Furthermore, Wang et al. [144] produced a hydrogel consisting of chemically modified hyaluronic
acid, dextran, and β-cyclodextrin and integrating resveratrol and vascular endothelial growth factor
(VEGF) plasmid, which acts as an anti-inflammatory and pro-angiogenic components for burn wounds.
The hydrogel scaffold was loaded with plasmid DNA encoded with VEGF and conjugated with
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polyethyleneimine. Wounds treated for 21 days with these hydrogels demonstrated enhanced wound
healing by inhibiting inflammation and promoting angiogenesis compared to untreated wounds and
hydrogel-alone treated wounds, suggesting that the in situ formed hydrogels may be applied for wound
healing and tissue regeneration applications. Moreover, Mohamad et al. [158] performed an in vivo
evaluation of bacterial cellulose and acrylic acid wound dressing hydrogels containing keratinocytes
(HEK—human epidermal keratinocytes) and fibroblasts (HDF—human dermal fibroblasts) for burn
wounds. Wound healing was accelerated in mice treated with hydrogels and hydrogels embedded with
cells healed quicker, by contrast to when no treatment was administered, with best results associated
with the delivery of HEK and HDF cells. Therefore, the prepared hydrogels can act as potential
materials and cell carriers for the rapid healing of burn wounds.

Based on their broad-spectrum antimicrobial activity and reduced probability of inducing drug
resistance, antimicrobial peptides are a new generation of potential antimicrobial molecules [148].
Zhou et al. [147] investigated a bioactive peptide amphiphile nanofiber-based hydrogel biomaterial
that may stimulate burn wound healing. Burn wounds in rats were treated with the bioactive
Arg-Gly-Asp-Ser (RGDS)-modified gel that proved important cell proliferation in vitro. The in vivo
assays showed that the RGDS- peptide amphiphile gel notably improved the burn wound healing
process between day 7 to 28 through enhanced re-epithelialization. Application of these gels accelerates
deep partial-thickness burn wound recovery by stimulating fibroblasts and creating a suitable
environment for the proliferation of epithelial cells and closure of the wound.

Additionally, Khan et al. [148] developed a hydrogel that has the potential for treating bacterial
wound infections. The hydrogel formulation is based on an antimicrobial peptide, ε-poly-l-lysine, and
catechol, which was cross-linked via mussel-inspired chemistry between the amine and phenol groups.
In addition to its antimicrobial properties, they demonstrated that the hydrogel presents antibiofilm
activity toward multidrug-resistant bacteria. In addition, in vivo studies indicated a considerable
reduction in more than four orders of magnitude of the bacterial burden in the infected burn wounds.
As it is biocompatible and noncytotoxic to mammalian cells, this hydrogel could be applied in burn
wound care.

Since they are appropriate carriers for low soluble drugs or bioactive molecules, liposomes are able
to overcome this hydrogel limitation. Hence, by combining these two delivery systems, an encouraging
alternative to reach controlled dermal drug delivery, and effective localized skin therapy could be
developed [159]. Wu et al. [160] studied the liposome-encapsulated farnesol in order to improve tissue
repair in rat models of third-degree burns. The wounds were treated for 1 and 2 weeks with a formulated
gel comprising different ratios of 2% hydroxypropyl methylcellulose and 4 mM liposomal farnesol. The
liposomal gels prepared in this study enhanced collagen production and wound healing both in vitro
and in vivo, but inhibited fibroblast proliferation at high concentrations. The gels exhibited notable
effects on wound healing of third-degree burns compared with the untreated or the hydroxypropyl
methylcellulose gel alone and commercial silver sulfadiazine cream treated groups. Moreover, the
capacity of liposomes to provide sustained drug/substance release could allow for targeted drug
delivery to specific skin layers. The rapid liposome clearance from the skin site may be prevented
through the use of this hydrogel, which ensures additional protection against fast degradation by
conserving the liposomal membrane integrity. The characteristics of the hydrogel in terms of mesh
size, porosity, and polymer composition and the physicochemical properties of the liposomes, such as
size, composition, and surface charge, directly determine the release of drug/substance [159].

3.5. Active Hydrogels Based on Natural Agents for Wound Dressings

As antibiotics are progressively becoming resistant by infection-producing strains, researchers
are currently focusing on the large bioresource repertoire. They mainly consist of herbs but can also
include animal and mineral ingredients [19,161–164]. There are a lot of natural agents with bioactive
effects on wounds with complications from polymicrobial infections mentioned in the literature. At
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the biofilm level, the bactericidal effects of such agents target both the initial and the advanced phases
of wound infections [19,164].

Not long ago, naturally-occurring materials gained renewed attention for biomaterial applications
due to their important biocompatibility, antimicrobial, and environmentally friendly properties [19,81,165].
Konjac glucomannan, a plant derivative from the Amorphophallus konjac corm, a native plant from
China and Japan, is an example of such natural biomaterials [41,53,166–168]. Zhou et al. [168]
fabricated matrine-loaded composite hydrogel consisting of Konjac glucomannan and fish gelatin as
an antimicrobial wound dressing. The bioactive compound improved the antibacterial activity of the
gels by maintaining the physiological environment for wound healing and preventing bacteria growth
on the surface of the wound. Alves et al. [95] obtained a thermo-reversible hydrogel comprising
of xanthan gum and konjac glucomannan (Figure 5) at different concentrations and ratios. The
obtained hydrogels showed a transparent and moisturized appearance (Figure 6), which permitted
the continuous observation of the wound healing process without dressing removal. The obtained
hydrogels are hydrophilic, thus providing a moist environment, while also absorbing the excess exudate
and suitable biological properties for promoting cell adhesion, migration, and proliferation [95].

