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Theoretical Part 

The supporting information is dedicated to substantiation of the theoretical basis for analysis of 

electrochemical impedance spectra. It is worth pointing out that creation of a reasoned mathematical 

instrument for data treatment makes the most important and time-consuming part of the 

fundamental physicochemical work. The text represents a single-step mathematical procedure that 

leads to discovery of the final formula for impedance of the conductive polymer film. The strategy 

demonstrated was achieved after successive upgrading of the model until satisfactory 

correspondence with the experimental data. The designations of mathematical symbols and related 

physicochemical values with appropriate dimensions are enlisted below. In order to facilitate a 

reader’s understanding of the mathematical operations being accomplished to create the physical 

model, and the procedure is divided in several successive steps. 

 

Constants: 

F—Faraday constant (96485 C∙mol−1); 

j—imaginary unit ( 1 ); 

ε0—vacuum permittivity (8.85∙10−12 F∙m−1); 

ε—relative material permittivity (−); 

R—ideal gas constant (8.314 J∙mol−1∙K−1) 

T—temperature (accepted to be constantly equal 298 K) 

f—secondary constant, equal to F/RT, introduced for simplification of expressions 

Electrochemical parameters: 

x—distance (m); 

δx—thickness of discrete thin layer (m); 

c—concentration (mol∙m−3); 

δc—difference of concentration in two neighbour discrete layers (mol m−3); 

D—diffusion coefficient (m2∙s−1); 

J—flux (mol∙m−2∙s−1) 

Electrical parameters: 

i—current density (A∙m−2); 

U—voltage (V); 

δU—voltage drop in discrete thin layer (V); 

E—electric field intensity (V∙m−1); 

Z, Zre, Zim—impedance (complex value), real and imaginary part (Ω); 

Y—admittance (Ω−1); 

C—capacitance normalised by surface area (F m−2); 

R—resistance normalised by surface area (Ω m2), not confuse with molar Boltsmann constant which 

is always accompanied by T; 

L—inductance (Ω m2). 
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Time-dependent oscillating values (dimensions are the same as for corresponding stationary 

values): 

Δi—periodic current density oscillation; 

ΔU—periodic voltage oscillation; 

Δc—periodic concentration oscillation. 

Time-independent complex phasors: 

i—current phasor; 

U —voltage phasor; 

c—concentration phasor. 

1. Current Oscillation under Stationary Conditions 

The impedance will be firstly calculated for the one discrete layer containing one type of charge 

carriers. The obtained formula will then be generalised onto the whole complicated system. A model 

depicting a single-type charge transfer through a discrete layer is presented in Figure 1. It includes 

the designations of parameters that will be used in computations hereafter. The direction of current 

(move of positive charges) is also specified in the figure. It corresponds to the situation when the 

electrode is on the left side, provided that anodic current is positive. 

 

Figure S1. Schematic representation of three neighbour discrete layers and difference of potential 

and concentration of charged species between them. 

The description of conductive polymer film required consideration of the presence of the 

potential gradient along the film. For many electrochemical systems discussed in the literature the 

potential gradient has been taken into account only in the double electric layer region. It’s effect was 

restricted to the region between the electrode surface and outer Helmholtz plane, which comprises 

the ions that are closest to the electrode surface, but are not specifically adsorbed. The electric field is 

usually considered to have no influence on the delivery of charge carriers beyond the outer 

Helmholtz plane. The disregard of potential gradient is not reasonable in the case of polymer film. 

This factor was taken into account in the latest works on conductive polymer impedance study by 

Láng et al. [1,2]. 

Since we consider a thin layer, randomly taken from the film, there is no information, available 

in advance, about potentials on the borders. Therefore, the voltage drop δU within the layer is 

introduced as a parameter responsible for driving the charge oscillation. It is made to avoid 

confusion with signs of potentials in case where no reference is used. In the case considered, the 

increase of absolute value of voltage would always cause an increase of current.  

To derive the final formula one has to: (i) consider oscillating parameters affecting current; (ii) 

represent current oscillation as a function of the other oscillating parameters; (iii) express all the 

parameters in terms of oscillating current and voltage; and (iv) rearrange the final formula using 

relation /Z U i   .  

The flux of charged species under DC conditions is described by equation (S1). 

