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1 Division of Materials Chemistry, Rud̄er Bošković Institute, Bijenička cesta 54, 10002 Zagreb, Croatia
2 Division of Materials Physics, Centre of Excellence for Advanced Materials and Sensing Device, Rud̄er
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Abstract: Organophosphorus compounds, like bisphosphonates, drugs for treatment and prevention
of bone diseases, have been successfully applied in recent years as bioactive and osseoinductive
coatings on dental implants. An integrated experimental-theoretical approach was utilized in this
study to clarify the mechanism of bisphosphonate-based coating formation on dental implant surfaces.
Experimental validation of the alendronate coating formation on the titanium dental implant surface
was carried out by X-ray photoelectron spectroscopy and contact angle measurements. Detailed
theoretical simulations of all probable molecular implant surface/alendronate interactions were
performed employing quantum chemical calculations at the density functional theory level. The
calculated Gibbs free energies of (TiO2)10–alendronate interaction indicate a more spontaneous
exergonic process when alendronate molecules interact directly with the titanium surface via two
strong bonds, Ti–N and Ti–O, through simultaneous participation common to both phosphonate
and amine branches. Additionally, the stability of the alendronate-modified implant during 7
day-immersion in a simulated saliva solution has been investigated by using electrochemical
impedance spectroscopy. The alendronate coating was stable during immersion in the artificial saliva
solution and acted as an additional barrier on the implant with overall resistivity, R ~ 5.9 MΩ cm2.

Keywords: titanium dental implant; alendronate sodium; surface coating; DFT; XPS; EIS

1. Introduction

State-of-the-art investigations of orthopedic and dental implants are focused on bone-inspired
surface modification [1–4]. The success of implantation, which is complex and time-consuming
process, depends greatly on osseointegration [5,6]. This is a process of creation of structural and
functional connections between the implant and surrounding bone tissue; therefore, it is of great
interest to functionalize the implant surface to induce, promote, and accelerate the osseointegration.
At the same time, the modified implant surface must satisfy several other important characteristics,
such as non-toxicity, non-allergy, possess adequate mechanical and anti-corrosion protection, etc.,
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since implants are foreign bodies for the human organism. Hence, it is very challenging to find
molecules/substances that will meet all requirements.

One of strategies is to implant surface modification by inorganic coatings, like calcium phosphates
(CaP) or hydroxyapatite (HA), that represent inorganic phase of the natural bone [1,2,4,7–12]. HA-based
coatings on the titanium implants are responsible for osteoconductivity, bioactivity, and stability of
the bone/implant connection. To produce CaP-based coatings more similar to natural bones, which
normally contain different inorganic ions, ions, like magnesium, zinc, or titanium, are added to the
CaP phase. So, magnesium ions regulate inflammatory activity [13], zinc ions stimulate new bone
formation and antimicrobial and anti-inflammatory activities [14,15], and titanium ions increase the
proliferation of osteoblasts [16]. Bioceramic coatings, like sphene-based (CaTiSiO5) coatings, can
promote early cell/implant surface interactions and osteoblast proliferation and differentiation due
to Ca and Si dissolution from the sphene coating [17,18]. In addition, bioactive glasses are used as
bioactive coatings for bone scaffolds [19] and for porous titanium implants [20]. Coatings based on
the organic bone phase are also used for improving implant/bone responses [1,2,4]. For bone healing,
coatings with different extracellular matrix (ECM) proteins (collagen, fibronectin, fibrinogen) are
applied [4,21], and a relatively new approach is a combination of inorganic and organic phases of bones,
like HA and collagen, which enhances adhesion, proliferation, and differentiation of Mesenchymal
Stem Cells (MSCs) [22]. In order to shorten time required for implant fixation, as well as to enhance
bone regeneration around implant, recent studies have focused on biomimetic coatings by using
biomolecules, such as platelet-derived growth factor (PDGF) [23] or heparin/dopamine molecules [24].

Recently, numerous in vitro, in vivo, and clinical studies about coatings that mitigate implant
response, i.e., coatings induced by bone’s immune system, have been reported [1–4]. Since the
implantation procedure destroys part of the bones and surrounding tissues and often evokes an
inflammatory reaction, thus limiting the implant response, researchers are focused on improving
the osseonintegration of implants by using pharmaceutical compounds, like bisphosphonates, as
bioactive and osteoinductive coatings [1,2,4,25–29]. The bisphosphonates (BP) class of synthetic drugs
is frequently used for the treatment of bone diseases; osteoporosis, bone cancer, osteopenia, and Paget’s
disease [2,7,30–32]. The BP’s pharmacological effect is related to their strong affinity for binding to the
bone mineral phase and biochemical effect on bone cell, dominantly osteoclasts. They induce apoptosis
of osteoclasts and thus favor bone formation over bone resorption [2,25,26,30,31].

