gee materials by

Article

Experimental Study on Mechanical and Functional
Properties of Reduced Graphene

Oxide/Cement Composites

Ning Zhang (0, Wei She 2*, Fengyin Du ? and Kaili Xu 3
1
2

School of Mechanical Engineering, Southeast University, Nanjing 211189, China; nzhang_cn@seu.edu.cn
Jiangsu Key Laboratory for Construction Materials, Southeast University, Nanjing 211189, China;
yzdufengyin@126.com

3 Shandong Institute for Product Quality Inspection, Jinan 250100, China; 18351959226@163.com

*  Correspondence: weishe@seu.edu.cn

check for

Received: 10 June 2020; Accepted: 30 June 2020; Published: 6 July 2020 updates

Abstract: This study develops a novel self-sensing cement composite by simply mixing reduced
graphene oxide (rGO) in cementitious material. The experimental results indicate that, owing to
the excellent dispersion method, the nucleation and two-dimensional morphological effect of
rGO optimizes the microstructure inside cement-based material. This would increase the electric
conductivity, thermal property and self-induction system of cement material, making it much easier
for cementitious material to better warn about impending damage. The use of rGO can improve the
electric conductivity and electric shielding property of rGO-paste by 23% and 45%. The remarkable
enhancement was that the voltage change rate of 1.00 wt.%-rGO paste under six-cycle loads increased
from 4% to 12.6%, with strain sensitivity up to 363.10, without compromising the mechanical properties.
The maximum compressive strength of the rGO-mortar can be increased from 55 MPa to 71 MPa.
In conclusion, the research findings provide an effective strategy to functionalize cement materials by
mixing rGO and to achieve the stronger electric shielding property and higher-pressure sensitivity of
rGO-cement composites, leading to the development of a novel high strength self-sensing cement
material with a flexural strength up to 49%.

Keywords: reduced graphene oxide; cement-based materials; electrical properties; pressure sensitivity;
electromagnetic shielding properties

1. Introduction

Cement-based composites are the most widely used construction materials in the world, and the
bearing of various loads or gradual erosion from environments are inevitable [1-3]. However,
cement-based composite is a kind of brittle material and is susceptible to cracking. Once cracked,
the cracks will provide an easy way for the ingress of aggressive ions, which will further threaten
the safety of the infrastructure [4,5]. Therefore, it is important and urgent to improve the mechanical
properties of cement-based materials and provide regular monitoring to ensure safety of cement
concrete composites [6].

Graphene, as a new two-dimensional nanomaterial, has excellent mechanical properties.
The tensile strength exceeds 50 GPa and the Young’s modulus is about 1 TPa [7]. The electron
mobility of graphene is as high as 2.5 x 10° cm?/(V s) [8] at room temperature and its thermal
conductivity is up to 5300 W/(m K) [9], much higher than carbon nanotubes and diamond. If graphene
is incorporated into cement materials, it is easy to disperse in the cement matrix to form a network
structure, make the internal structure dense and it plays a role of strengthening and toughening,
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due to the nanometer size and two-dimensional morphological effects of graphene [9]. At the same
time, its excellent thermal and electrical conductivity improve certain functionalities of cement-based
materials [10,11]. Graphene derivatives include graphene oxide (GO) and sulfonated graphene. GO
has oxygen-containing functional groups on its surface, such as -OH and -COOH, which are easily
dispersed in water and can be chemically bonded to hydration products. Therefore, the current
research mainly focuses on the research of GO-cement-based materials, including cement hydration,
mechanics and durability.