0d d

d d

c zF E
J D D Ec

x RT zF t


     (S1)

Electric current density (S2) is then proportional to the charge carriers flux (1) multiplied by zF. 
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A discrete form of (S2) contains the ratio δc/δx instead of the derivative. Thus equation (S3) 

describes a current passing through a thin layer with thickness δx. 

2
0

d

d

c E
i zFD z fDFEc

x t


    


 (S3)

The equations delivered above will be useful for the estimation of oscillating values. One has to 

remember that the film was characterised under stationary conditions and relatively low 

polarisation in order to prevent degradation or progressing doping of the polymer. The stationary 

current was equal to zero (S4) during impedance registration. That condition is useful to relate 

stationary concentration gradient with the electric field (S5). 

2d
0

d

c
zFD z fFDEc

x
    (S4)

d

d

c
zfEc

x
  (S5)

One could notice that in case of constant electric field along the film thickness (S6): 

d
0

d

E

x
  (S6)

the solution of equation (S5) is presented by formula (S7a) or (S7b): 

0
zfExc c e   (S7a)

 
d

zfE x d
c c e


   (S7b)

where c0 is concentration at x = 0 and cd is the concentration at distance d from electrode surface. The 

decision on using (S7a) or (S7b) is made based on available data. In this work, we will refer the 

results to the concentration at the outer border of polymer film (film–solution interface), thus (S7b) 

would be preferable. 

The concentration plots are defined by the sign of the species charge (z value). Since z value will 

become crucial in determination of ion type, one has to be careful with the z coefficient during all 

computation procedures. The schematic Figure S2 based on the Gouy–Chapman model is suggested 

to be used as a reference for qualitative check of the correctness of the formulas. 
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(a) (b) 

Figure S2. Equilibrium profiles of potential, electric field and concentration of charged species for 

positive (a) and negative (b) electrode potential. 

According to the Poisson equation, the condition (S6) is reasonable if the space charge of the 

film is close to zero. The expectation may seem presumptuous, so we will not base our computations 

on it and consider it only in respect of final formula. 

2. Oscillation of the Concentration of the Charged Species 

The next main step is concerned with phasor c that has to be expressed in terms of current and 

voltage. For determining oscillation of concentrations in middle layer depicted in Figure S1 one has 

to consider oscillation of fluxes JI and JII (S8 a, b). The formulas were obtained by adding or 

subtracting δ terms in Equation (S1). 

    0
I

1 d

d

E
J D c zfD c c E zfD E E c

x zF t

 
            


 (S8a)

0
II

1 d

d

E
J D c zfDc E zfDE c

x zF t

 
        


 (S8b)

Oscillation of concentration must obey Fick’s second law (S9): 

c J

t x

 
 

 
 (S9)

transformed into discrete form (S10): 

I IIJ Jc

t x

  


 
 (S10)

Expansion of (S10) using (S8a,b) and introduction of phasors instead of Δ-values leads to (S11): 

 
c zfD

E c c E
t x


      

 
  



Materials 2020, 13, x FOR PEER REVIEW 5 of 17 

 

  

 
    

exp
exp exp

c j t zfD
E j t c c j t E

t x

 
        

 

     

  

     exp exp
c zfD

j j t E c c E j t
t x


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x
       


   (S11) 

  

d 1

dd
d

c
c zfD E

Ex j zfD
x

  

 

  
(S12a) 

or, 

d

d
d

d

E
j zfD

x
E c

c
zfD

x

 
  

      (S12b) 

It is worth noting that according to (S12) the phase shift between electric field and concentration 

oscillation depends on the ratio between frequency and electric field gradient (two terms in 

denominator of (S15a) and numerator of (S15b)). When zfD∙dE/dx << ω or when condition (S6) is 

obeyed, the concentration and electric field oscillate in antiphase. In the opposite case (zfD∙dE/dx >> 

ω) both values oscillate in-phase, like charge and voltage of an ideal capacitor. The first case will be 

considered in this work, since it was proven to be in agreement with experimental results. However, 

the denoted relationship between complex electric field and concentration of charge carriers 

deserves further development to obtain a universal model of charge transport under alternating 

current (AC) conditions. 