Among BPs, alendronate, zolendronate, and pamidronate are the most tested molecules as
coatings for implants [7,29,33–37]. It has been shown that alendronate-modified titanium acts as
a bioactive implant that enhances simultaneously osteoblast differentiation and inhibits osteoclast
differentiation [30,31], as well as enhances calcium deposition in the first ten days after implantation [35].
Functionalization of HA-coated titanium with BPs stabilizes implants in rats [38]. Compared to
HA-modified surfaces that improve the binding of the implant to the bone, BP-modified surfaces favor
new bone formation around implant [39].

Although the results of numerous studies show a positive osseoinductive influence induced by
modification of implant surfaces with biphosphonate molecules, there is a lack of data crucial for
fundamental understanding of the coating formation. Hence, the density functional theory (DFT
calculations) corroborated by experimental findings of X-ray photoelectron spectroscopy (XPS) and
contact angle (CA) measurement was applied to predict the mechanism of alendronate coating formation
on the titanium-based dental implant. Since bioactive coatings, besides good osseoinductivity, have
to possess certain characteristics necessary for their long-term life in the human body, anti-corrosion
protection of the alendronate-modified implant during exposure to the artificial saliva was studied by
electrochemical impedance spectroscopy (EIS).
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2. Materials and Methods

2.1. Materials, Chemicals, and Solutions

The dental implant (Ankylos® C/X A11; length: 11 mm, diameter: 3.5 mm, Dentsply Friadent®

GmbH, Mannheim, Germany), made of titanium grade 2 [40], was used as a substrate, shown in
Figure 1a. The implant chemical composition can be found in Table 1, and its morphology, investigated
by a field emission scanning electron microscopy, is visible in Figure 1a. The observed microstructure
is a result of grit-blasting and high-temperature etching, and it is known as Friadent® plus surface
according to the producer’s data [40]. Before surface modification and each measurement, no treatments
other than degreasing (see Section 2.2) were used to prepare the implant surface.
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Figure 1. (a) The morphology of the Ankylos® implant surface recorded at 500× magnification.
The inset: the photography of the used dental implant C/X A11; (b) the structure of the sodium
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Table 1. Chemical composition (wt %) of titanium c.p. grade 2 [41].

Element N C O Fe H Ti Other

wt % 0.03 0.10 0.25 0.30 0.0155 Balance 0.4

The aqueous solution of sodium alendronate trihydrate (Merck Sharp & Dohme, Kenilworth,
NJ, USA, Figure 1b), prepared with Milli-Q® water (Millipore, Merck, Darmstadt, Germany) in a
concentration of 10 mmol dm−3, served as a solution for modification.

2.2. Alendronate Coating Formation on the Implant Surface

The surface of as-received implant was degreased with acetone (p.a., Gram-Mol, Zagreb, Croatia)
and absolute ethanol (p.a., Gram-Mol, Zagreb, Croatia), and rinsed with Milli-Q® water. The implant
thus prepared was then immersed in a 10 mmol dm−3 alendronate solution (pH = 4) at 22 ± 2 ◦C
for 24 h. After time elapsed, the modified implant was thermally treated at 70 ◦C for 5 h to enhance
coating’s adhesion to the implant surface. This thermal step converts an adsorbed intermediate by an
acid-base condensation reaction to chemically bonded coating to the implant surface [42–44]. Milli-Q®

water and absolute ethanol were used to rinse the modified sample, which was then dried in a stream
of nitrogen (99.999%, Messer, Bad Soden, Germany).

2.3. Characterization of Implant Samples

The morphology was investigated by a field emission scanning electron microscope (JSM-7000F,
Jeol Ltd., Tokyo, Japan) at 10 kV.

The wetting properties were examined by an OCA 20 contact angle system (Dataphysics
Instruments GmbH, Filderstadt, Germany) at 22 ± 2 ◦C. Values are the average of three measurements
of 1 µL Milli-Q® water drop taken after a 10 s-stabilization period.

The SPECS instrument, equipped with the Phoibos MCD 100 electron analyzer and the
monochromatized X-ray source of the energy of 1486.74 eV (Al Kα line), was used for X-ray photoelectron
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spectroscopy measurements. The photoemission spectra around Ti 2p, O 1s, and C 1s core-levels were
recorded with the pass energy of 10 eV, while the 20 eV pass energy was used for the measurements
around N 1s and P 2p core-levels. Measurements were carried out at 10−7 Pa. Experimental curves were
deconvoluted using the mixed Gaussian–Lorentzian functions with Shirley background subtraction
using Unifit software (ver. 2017) [45]. The calibration of binding energy (BE) scale was done against
the BE of C 1s peak, placed at 285.0 eV.