GO can greatly enhance the impermeability and mechanical properties of cement pastes and
mortars [12-15], because GO has strong nucleation and template function, improving the microstructure
of cement and enhancing mechanical properties and impermeability. Samuel Chuah [16] believes that
the enhancement mechanism of GO is that GO can form a strong covalent bond with the hydration
products of cement. Zhu Pan and other studies [17,18] have shown that 0.05 wt.% of the GO content
increased its compressive strength by 33% and flexural strength by 59%. Wang Qin [19,20] also obtained
similar results. Dong et al. [21] showed that GO can increase the rheological parameters of cement paste
and reduce its fluidity. In response to this problem, the authors proposed a method of incorporating
additives to improve its properties. Mohammad A Rafi [22] believes that GO-cement-based materials
have strong mechanical properties and oil absorption properties, giving certain functional properties
to cement-based materials. Xue guang et al. [23] compounded GO and multi-walled carbon nanotubes
(SWCNTs) into cement slurries to prepare composite materials and studied their mechanical properties.
The results show that 1.5 wt.% GO and 0.50 wt.% SWCNTs is the optimal dosage to improve the
mechanical properties of the cement slurry. Teng Tong [24] studied the effect of GO on the mechanical
properties and durability of concrete. It was found that GO can enhance its mechanical properties but
its effect on the functionalities is not obvious. G.M. Kim [25] et al. studied the effect of CNT dispersion
and pore structure on their electrical properties. The results show that the addition of water reducer
and silica fume greatly improve its electrical properties, but their mechanism of action is different:
water reducer can reduce the van der Waals force between carbon nanotubes to achieve dispersion;
silica fume refines the pore size. The synergistic effect of the two, on one hand, improves the dispersion
of CNTs, while on the other hand, the improvement of the pore structure helps carbon nanotubes form
a conductive network in the cement matrix.

Graphene has good electromagnetic shielding properties and rtGO/MWCNTs/Fe;04 composites
have very good electromagnetic shielding properties. The absorption efficiency of composite materials
with only 2 mm coatings can reach 36 dB at 13.44 GHz electromagnetic wave frequency [26].
Chuangang Hu [27] showed that three-dimensional graphene—iron tetroxide nanocomposites have
higher microwave absorption properties. Qiong Liu [28] showed that the mechanical properties of
graphene nano-sheets and GO nano-sheets were 0.8% and 1.6%, respectively. When the graphene
content is 6.4%, its piezo resistance is relatively stable. Sedaghat [29] has shown that graphene can
improve the electrical conductivity and thermal diffusivity of cement materials and thus reduce the
internal and external temperature differences caused by heat of hydration and weaken the structural
damage caused by temperature stress.

However, the oxygen-containing functional groups on the surface of GO destroy the conjugated
structure of graphene crystals and lose most of its electrical conductivity, thermal conductivity or other
functions, and cannot achieve the intelligence of cement-based materials. Graphene has excellent
electrical and thermal properties. Based on the above two issues, this paper intends to use GO
as a functional component and blend graphene dispersion into cement-based materials to prepare
cement-based functional composites. The effects of graphene on the mechanical properties, resistivity,
thermal conductivity, electromagnetic shielding and pressure sensitivity of cement-based materials
were studied and the mechanism was analyzed.
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2. Experiments

2.1. Sample Preparation

A commercially available P-II 52.5 cement (The Xiao Yetian Cement Co., Ltd., Nanjing, China)
was used in this study and its chemical compositions are listed in Table 1. The standard sand (The
Xiamen ISO Standard Sand Co., Ltd., Xiamen, China) with the fineness modulus within 2.3-3.0 was
used in this study. The electrical connections were made using 20 mm x 30 mm stainless steel nets
with 2 mm X 2 mm of mesh size. The physical parameters of the rGO (The Sixth Element Materials
Technology Co., Ltd., Changzhou, China) are shown in Table 2. The particle size distribution of the
rGO is shown in Figure 1 and the median particle size is about 8.2 um. The naphthalene sulfonate
water-reducing admixture (The Sobute Co., Ltd., Nanjing, China) was used to disperse and stabilize
the rGO. A schematic map of how GNP was prepared was made and shown in Figure 2. For relatively
large rGO particles, the extremely thin, but highly wrinkled surface can be observed via Transmission
Electron Microscope (TEM).

Table 1. Physical and chemical parameters of cement.

NO. CaO SiO, Al,O3 Fe, 03 SO3 MgO Loss Specific Surface Areal/mzkg*l
PII 64.85 21.65 5.56 432 2.58 0.84 1.27 350

Table 2. The physical parameters of rGO.

Specific Surface Area/m?g-1 Thickness/nm Particle Size/um  Carbon Content/% Electric Conductivity/Sm~1
225.5 <5 7.06 >98.0 5352
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Figure 1. The size distribution of reduced graphene oxide (rGO).