3. Alternating Current (AC) Response of the Model Thin Layer 

The current oscillation is obtained based on formula (S9) taking into account zF coefficient 

between electrical current and flux of charged species (S13). 

c i
zF

t x

 
 

 
 (S13)

Following set of rearrangements aimed at replacement Δ-terms by phasors in much the same 

way as shown in (S11), one gets: 

i
j zFc

x


  




  (S14)

The discrete form of (S14) is 

i j zFc x       (S15)

The expression for c is imported from (S13) and the equation is consequently rearranged: 
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 
 

   
 
 

   (S16)

On the last stage it was managed to split the expression in two parts that represent different AC 

frequency dependences. One could already perceive that the first term corresponds to resistive 

behaviour (no frequency dependence) whereas the second one stands for capacitive properties (see 

Table 2 for impedance of basic physical elements). 

The formula represents a relationship between voltage and current in an infinitesimal layer 

(Figure S3). The impedance of the whole film can be calculated by integrating (S16). 

 

Figure S3. Illustration of mathematical approach that involves analysis of infinitesimal layer and 

consequent summation (integration) along the whole film thickness. 

One would think that the impedance of the whole film of thickness d could be obtained by 

direct integration of (S16) by x from 0 to d. However, such an apparently obvious approach would 

still be inchoate. The set of rearrangements (S17) demonstrates that direct integration of impedance 

(dZ) would only be reasonable if current oscillation is constant along the x coordinate. 

          totald if

d d d

U U x  Z x i i f x i  Z x i Z                   
(S17)

In the real system, such a condition is not expected to be held a priori. A justification is required 

to either prove or disprove the statement. The effect of damping of current oscillation along the x 

scale was called into question by authors during development of the theory. In all cases, neglecting 

the current damping caused complete disagreement between model and experimental data. In order 

to take into account current oscillation decay with the distance from the electrode–film interface (as 

shown in Figure S4a), one has to introduce a damping coefficient γ(x) and use it in the formula 

  0 ( )i x i x   , where 
0i  is current amplitude on the electrode–film interface, i.e., directly related 

to the Δi value registered by the measurement equipment: 
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and the impedance of the whole system is calculated as: 

 
 

0

d
d

d

d Z x
Z x x

x
     (S19)

The first factor in (S19), i.e. impedance increment, has been already obtained above (S16). The 

following two sections will be dedicated to obtaining the analytical form of the γ(x) term.  

4. Damped Oscillation of the Ion Concentration under AC Conditions 

The illustration in the beginning of the section (Figure S4) is intended to facilitate a reader’s 

understanding of the purpose of the following computations. The effect of the AC signal that fades 

away along the distance from the electrode is illustrated in Figure S4a. The attenuation of damping 

depends on signal frequency (Figure S4b). The high-frequency signal would fade away faster and 

oscillation would not go far from the source (red line in Figure S4b), whereas the low-frequency 

signal of the same amplitude would reach longer distance (blue line in Figure S4b). Due to this effect, 

the response of the system would be more complicated than a response of physical equivalent 

circuit. 

 

 

(a) 

 

(b) (c) 

Figure S4. Damping of the probing harmonic signal illustrated as charge oscillation along the 

distance from the electrode: a—attenuation of the signal amplitude; b—effect of the frequency on 

signal dumping; c—control of the size of the monitored region by change of the probing frequency. 

The schematic illustration is based on the discussions below. 

As a form of primitive visualization, one may consider that the frequency of the signal defines 

the size of the layer to be covered (Figure S4c). Figure S4c can only be used for a superficial 

explanation of the phenomenon. In reality, there is no cut-off edge of the wave and the signal 

attenuates along the whole thickness (Figure S4b). 

A functional dependence i  = f(x) obtained in (S14) and (S15) included the concentration phasor 

(c ). The only way to estimate the concentration phasor is to consider the transport Equation (S1) and 
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Fick’s diffusion law (S9). Equation (S1) is used without the last term. The explanation for its 

disregard is given in Part 2. Oscillation of the concentration of the charged species. The 

rearrangements, that were made to proceed from (S35) to (S36), are analogical to those described in 

Part 2 so they are not commented on here. 
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The last form represents the whole set of parameters that affect concentration oscillation. 

However, its further analytical treatment is not possible. For that reason, here we will present the 

solution based on minimal approximations that finally allowed us to achieve the satisfactory 

accordance between the theory and experimental data. 