The method of electrochemical impedance spectroscopy (EIS) was applied to investigate the
implant stability during exposure to a Fusayama artificial saliva solution (0.4 g dm−3 NaCl, 0.4 g dm−3

KCl, 0.6 g dm−3 CaCl2·2H2O, 0.58 g dm−3 Na2HPO4·2H2O, and 1 g dm−3 urea; pH 6.8 [46]) at the open
circuit potential (EOCP). The implant sample served as a working electrode (an area of 0.98 cm2), an
Ag|AgCl, 3.0 mol dm−3 KCl (E = 0.210 V vs. standard hydrogen electrode (SHE)) as a reference, and
a platinum plate as a counter electrode. Measurements were performed between 104 and 10−3 Hz
with ±5 mV ac voltage amplitude after different stabilization period. Instrumental system consisted of
Solartron 1287 potentiostat/galvanostat and Solartron FRA 1260 (Solartron Analytical, Farnborough,
UK) controlled by ZPlot® software ver. 3.5e (Scribner Associates, Southern Pines, NC, USA). ZView®

software ver. 3.5e (Scribner Associates, Southern Pines, NC, USA), based on complex non-linear least
squares (CNLS) fit analysis [47], was utilized to model experimental data with χ2 values less than
5 × 10−3.

2.4. Computational Study

Density functional theory (DFT) quantum chemical calculations have been conducted using the
Gaussian 09 program (revision D.01) [48]. The Truhlar’s M06 functional [49–51], the Pople’s 6-31+G(d,p)
double-ξ basis set for H, C, O, N, P atoms, and the LANL2DZ basis set for the titanium (Ti) atoms [52]
were utilized. The geometries were fully optimized using the 6-31+G(d,p) + LANL2DZ basis set. The
vibrational frequency analysis at the same level of theory under the harmonic oscillator approximation
to be true minima on the potential energy surface has been used to verify all calculated structures.
To evaluate the water solvent effect, an implicit solvatation model based on density (SMD) has been
employed [53]. The topological analysis of the charge density distibution was performed by the
Bader’s quantum theory of atoms in molecules [54] by using AIMALL software (version 17.01.25) [55].
The (TiO2)10 nanocluster was used as a model for all possible molecular implant surface/alendronate
interaction predictions [56,57]. Detail description of the modeling, as well as results (Tables S1–S4),
are given in Supplementary Materials.

3. Results and Discussion

3.1. The Wetting Properties of Implant Samples

Changing of wetting properties due to the implant surface modification can confirm the successful
coating formation. Besides, understanding the implant’s wetting properties is useful for predicting
initial interactions between implant-bone and implant-surrounding medium that are crucial for the
long-term stability of implant materials in the human body.

A water drop wetted unmodified and alendronate-modified implant surface completely different
as can be seen from Figure 2. The contact angle value, θ measured on the unmodified implant
surface (θ = 87.5 ± 2.28◦) is twice higher than that measured on the alendronate-modified surface
(θ = 41.9 ± 2.0◦). Results for this commercially available titanium dental implant [58], as well as
alendronate-modified titanium surfaces [30,32], are in agreement with literature data.

The obtained contact angle values point to important conclusions: (i) the alendronate coating
was successfully prepared on the implant surface and (ii), due to the functionalization by alendronate
molecules, nearly hydrophobic nature of the unmodified implant surface was changed to hydrophilic
one, i.e., the modified implant surface reflects an enhanced wettability.
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Figure 2. The water drops and contact angle values on (a) the as-received implant surface and (b) the
alendronate-modified implant surface.

It is well-known that terminal functional groups at the outer interface (coating/water drop)
determine surface polarity and wettability. The alendronate coating significantly changed the contact
angle value of the implant, indicating a presence of a well-ordered coating in which hydrophilic
functional groups, –NH2 and/or –PO3H, and/or –OH (originating from alendronate molecules, Figure 1b)
affect wetting properties of the modified implant. A correlation with XPS and DFT results (see
Sections 3.2 and 3.3) will give a detailed insight into the mechanism of alendronate molecule bonding
to the implant surface and contribute to the understanding of wetting properties.