The mix proportions of the samples in this study are listed in Table 3. The processes of sample
preparations are in Figure 2. Firstly, 80% water is used to prepare the naphthalene water reducer. Then,
put the naphthalene water reducer mixed with rGO powder in the 1500 W ultrasonic cell crusher for
60 min to obtain homogeneous dispersed rGO dispersion. Afterwards, add cement to the mortar mixer
containing the rGO dispersion solutions and stir slowly for 30 s. Put the remaining 20% water and
standard sand in mixer and stir slowly for 1 min, then stop for 1 min, and further stir for 4 min and
prepare test specimens according to the experimental specifications. Cast the even mixed mortar to the
40 mm x 40 mm X 160 mm mold. After 24 h, the samples were demolded from the molds and placed
in the curing room with 20 + 2 °C temperature and relative humidity > 95%.
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Figure 2. The preparation process of samples.

Table 3. The mix of cement samples.

Admixture/wt.%

Sample Water/Cement Binder/Sand
rGO/% Water Reducer/%

*GCO - 0.00 0.00
GC0.05 - 0.05 0.15
GC0.5 - 0.50 0.30
GC1 - 1.00 0.50
GC2 - 2.00 1.00
GC4 - 4.00 2.00
*GMO 045 1:3 0.00 0.00
GMO0.05 1:3 0.05 0.15
GMO0.5 1:3 0.50 0.35
GM1 1:3 1.00 0.50
GM2 1:3 2.00 1.00
GM4 1:3 4.00 2.00

* GC = cement paste with rGO; GM = cement mortar with rGO.

2.2. Sample Characterization

The mechanical strength test was carried out with an electronic universal testing machine
(CMT5105 Meister Company, Shenzhen, China) according to GB/T 17671-1999.

The SEM (Scanning Electron Microscope) analysis of GNP/cement composites was conducted
with a FEI 3D environmental scanning electron microscopy, operating at 20 kV. The Mercury Intrusion
Porosimetry (MIP) (Autopore IV 9500, Micromeritics Instrument Corporation, Norcross, GA, USA)
was used to study pore structure. The pressure range is 0-113 MPa, the surface tension of mercury is
0.485 N/m, and the contact angle is 130°.The specimen with the size of 3-5 mm is cut out from the
middle part of the samples and placed at 50 °C for more than 3d after immersing in the isopropyl
ketone solution. The thermal conductivity is tested by the heat flow method and referenced standards
ISO 8301, ASTM C518, DIN EN 12667/12939, DIN EN 13163. The 300 mm X 300 mm X 30 mm slurries
are dried at 105 °C to constant weight and tested by a thermal conductivity tester.

The size of the mortar specimen is 40 mm X 40 mm X 80 mm. The distance between the two internal
electrodes is 40 mm, and the distance between the two external electrodes is 60 mm. The preparation of
samples is shown in Figure 3. The DC four-electrode method was used to measure the pressure sensitive
performance and the electronic universal testing machine (CMT5105) was used as the loading device of
the test. The external electrode of the test piece is connected with 15 V DC voltage, the electrochemical
workstation is used to record the voltage across the electrode in the test piece during the loading process



Materials 2020, 13, 3015 50f 19

in real time. The micro-strain in the loading direction of the test piece was recorded continuously
using a digital acquisition device. The experimental devices are shown in Figure 4. The voltage
is set 15 V [30]. Use a constant speed 50 N/s to 8 kN, then reduce to 0 kN, which was a complete
loading—unloading cycle and repeated 6 times. The electrochemical workstation collects the electrode
voltage in the test piece every 0.1 s and the total time is 4000 s. The data of micro-strain collected by
stress—strain acquisition instrument is recorded every 1 s.

Strain gage

Figure 3. Preparation of specimen.
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Figure 4. The test device of pressure sensitivity.

3. Results and Discussion

3.1. Effect of rGO on Mechanical Property of Cement Mortars

Figure 5 shows the mechanical properties of cement mortar specimens of different rGO content.
Figure 5a shows the changes of compressive strength. It can be seen that the compressive strength
increased first and then decreased with the increase of rGO. When the rGO content is 2.00 wt.%,
the compressive strength at different hydration ages reached their maximum value. In addition,
the effect of rGO is more obvious on the early compressive strength and 2.00 wt.% rGO increased 44%
compressive strength for samples cured 3d. Figure 5b shows that the flexural strength of specimens in
different ages is consistent with their compressive strength. Similarly, the effect of rGO on the early
flexural strength was more obvious and the flexural strength of mortar with 2.00 wt.% rGO cured for
3 d increased by 49%.