Here, we will demonstrate a solution which is reasonable, if condition (S6) is accepted. The 

third term, including electric field gradient, is cancelled and the fifth term, including concentration 

gradient, is modified according to (S7). Thus the equation is rearranged to (S22). 

2

02
zfExc c E

j c D zfD E c E zfEc e
x xx
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   

    (S22)

Now, Equation (S20b) should be addressed to obtain the final differential equation in respect to 

the  c x  function. Condition (S12b) is simplified to (S24) by taking into account (S6) and (S7). 

d

d
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j zfD
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E c
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 
  

      

 
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E

c
zfD

x


 

  

 

2 2
0

zfExj c
E e

z f DEc


  

  (S23)

E A c   (S24)

where A is a x-dependent coefficient relating phasors of E and c. In the case, considered here, A is an 

imaginary negative value exponentially decreasing or increasing with x. Additionally, the later 
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discussions are expected to involve x-independent part of A, which we suggest designating by letter 

B to avoid confusion with manifold parameters in the equations. 
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The last preparation, before construction of the final equation, is expression of the E-phasor 

derivative, which is also involved in (S22). 
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The derivative has been calculated in advance in order to facilitate notation and solution of the 

equation (S22). Then, by substitutions of c(x) by function (S7) and just obtained d dE x (S27), one 

obtains the differential Equation (S28). 
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After simplification and separation of derivatives by the degrees one obtains: 
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  (S29)

The equation can be solved by the standard approach for linear differential equation. The 

solution of the equation has a form of (S30) where 1 and 2 are the roots of characteristic Equation 

(S31). 

  1 2
1 2

x xc x C e +C e   (S30)

 2
0 0D zfD E Bc j        (S31)
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The constants C1 and C2 are defined using boundary conditions. Here, we regard the function 

c(x) in respect to the oscillation at x = 0 (S33a). Another boundary condition (S33b) arises from the 

obvious assumption that the concentration oscillation decays as it moves away from the boundary. 
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It is obvious that roots λ (S47) are of the opposite sign: 1 > 0, 2 < 0. The condition (S33b) 

requires only negative exponential term to be valid, and that is why C1 equals zero. The remaining 

coefficient is equalised due to condition (S33a), thus giving a final formula for the oscillation of 

concentration (S34). 
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Bearing in mind complexity of the formula above, it is worth addressing some limiting cases 

that would be characterised by simpler functional dependence. 

I. In a case when  22 2
0 4z f E Bc j D    the formula (S34) will be transformed to (S35): 

  0c x c   (S35)

The limiting condition should be analysed to predict, which experimental parameters, namely E 

and ω, would lead to the situation when concentration oscillation is apparently constant along the 

distance from the electrode. 
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The rooting at the previous step produced the appearance of the z value which would 

determine the sign. The original condition (S36) included only a positive term z2. Thus, the z term 

must be excluded with a view to not abuse the original condition (S36) and not to complicate further 

consideration of the inequality. Despite the module in the right part of the last inequality, we will 

consider the case of positive E implying the symmetrical solution for negative E. 

For further processing, the right part has to be decomposed into real and imaginary parts taking 

into account that: 

 1 2j j   (S37)
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processing of both real and imaginary parts leads to the consistent results. We conclude that the 

concentration oscillation does not depend on the distance in case when either the electric field is very 

high or the frequency is very small. 

II. In case when  22 2
0 4z f E Bc j D    the formula (S34) will be transformed to: 

  0

j
x

Dc x c e




   (S39)

This solution corresponds to the oscillation decay for infinite diffusion, which is well known 

from the literature. The function (S39) itself usually is not considered, because traditional impedance 

formulas are concerned with the solution–electrode interface.  

The analogical treatment of the boundary condition would result in the conclusion that the 

formula (S39) is justified, provided that: 

1
E

f D


   (S40)

For instance, taking the diffusion coefficient of 1∙10−10 m2∙s−1 (approximate value for ions in 

water solution), the lowest frequency of 0.01 Hz and f equal 38.9 V−1 (at 298 K) the condition (S40) 

would require E to be much less than 257 V∙m−1. 