It should be emphasized, for implant practical use, that, according to numerous in vivo and in vitro
studies, a hydrophilic nature is one of desirable implant surface characteristics, which directly affects
biological responses, such as protein adhesion, hard and soft tissue cell interactions, biofilm (bacterial)
formation, as well as adhesion and differentiation of osteoblasts, and bone-building cells [31,35,59].
According to published data of in vitro studies, surfaces with water contact angle between 0◦ and 62◦

positively affect adhesion and differentiation of osteoblasts [35,60]. Therefore, hydrophilic coatings,
such as alendronate coating, could directly influence on osteoblasts adhesion and consequently
accelerate osseointegration process of dental implant. Future experiments that would determine a
direct correlation between hydrophilicity with biological outcomes of alendronate-functionalized
implants are challenging.

3.2. The Chemical Characterization of Implant Samples

The information about chemical states and atomic bonding in the as-received implant and the
implant modified with the alendronate coating was took out from chemical shifts in XPS measurements
around core-levels of specific elements. The photoemission spectrum around Ti 2p core-level measured
on the as-received implant (Figure 3a) shows a typical structure characteristic for TiO2 [61,62]. It
consists of a spin-orbit doublet with the separation of 5.8 eV between the Ti 2p3/2 and Ti 2p1/2 peaks
and the energy position of Ti 2p3/2 line at the BE of 458.5 eV. Therefore, the implant covered with the
TiO2 layer represented a starting surface for functionalization with alendronate molecules.

After modification with the alendronate coating, the Ti 2p spectrum (Figure 3b) does not reveal
any changes, confirming good chemical stability of the TiO2 layer. Detection of Ti signals from the
underlying implant indicates that the alendronate coating is very thin and it is in agreement with
DFT results (Figure S1, Supplementary Material). The XPS spectra around N 1s, C 1s, P 2p, and, O 1s
core-levels, measured on the alendronate-modified implant demonstrate the successful bonding of
alendronate molecules to the implant surface. First of all, the best fit of the photoemission around
C 1s levels, shown in Figure 3c, requires five fitting components, related to the characteristic bonds
in the alendronate molecule, namely the aliphatic C–C, C–N, and P–C–O bonds at BEs of 285.0 eV,
286.0 eV, and 286.8 eV, respectively [63,64]. Additional C=O and O–C=O bonds can be assigned to
surface contaminations. On the other hand, a strong signal from phosphorus was detected in the XPS
measurements, as shown in Figure 3d, for the P 2p emission. The spectrum was fitted with a spin-orbit
doublet, where the P 2p3/2 peak is centered at the BE of 133.2 eV, while the separation of the P 2p1/2

component is shifted by only 0.9 eV. Results are consistent with already published data [33,35,63].
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XPS data are useful for understanding the binding mechanism of the alendronate molecule onto
the implant substrate. As can be seen from Figure 3e, the deconvolution of N 1s photoemission
curve shows two distinct components at the BEs of 400.0 eV (with the relative atomic concentration
fraction of 58%) and 398.5 eV (42%), respectively, which can be assigned to free C–NH2 bonds from
the alendronate molecule and N atoms bonded to the implant (Ti–N bond), respectively [33]. On the
other hand, the best fitting of the O 1s spectrum (Figure 3f) requires four components at BEs of 531.1
eV, 532.4 eV, 533.7 eV, and 535.3 eV. The peak at 531.1 eV (relative concentration fraction of 23%) is
attributed to the formation of P–O–Ti bonds, and the peaks at 532.4 eV (21%) and 533.7 eV (45%) to the
presence of P=O and H–O–C/H–O–P bonds, respectively [33,64–66]. In addition, a small contribution,
observed at the BE of 535.3 eV, is most likely related to adsorbed water molecules [67].

The above photoemission results (Figure 3) confirm that the alendronate coating can be successfully
obtained from aqueous solutions on dental implants by a simple method, such as self-assembly. Besides,
the oxide, TiO2 layer is needed on the titanium-based implant for a successful chemical bonding of
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alendronate molecules through two possible bonding mechanisms, via the phosphonate (–PO3H) and
amine (–NH2) functional group.

It is known that phosphonic acids, as well as bisphosphonates, can be bonded to the substrate in
mono-/bi-/tridentate mode of bonding [31,35,43,68]. In the case of the sample studied in the present
work, it is difficult to predict the phosphonate binding mode, since P–O and C–O binding energies are
approximately the same (Figure 3f) [66], and sample contamination was also detected in C 1s and O 1s
spectra (C=O, O–C=O in Figure 3c; H2O in Figure 3f). The correlation of XPS results with DFT findings
(Section 3.3) will help to clarify possible binding modes of the phosphonate group of the alendronate
molecule to the implant surface.