Table 4 shows the mechanical properties of cement mortar specimens with different rGO content
for 28 d. It can be seen from the table that the compressive and flexural strength of cement mortar was
improved after the incorporation of rGO. Compared with the control group, the compressive strength
of sample GM2.00 increased 29% and reached the maximum value of 71.0 MPa. However, the sample
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GM4.00 only increased 11% with higher rGO content, indicating that the excessive amounts of rGO are
not conductive to the increase in compressive strength, which may be possibly due to agglomeration
of rGO. The changing trend of the flexural strength is similar to that of the compressive strength.
The flexural strength of GM2.00 reached the maximum value 10.5 MPa, which is 35% higher than that
of the blank.

12
|3 3dEm 7d mm 28d @) 13d =3 7d g 28d (b)
< 10F
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=Y = i H
g =
g% 11 g 6
£ s 4
E 5
§ 15} = |
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0 0.05 05 1 2 4 0 0.05 0.5 1 2 4

Graphene content/% Graphene content/%

Figure 5. The mechanical properties of cement mortar with different ages and rGO content,
(a) Compressive strength, (b) Flexural strength.

Table 4. Properties of cement mortar with different rGO content for 28 d.

Sample rGO Compressive Standard Flexural Standard Compressive Strength  Flexural Strength
Content/% Strength/MPa Deviation Strength/MPa Deviation Increase/% Increase%
GMO0.00 0.00 55.0 4.30 7.8 0.69 - -
GMO0.05 0.05 59.7 3.20 85 0.45 9 9
GMO0.50 0.50 65.5 5.33 8.8 0.70 19 13
GM1.00 1.00 69.2 5.21 9.7 047 26 24
GM2.00 2.00 71.0 471 10.5 0.80 29 35
GM4.00 4.00 61.1 6.95 9.5 0.82 11 22

3.2. Effect of rGO on Pore Structure of Cement Mortar

Figure 6 shows the porosities of cement mortar decreased with the decreasing addition of rGO.
Compared with the base sample, the porosity reduced 31% when the rGO content is 2.00 wt.%.
However, the porosity of mortar prepared with 4.00 wt.% rGO reduced just 33%. On one hand,
this indicates that the ability to disperse rGO is limited due to the easy agglomeration between rGO
particles. It is hard to disperse uniformly when rGO is over 2.00 wt.%. On the other hand, the optimum
amount of rGO was 2.00 wt.%. Figure 7 is a pore size distribution of slurry with different rGO content.
It can be seen that with the increasing rGO content, the number of small pores first increases and then
decreases. The number of macrospores is nearly the same. This indicates that graphene has a plugging
effect and the appropriate amount of rGO increases the number of small pores. However, the extensive
rGO leads to agglomeration, which no longer improves the microstructure of the slurry. This trend is
consistent with the strength change. The results in Table 5 show that with the increasing rGO content,
the average pore size, the median pore size and the most probable pore size appear in a decreasing
trend, which indicates the rGO refines the pore structure and enhances its mechanical properties.

Table 5. Characteristic pore size of slurry with different rGO content.

Sample Average Pore Size/nm Median Pore Size/nm Maximum Pore Size/nm
GMO 54.4 63.3 64.3
GM2 35.2 51.2 59.4

GM4 259 46.4 48.3
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Figure 6. The porosity of cement mortar with different rGO content.
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Figure 7. The pore size distribution pf slurry with different rGO content.

3.3. Functional Properties of rGO—-Cement Composite Materials

3.3.1. Electrical Conductivity and Thermal Conductivity

The seepage theory is that the composite resistivity does not always change in proportion with
the amount of conductive particles. When the conductive particles increase to a certain critical,
the resistivity changes significantly and then slowly. The critical value is referred as a threshold.
Figure 8 shows the changes of resistivity of mortar with different rGO content.
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Figure 8. The relationship between electrical resistivity and rGO content.

It can be seen from Figure 8 that the resistivity decreases firstly and then stabilizes with the
increasing content of rGO. When rGO content changes from 0.50 wt.% to 2.00 wt.%, the resistivity
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decreases drastically. Compared with the base sample, the resistivity of cement mortar with 2.00 wt.%
decreased 40%. If rGO is continuously added, the change in resistivity is no longer obvious. Therefore,
the threshold value of rGO is around 2.00 wt.%. When the rGO content is 4.00wt.%, the resistivity
decreased 45%, from 2.137 x 10° Q-cm to 1.185 x 10° Q-cm.

