A Nonenzymatic Glucose Sensor Platform Based on Specific Recognition and Conductive Polymer-Decorated CuCo2O4 Carbon Nanofibers

Yongling Ding^{1,2,3,4,*,} Huadong Sun^{1,*}, Chunrong Ren¹, Mingchen Zhang³ and Kangning Sun^{4,*}

¹School of Transportation Civil Engineering, Shandong Jiaotong University, Jinan 250357, China; 204130@sdjtu.edu.cn (Y.D.); 204113@sdjtu.edu.cn (H.S.); 214052@sdjtu.edu.cn

²School of Control Science and Engineering, Shandong University, Jinan 250002, China

³Postdoctoral Technology Research Center, Shandong Anran Group, Weihai 264205, China; zhangmingchen@126.com

⁴School of Materials Science and Engineering, Shandong University, Jinan 250002, China

*Correspondence: 204130@sdjtu.edu.cn (Y.D.); 204113@sdjtu.edu.cn (H.S.); sunkangning@sdu.edu.cn (K.S.)

Figure S1 CVs of in PTBA/CuCo₂O₄-CNFs/GCE in 0.1 M NaOH solution in the absence (black) and presence (red) of 2 mM glucose with the scan rate of 20 mV \cdot s⁻¹.