Comparing reasonability of the approximations I and II, the last one is expected to be more 

reasonable under standard experimental conditions for polymer film investigation. The small 

voltage gradient is ensured by conductivity of the film and mobility of the ions that could freely 

migrate to eliminate growth of the space charge. If one tries to strongly increase or decrease 

electrode potential, to get condition I (S38) instead of II (S40), the only result would be the launch of 

electrochemical process causing irreversible destruction of the polymer film. The high electric fields 

are achievable in solid state architecture, as e.g., Organic Light Emmiting Diode (OLED) transport 

layers. 

5. The Final Formula for Impedance of Conductive Polymer Film 

At the current stage all intermediate computations have been accomplished, so one has to recall 

the basic formulas from the previous sections. Substituting (S39) into (S14) one gets: 

0

j
x

D i
j zFc e

x


 

 



  (S41)

which after integration gives a function of current oscillation on distance: 



Materials 2020, 13, x FOR PEER REVIEW 12 of 17 

 

 
 

0
0

0

x
j

xi x
D

i
i x zFc j De




 



   (S42)

When x = 0, 
0i i  , then the final formula is: 

  0

j
x

Di x i e




   
(S43)

with 

0 0i zFc j D    (S44)

It is important to extract the value of current amplitude i0 as a function of distance. The exponent 

term has to be represented as a sum of real and imaginary parts using the relation (S37) for the 

square root of the imaginary unit and relation for amplitude and complex phasor of the oscillating 

value: 

  2 2
0

x j x
j t D Di x,t i e e e

 
 

   
(S45)

after separating real and imaginary parts: 

  22
0

j t xx DDi x,t i e e

      
    

(S46)

with the imaginary part presented in trigonometric form:  

  0 cos sin

x
x x

i x,t i e t j t

     

          
     

 (S47)

The oscillation in x-scale is damping with a characteristic length: 

2D



 (S48)

the physical sense of χ is similar to that of diffusion length. When x value is increased by χ, the 

oscillation amplitude decreases e times. 

The last function is harmonic in respect to two parameters: time and distance. The oscillation 

periods in time and distance scales are shown below: 

2
tT





 (S49a) 

2
2x

D
T  


 (S49b) 

The form (S47) is more convenient to regard harmonic oscillations. Some of the graphic 

illustrations of the signal intensity are shown in Figure S5: the distance profiles at seven different 

time moments within the increment of 1/7 of period (T) (Figure S5a) and the time profiles at 10 

chosen distances within the increment of 1/5 χ (Figure S5b). 
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Figure S5. Illustration of current oscillation as a function of x (a) and t (b). Curves corresponding to 

different time moments (a) and different distances (b) are brought out by colours. The simulated data 

correspond to the values: D = 1∙10−8 m2∙s−1, ω = 1 kHz. The vertical arrows indicate signal attenuation 

with increase of distance. 

The exponential term in amplitude (S47) is the sought damping factor γ(x) (S18): 

  2,
x

Dx e




    
(S50)

Unfortunately, the formula (S19) cannot be integrated in analytical form because the values and 

functional dependences c(x), E(x) remain unknown. For that reason, we decided to consider 

impedance as a sum of impedances of infinitesimal elements (Figure S3): 
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within the thin layer the approximate relationship between concentration and electric field (S7) 

could be applied to simplify the derivatives. 
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The latter formula can be rearranged to the form of impedance (S53) of a physical circuit shown in 

Figure S6. The z2 can be eliminated from the formula because its value is always equal to unity: 

1
Z R

j C
 


 (S53)

with 

 
   

 2
1

1
,

n

i
i i i

R x
zf FDE x c x

     (S54)

and 
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The formula (S53) describes an equivalent electric circuit which comprises a resistor and a 

capacitor connected in series. In the case of the presence of several charge carriers, their effect on 

current would be summarised. That means that the model would contain several parallel branches, 

each corresponding to certain type of ion (Figure S6a). During the analysis of experimental data it 

was found that two branches (Figure S6b) are enough to fit the spectrum. Of course, adding of 

additional branches would only improve the fitting, but there was no evidence of necessity of those 

additional parameters.  

The fact that the parameter values are dependent on frequency may be confusing and 

non-consistent with the conventional concept of equivalent circuits. To explain this feature, we state 

that the parameters are estimated experimentally in a very narrow range of frequencies, so that ω 

value in the formulas could be accepted to be constant (Figure S7). 