The reason for the phenomenon above may be that the rGO did not form a conductive network
inside the cement matrix when the content is under 2.00 wt.%. The resistivity change is not obvious.
When the rGO content is 2.00 wt.%, a certain conductive network begins to form inside the cement
matrix and the electrons easily migrate, which leads to the sharp drop of the resistivity. When the rGO
exceeds 2.00 wt.%, the internal conductive networks slowly laps and the resistivity slowly decreases.
The measured density of different cement containing rGO is shown in Table 6.

Table 6. Measured density of cement mortar specimens with different rGO content.

Sample PM GMO0.05 GMO.5 GM1 GM2 GM4
Density/kgm=  2110.3 2164.3 2113.1 2205.6 2254.1 2257.6

Figure 9 shows that the thermal conductivity coefficient of mortar mixes increases first and then
stabilizes with the increasing rGO content. When 1.00 wt.% rGO is added, the thermal conductivity
of cement mortar is 0.77 W/(m-K), which is 23% larger than the control sample. But when rGO was
continuously added, the thermal conductivity leveled off.

o
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0.75} /

0.70t
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0.00
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Graphene content/wt%

Thermal conductivity coefficient/W (m.K)'1

Figure 9. The thermal conductivity coefficient of different cement mortar.
3.3.2. Electromagnetic Shielding Property

The studies above show that 1.00 wt.% rGO can significantly improve the electric and thermal
conductivity of cement-based composites. This experiment used the waveguide method to study
the electric parameters of paste with 1.00 wt.% rGO to characterize the electromagnetic shielding
properties and analyze the influence of rGO on the electromagnetic shielding performance.

It can be seen from Figure 10 that the electromagnetic wave shielding mainly includes three parts:
reflection loss on the shield surface, internal absorption loss and multiple reflection loss. In Figure 10,
T; and T, are the input reference plane and the output plane, respectively. All measured parameters
are relative to the reference plane.

According to vector network theory, the scattering matrix of a two-port network is:

[ S S1i2
1] _( Sy S» ) @
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where T1 and T2 are the input reference plane and the output plane, respectively. S;;—Reflection
coefficient on the T1 surface when T2 is connected to the matched load; S;,—Reverse transmission
coefficient from T2 to T1 when T2 is connected to the matched load; S;;—Reverse transmission
coefficient from T1 to T2 when T1 is connected to the matched load; Sy,—The reflection coefficient on
the T2 surface when T1 is connected to the matched load.

Incident wave Shield

~ __:-}h.‘:m‘ption loss

sample Pty ~—

Figure 10. The schematic analysis of electromagnetic shielding mechanism.

For materials, the equivalent network is reciprocal, so by definition, when the end of the network
is matched to the load, the transmission coefficient of the material is T = Sy; = Sqp, and thus the
shielding effectiveness is SE = ZOIg% = ZOIgﬁ.

It is found from Figure 11 that the shielding effectiveness of the blank paste is 11-16 dB when
the electromagnetic wave frequency is between 8.2-12.4 GHz, which is considered to have a weak
electromagnetic shielding effect. After 1.00 wt.% rGO is incorporated, the shielding effectiveness
increases from 30% to 45%, reaching 16-21 dB. In addition, as the frequency increases, the shielding
effectiveness gradually increases.

22

] ——GC0 —+—GCl
20+

184

161

Shielding effectiveness/dB

10

8 9 10 11 12
Frequency/GHz

Figure 11. The shielding effectiveness of cement paste with rGO.

Due to the mating force between rGO and cement base, the rGO molecules connect a good
interface with each other to form a conductivity network, which is favorable for transporting carriers
and thus canceling the incident electromagnetic field.

In Figure 12, ¢’ represents the real part of the complex permittivity, indicating the polarization
degree of the material under the electric field; £” is the imaginary part of the complex permittivity and is
the loss measurement caused by the rearrangement of the electric dipole moment of the material under
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the electric field. |’ represents the real part of the complex magnetic i, indicating the polarization
degree of the material under the magnetic field; pu” is the imaginary part of the complex magnetic and
is the loss measurement caused by the rearrangement of magnetic dipole moment of the material under
the magnetic field. The imaginary part can reflect the ability of the material to lose electromagnetic
waves. The larger the imaginary part is, the greater the loss of electromagnetic waves from the material.
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Figure 12. The electromagnetic parameters of cement paste with different rGO. (a) real part of dielectric
conductivity (b) imaginary part of dielectric conductivity; (c) real part of magnetic conductivity
(d) imaginary part of maginary conductivity.