In addition, the therapeutic features of honey in regard to wound healing applications,
such as ensuring a topical nutrition to the wound, stimulating granulation, angiogenesis, and
wound epithelialization, and reducing inflammation, are the main criteria that make it suitable
for introduction into wound dressings [19,169–171]. Zohdi et al. [172] developed a crosslinked
Malaysian honey-incorporated hydrogel dressing, which exhibited excellent physical properties, such
as proper transparency, exudate absorbance, and acidic pH values, as ideal characteristics of burn
wound dressings.

While bacterial cellulose is chemically identical with plant cellulose, the degree of polymerization
for bacterial cellulose is approximately 2000–6000 and for plant cellulose, approximately
13,000–14,000 [81]. Bacterial cellulose has great hydrophilicity, water-uptake capacity, permeability,
and tensile strength, characteristics that have attracted great interest as wound dressing material [81].
Moreover, bacterial cellulose is currently considered a promising functional biomaterial with various
applications in different fields, including skin tissue repair, scaffolds for tissue engineering, and
wound healing applications [151,158,173,174]. Loh et al. [173] performed an in vivo evaluation of a
keratinocytes and fibroblasts-containing wound dressing hydrogel composed of bacterial cellulose and
acrylic acid for burn wounds. They demonstrated that these hydrogels are promising for burn wound
dressing and cell carrier applications.

Aloe vera has a healing action that occurs due to the maintenance of the moisture of the wound,
reduced inflammatory process, enhanced cell migration and proliferation, and maturation of collagen.
Its effects appear by the synergistic action among the different active components that act on the
tissue during the novel epithelium formation [146,175,176]. Yates et al. [177] patented an antimicrobial
therapeutic hydrogel composition comprised of a pharmaceutical and/or medical-grade silver salt,
and an aloe vera gel or extract. Additionally, it may also include a non-ionic surfactant, stabilizing
agents, and polyol and hydrophilic hygroscopic polymers. The so-obtained hydrogel has potential
antimicrobial activity against bacteria, fungi, viruses, and protozoa, acting as an efficient treatment
for burns, and as a wound/lesion dressing, that maintains adequate moisture levels and provides a
physiologic environment that stimulates wound healing and pain relief. Oryan et al. [146] evaluated
the in vivo effects of allogeneic ASCs-loaded aloe vera hydrogel on a rat burn wound model. They
proved that aloe vera enhanced the anti-inflammatory effect of ASCs by decreasing the TGF-ß1 and
bFGF expression level, diminishing scar formation. Combining ASCs with aloe vera hydrogels could
bring advancements in the field of regenerative medicine as it promotes the pro-angiogenic effect of
ASCs, increases the expression level of cytokines and growth factors, and improves wound repair
and regeneration.
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Figure 5. Characterization of the cytocompatibility of the hydrogels. (A) MTT assay of human
fibroblast cells grown in the presence of different hydrogels. Wells treated with ethanol were used as
positive controls. n.s: no statistically significant groups. The data are shown as means ± standard
deviations (n = 3). (B) Representative SEM images of fibroblast cell adhesion and proliferation on the
surface of the 1%_XG/KGM_(60/40) hydrogel, after 24 h and 72 h of incubation. (C) Confocal laser
scanning microscopy (CLSM) images of cell internalization in 1%_XG/KGM_(60/40) after 24 h and 72 h,
where different colors correspond to distinct depth values (as indicated in the color-coding scale) [95].
Reprinted from an open-access source.
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Amniotic membrane, the innermost lining of the human placenta, is a globally accepted biomaterial
for the treatment of second and third-degree burns, as it contains numerous proteins, growth factors,
and stem cells that enhance the wound healing process [178–184]. A study by Hossain et al. [184]
proved the efficiency of amniotic membrane and Moringa oleifera are decisive agents for higher
epithelialization, quicker wound healing, no rejection phenomena, decreasing number of suffering
patients, and cost-efficiency. Another study was realized by Rahman et al. [178], which prepared a gel by
combining amnion and aloe vera extract, which showed promising effects in internal epithelialization
and diminished scar formation.

While currently available therapeutic agents are generally inadequate in regard to their efficacy
and numerous adverse severe effects, natural biocompounds have been applied in medicine since
ancient times as they are well known for their capabilities of promoting wound healing and preventing
infection without causing significant side effects. Therefore, this class of materials should be an
alternative strategy for the development of hydrogels used for the treatment of burn wounds.

4. Conclusions

Among the wound dressings developed, hydrogels have gained the consideration of researchers
as a result of their intrinsic ability to mimic the 3D structure of the skin ECM. Moreover, hydrogels
are hydrophilic 3D networks, which can absorb optimal quantities of biological fluids (e.g., wound
exudate) or water. Additionally, hydrogels are capable of maintaining dry, sloughy, or necrotic wounds
clean by rehydrating dead tissues (moist healing), thus leading to an increase of autolytic debridement
and surface wound cooling. Consequently, hydrogels could aid in pain relief and, thus, improve patient
acceptance of the dressing. Further, hydrogel biodegradability eliminates possible complications
related to wound dressing replacement, like tissue maceration, infection, and pain. Despite the
numerous hydrogel-based products already available on the market, advanced hydrogel dressings
development or optimization still represents an important research area, with the purpose of further
improving skin healing in reports to specific clinical applications. Antimicrobial hydrogels represent
an important class of macromolecular antimicrobial agents, which have proved significant efficiency in
preventing and treating drug-resistant infections.
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