 

 

 

(a) (b) 

Figure S6. Equivalent circuits corresponding to the worked theoretical model: in general case (a) and 

in the considered work (b). 
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Figure S7. Fragmentary analysis of the experimental data: fitting of the whole spectrum (a); fitting of 

the zoomed fragment (b). 

A similar technique for fragmentary analysis has been already proposed by Stoynov et al. [3–5] 

in respect to the non-uniform research objects such as mesoporous oxide films. The general fit looks 

perfect (Figure S7a), because according to the current methodology each fragment is fitted 

individually. The selected fragments of the spectrum are zoomed to show the fitting quality. The 

calculated and experimental points fit satisfactorily, but not perfectly. The ideal fitting is not yet 

expected since these are experimental data. Otherwise, it would be suspicious and additional checks 

would be required. The selected number of points, seven, was found to be optimal. From the fitting 

quality point of view, it is about two times more than the number of varied parameters (equal 4). On 

the other hand, it covers a frequency range narrow enough to refer the data to one frequency. 

In defence of our idea we remind that the conventional approach of fitting equivalent circuit in 

the whole range of frequencies could not be applied to the conductive polymer film, so was the 

reason to develop the advanced technique. 

6. The Strategy for Extraction of Physical Parameter Values 

According to our hypothesis, one branch of the EC (Figure S6b) is attributed to positively 

charged ions (cations) and the other to negatively charged ions (anions). Afterwards, the attributions 

will be confirmed by the careful analysis of the results. In the first surprise, for each spectrum one of 

the resistances appeared to be positive and the other to be negative, while both capacitances 

remained positive. At the early stages of the work, such results were regarded as erroneous, but their 

reproducibility in all the samples and under all conditions was convincing enough to accept them 

and think about explanations. 
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The answer on this paradox is hidden in Equation (S54). The only term that could be either 

positive or negative is z value in odd degree. The sign of z value defines the sign of R, whereas 

according to (S55), C is always positive, regardless of z due to the fact that z2 > 0. 

A careful look on the formulas would perceive that two equations contain four unknown 

variables (c, D, E and d), which makes the problem unsolvable. However, the experimental data for 

the research object contain manifold points.  

The proposed strategy will be aimed at estimation of resistances and capacitances of each of the 

infinitesimal layers (Figure S3). The number of the layers to be estimated may be less than or equal to 

the number of frequency points, but not exceeding that number. Taking into account, that precision 

of the results requires minimisation of the thickness of the small layer, we will use the maximal 

possible number, i.e., the number that is equal to the number of frequency points. The procedure 

includes the following steps. 

1. The initial approximate values of diffusion coefficients for cations (D+) and anions (D−) are 

proposed, e.g., 1∙10−10 m2∙s−1. The values will be further adjusted during the iteration steps. 

2. The thickness of the polymer film is divided by n equal fragments (δx = d/n), n equals the 

number of the frequency. 

3. The matrix Γnn = [γ(ωi, xj)]nn is created. Each element is calculated by the formula (S56), which is 

formed from (S50) to estimate the average value of γ in the considered distance interval [x1; x2]. 
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4. Two systems of equations have to be solved to estimate values of resistances and capacitances of 

each elementary layer (R(xi) and C(xi)). The system of equation concerned with resistances is shown 

below in a matrix form: the full (S57a) and minor (S57b) version. 
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 (S57a) 

     1 1, R Rnn i j n j n ix x      (S57b) 

The Γ-matrix has been calculated at the previous step, and the Rn1(ωi)-matrix represents the 

experimental data. The sought Rn1(ωj)-matrix is calculated by the formula (S58) using an inverse 

matrix approach. 

     1
1 1R , Rn j nn i j n ix x      (S58)

The same approach is applied to estimate values of capacitances. 

5. Having the values of capacitances, resistances and diffusion coefficients at one’s disposal, one can 

estimate the values of concentration in all the considered fragments. 
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Although the proposed algorithm seems to be precise, its realisation required enormous 

accuracy and attention. The calculation of the inverse matrix in case of high-ranked matrices (more 

than 100) was a special problem, since a minor change in a single element caused recalculation of the 

whole mass of the data. 
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