It is shown from Figure 11 that the real part of the dielectric constant of the blank cement paste
is 4.5-6, the incorporation of 1.00 wt.% rGO made the real part value increase 38%, which indicates
that the dielectric polarization degree of the cement paste sample increases under the electric field.
Meanwhile, the incorporation of 1.00 wt.% rGO increased the imaginary part of the dielectric constant of
cement paste specimen by 60%, which indicates that rtGO increases the dielectric loss of the composites
to electromagnetic waves. However, the values of the real and imaginary parts of the permeability
of the slurry and rGO-cement paste specimens are close to zero, which may be due to the lack of
magnetic loss capability of rGO.

3.3.3. Pressure Sensitive Performance

Cement Paste with Different rGO Content

Figures 13 and 14 show the voltage rate changes of the cement paste with 0.00-4.00 wt.% rGO
at six cycles of loading. It can be seen from the figure that there must be a relationship between the
voltage change and the load stress. With the increasing rGO content, the linearity and signal-to-noise
ratio of this relationship first increased and then decreased. During the loading process, the voltage
of samples trended to decrease monotonously; While during the unloading process, the voltage had
a trend of monotonous increase. Therefore, the appropriate amount of rGO is beneficial to enhance
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the stability and pressure sensitive property. The pressure sensitivity of GC0.5 and GC1 samples was
better than that of the lower dosages of GC0.05 and the higher dosages of GC2 and GC4. The linearity
and signal-to-noise ratio showed similar patterns. Therefore, 0.50-1.00 wt.% rGO is the optimum range
of rGO content for pressure sensitivity.

It can be seen from Figure 12a that the voltage of cement paste remained almost the same under
the six-cycle loading. It shows that cement paste does not have a pressure sensitivity without rGO.
As shown in Figure 13b, when the applied load is 5 MPa, the voltage change rate of the paste with
0.05 wt.% rGO is 4.06%. Figure 13c,f show that when the load reaches 5 MPa, the voltage change
ratio is 6.4-12.6% when rGO content is 0.50—4.00 wt.%. It can be seen from Figure 13g that the
pressure sensitivity of paste with 0.00-4.00 wt% rGO increased first and then decreased. Among these,
the pressure sensitivity of paste with 1.00 wt.% rGO was the most obvious and the voltage change rate
reached 12.6%.

When rGO content is 0.50-1.00 wt.%, the change rate of samples has a similar changing trend as
the synchronous loading during the whole cycle. It can be inferred that the pressure sensitiveness
of samples in the elastic region is superior and the voltage change can also reflect the external stress
change. Each voltage change value of samples corresponds to each cyclic stress value. In the first
loading cycle of the sample, the slight irreversible increase can be found in voltage and then the voltage
change tends to be stable. This result corresponds to the findings of Sasmal Saptarshi.

Figure 15 shows the stress and strain sensitivity coefficients of the specimens with different rtGO
contents. It can be seen that the stress and strain sensitivity coefficients of the specimens tend to
increase gradually and then slowly decrease with the increasing rGO. When the amount of rGO is
1.00 wt.%, the stress sensitivity is as high as 2.52%/MPa, the strain sensitivity is 363.10 and the voltage
change is the most obvious. Thus the test piece pressure sensitivity is optimal.

6 0.25 6 6
0 wt% rGO (a) 0.05 wt% rGO (b)
5
: 0.20 Al .
8 \ 015 < £ \ g
- ©n —
82 00 8 5
2 s @ ot 0§
5 005 £ g £
2 g 2 z
g 0 AN AN N NP AN N 000 & & .o 12 g
c =]
! N\ {0057 \| *
> -4t 4
' : ' ' 0,10 ' ' ' ' '
0 500 1000 1500 2000 0 500 1000 1500 2000
Time/s Time/s
8 15
’ 0.5 wi% 1GO o' 1 wt% 1GO @
6 6
- 10 -
SRR AN s S 2
e 2 g 2 1N 1 g
2 = S 2t )
g 0 10 qo')b E 410 ED
w =] 2] <
S £ o O0f S
5 2 o 5 o
2 15 9 2 1-5 &
o - a2t &
& 4 \ = o G
. > ~ ol \‘--10>
. {-10
gl . . . -6 : : : 15
0 500 1000 1500 2000 0 500 1000 1500 2000
Time/s Time/s

Figure 13. Cont.
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Figure 15. Stress and strain sensitivity coefficients of pastes with different rGO content (a) stress

(b) strain.

Mortar with Different rGO Content

Due to the large particle size of the sand, it will block the interrelationship of rGO in the
cement matrix, making it difficult to form a conductive network. Under the same rGO content,
the pressure sensitivity of the rGO-mortar specimen may be worse than that of tGO-paste. However,
the mortar volume stability and hydration heat are superior to the paste. In order to investigate the
pressure-sensitive properties of mortar materials, mortar composite materials with 0.00-4.00 wt.% rGO
content were prepared, and the voltage—stress response relationship of rGO-mortar specimens was
tested to study the elastic range of different rtGO-mortar specimens.
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The rGO-cement mortar specimen size is 40 mm X 40 mm X 80 mm, and its pressure sensitivity is
tested by the DC four-electrode method at 50 N/s loading rate. The experimental results are shown in
the figures below.

Figure 16 shows the voltage change rate of 0.00-4.00 wt.% rGO-mortar specimen under six cycles
of loading. It can be seen from Figure 15 that the pressure sensitivity of the rGO-mortar test piece
is slightly different from that of the rGO-paste at the same loading speed and loading amplitude.
When the rGO content is 0.50 wt.%, the pressure sensitivity stability of the rGO-mortar samples is
worse than that of the tGO-paste. When the content of rGO reaches 1.00 wt.%, the pressure sensitivity
of rGO-cement paste reaches the optimized value 12.6%, but the voltage change rate of rtGO-mortar
is just 5.13%. When rGO content reached 2.00 wt.%, the pressure sensitivity of the rtGO-mortar was
optimized, but the value was only 6.4%. This shows that the pressure sensitivity is greatly reduced
after the introduction of fine aggregate sand.

Figures 17 and 18 show the stress and strain sensitivity coefficients of mortar specimens with
different rGO content. It can be seen that the stress and strain sensitivity coefficients of the specimen
also increase first and then decrease with the increasing rGO. The difference is that when the rGO
content is 2.00 wt.%, the stress sensitivity coefficient is as high as 1.28%/MPa, and the strain sensitivity
coefficient is 147.80. Compared with the maximum stress and strain sensitivity coefficient of the paste

specimens of 2.52%/MPa and 363.10, the values of the mortar specimens were reduced by 49% and
59%, respectively.
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Figure 16. The voltage change ratio and pressure stress of different rGO-mortars under six-cycle
loading (a) 0 wt.% rGO, (b) 0.05 wt.% rGO, (c) 0.5 wt.% rGO, (d) 1.0 wt.% rGO, (e) 2.0 wt.% rGO,
(f) 4.0 wt.% rGO.
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Figure 17. The relationship between the voltage change ratio and rGO content.
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Figure 18. The stress and strain sensitivity coefficients of different rGO-mortars (a) stress (b) strain.
The Mechanism of Pressure Sensitive Properties of rGO Composites

It can be seen from Figure 19 that the distribution of rGO in the cement changes with the loading
and unloading process. When the rGO content is under the threshold, rGO particles are far apart from
each other. Therefore, the 0.05 wt.% rGO-cement composites has a poor pressure sensitivity stability.
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Figure 19. The schematic diagram of pressure sensitive performance of rGO composites.

When the rGO content reaches the threshold, a conductive network begins to form in the cement
matrix. If the specimen is deformed when subjected to compressive stress, the distance between the rGO
particles begins to decrease, making it easier for electrons to migrate in the cement matrix, as shown in
Figure 19. Therefore, rGO-cement composites exhibit stable and excellent pressure-sensitive properties
under pressurized conditions [31,32].

When the amount of rGO is excessive, the rGO particles are easily agglomerated, so the pressure
sensitivity of the test piece is lowered. In the mortar, due to the presence of fine aggregate sand,
more rGO particles are needed to form a conductive network. In the paste test piece, when the rGO
content exceeds 1.00 wt.%, the pressure sensitivity of the test piece begins to decrease; while for
the mortar samples, when the rGO content exceeds 2.00 wt.%, The pressure sensitivity of the test
piece began to decline. Therefore, the optimum pressure sensitivity of the paste and mortar samples
corresponds to a rGO blending amount of 1.00 wt.% and 2.00 wt.%, respectively.

It can be seen from the Figures 20 and 21 that when the rGO is 1.00 wt.% and 4.00 wt.%, a conductive
network has been formed inside the cement paste, and electrons are easier due to tunneling effects
and contact effects [33,34]. Migration may also be the reason for its improved functionality. When the
amount of rGO is 1.00 wt.%, electron percolation is generated in the cement paste, and the percolation
threshold is reached. When the amount of rGO is 4.00 wt.%, the distance between the rGO particles
is closer, and even contact with each other, and more agglomeration occurs, and the functional
improvement effect is not obvious.

After the incorporation of rGO, the thermal conductivity of the cement mortar would be improved,
probably due to the good channel formed by rGO inside the cement. The enhancement mechanism of
the shielding performance of rGO cement paste composites mainly includes the following aspects:
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(1) rGO has excellent electrical conductivity, which makes rGO exhibit strong dielectric loss
capability for electromagnetic waves. Thus, it increases the shielding performance of paste
to the electromagnetic wave.

(2) In addition, the two-dimensional laminated structure of rGO increases the reflection area of
electromagnetic waves, so that the single reflection loss and shielding effectiveness of the
electromagnetic wave of the rGO-cement paste is enhanced.

Element Wt% At%
C 33.64 52.11

(0] 22.75 26.46

Si 04.62 03.06

S 01.99 01.15

K 03.22 01.53

Ca 33.80 15.69

Figure 20. SEM photographs of cement paste with 1.00 wt.% rGO (a) rGO (b) paste (c) area @
(d) magnifying view of area @ (e) area @ (f) magnifying view of area @.

Element  Wt% At%
C 48.54 69.35

(0] 11.63 12.48

Si 04.11 02.51

S 03.13 01.67

K 02.62 01.15

Ca 29.97 12.83

Element Wt% At%

C 44.16 62.91
0] 19.08 20.40
Si 03.70 02.25
S 02.72 01.45
K 02.08 00.91
Ca 28.26 12.07

Figure 21. SEM photographs of cement paste with 4.00 wt.% rGO, (a) rGO (b) paste (c) area @
(d) magnified view of area .

4. Conclusions

In this paper, rGO is introduced in cement-based materials as a reinforcing component and a
functional component to prepare tGO-cement-based composite materials. Using different analysis and
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testing methods to study the mechanical properties, conductivity, thermal conductivity, electromagnetic
shielding and pressure sensitivity of rGO-cement-based composites, the following conclusions were
obtained:

(1) The incorporation of rGO can generally enhance the mechanical properties of rGO-cement mortar,
and the increase of early strength of cement mortar is more obvious. The optimum content is
2.00 wt.% rGO, which increased the 3 d compressive strength and flexural strength of cement
mortar specimens by 44% and 49%, respectively.

(2)  With the increasing rGO content, the electric conductivity and thermal conductivity of rtGO-cement
mortar composites increase first and then stabilize. When the amount of rGO is 2.00 wt.%,
the resistivity of the test piece is basically stable, which is reduced 40%, from 2.14 x 10°> Q-cm to
1.27 x 10° O-cm. However, when the rGO content was 1.00 wt.%, the thermal conductivity was
stable at 0.77 W/(m-K), which was 23% higher than the blank group.

(3) rGO improved the dielectric polarization of the rGO-cement paste specimen under the electric
field. The results from the vector network analyzer show that 1.00 wt.% rGO increases the
imaginary part of the dielectric constant of cement paste by 60% and increases the real part of the
dielectric constant of the cement paste composite by 38%, which indicates that rGO significantly
increases the dielectric loss of cement paste.

(4) The relationship between the strain-stress sensitivity coefficient and rGO content was studied.
As the amount of rGO increased, its pressure sensitivity showed a tendency to rise first and then
decrease. For the paste composite, when the rGO content is 1.00 wt.%, the pressure sensitivity
has a maximum stress 2.52%/MPa and a strain sensitivity of 363.10; for the mortar composite,
when the rGO content is 2.00 wt.%, the pressure sensitivity has a maximum stress of 1.28%/MPa
and a strain sensitivity of 147.80, which indicates that slurry has better pressure sensitivity than
mortar material.
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