The presence of free –COH, –NH2, and –PO3H groups (Figure 3c,e,f) in the alendronate coating
explains hydrophilicity of the alendronate-modified implant surface detected by contact angle
measurements (Section 3.1). Namely, these free functional groups are positioned in the coating
upper part (coating/water interface) and, therefore, can be sensed by the water drops.

3.3. The Mechanism of the Alendronate Coating’s Formation on the Implant Surface

The proposed mechanism of alendronate coating’s formation on the implant surface is based on
findings of experimental and theoretical studies. The coating formation mechanism was investigated
by theoretical simulations of implant surface/alendronate interactions employing quantum chemical
calculations at the DFT. DFT results were correlated with experimental XPS findings. As confirmed
by XPS (Section 3.2), the TiO2 layer is present on the implant surface; therefore, a suitable model, the
(TiO2)10–alendronate, was chosen for theoretical hypothetical simulations of all possible molecular
implant surface/alendronate interactions. For computational efficiency, the small (TiO2)10 nanocluster
served for cluster modeling, used by Qu and Kroes [57].

The correlation of the result of calculated Gibbs free energies and energies for all
(TiO2)10–alendronate binding interactions (as theoretical simulations of implant surface/alendronate
interactions) with results of surface-analytical methods (above discussed XPS and contact angle
results) leads to the conclusions regarding probable molecular implant surface/alendronate interactions.
Calculated Gibbs free energies of (TiO2)10–alendronate interactions revealed the spontaneous formation
of the alendronate coating (∆G*INT < 0), indicating two possible ways of alendronate molecules bonding
to the implant surface, via amine (–NH2) and/or phosphonate (–PO3H) group. All possible binding
sites on (TiO2)10 clusters were calculated by DFT and are shown in Table S2.

The DFT calculations showed that the alendronate simultaneously participates in interactions
through both phosphonate (Ti–O) and amine (Ti–N) groups in the most stable structure of
(TiO2)10–alendronate (Figure 4a). As a consequence of (TiO2)10–alendronate interactions, a free
electron pair on the nitrogen atom from an amine group was involved in the formation of a new
coordinate bond with titanium (Ti–N; dTi–N = 2.287 Å, ETi–N = −16.66 kcal mol−1) being accompanied
by two weaker C–H···O hydrogen bonds (EO···H ranges from −2.56 to −4.36 kcal mol−1, dO–H ranges
from 2.219 to 2.496 Å; see Figure 4a). The critical point of the Ti–N bond was characterized by
∇

2ρ(rc) > 0 and H(rc) < 0; therefore, the Ti–N bond is attributed to an intermediate type of interaction.
However, additional stabilization of the most stable (TiO2)10–alendronate structure was accomplished
simultaneously through the phosphonate group of the alendronate. Herein, a free electron pair on the
oxygen atom from the phosphonate group of alendronate was involved in strong bonding with titanium
(dTi–O = 2.020 Å, ETi–O =−32.24 kcal mol−1), being accompanied by O–H···O hydrogen bond between the
hydrogen atom from the hydroxyl group of same phosphonate branch and the oxygen atom in (TiO2)10

cluster (dO···H = 1.761 Å, EO···H = −8.80 kcal mol−1 see Figure 4a). The Ti–O bond is characterized as
an ionic type of interaction according to ∇2ρ(rc) > 0 and H(rc) > 0. When two strong (Ti–N and Ti–O)
bonds, one stronger hydrogen O–H···O and two weaker C–H···O hydrogen, were formed, the free
energy of (TiO2)10–alendronate interactions was released (∆G*INT = −13.64 kcal mol−1). Due to the
high affinity of alendronate towards (TiO2)10 surface based on its simultaneous participation in bond
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formation via both branches, phosphonate and amine, a high coverage level is achieved, and high free
energy is released.

Materials 2020, 13, x FOR PEER REVIEW 8 of 16 

 

alendronate towards (TiO2)10 surface based on its simultaneous participation in bond formation via 
both branches, phosphonate and amine, a high coverage level is achieved, and high free energy is 
released. 

Besides the most stable (TiO2)10–alendronate structure (Figure 4a), the theoretical study was 
extended to another stable (TiO2)10–alendronate structure (Figure 4b), energetically closely 
competitive exhibiting ΔG*INT = −10.16 kcal mol−1, in detail, being for 3.48 kcal mol−1 less stable than 
the most stable structure. The observed DFT results clearly indicate a different motif and possible 
ways of alendronate molecules bonding to the implant surface compared to the most stable structure. 
Herein, in a different manner, the binding was accomplished solely through the phosphonate group, 
which involves coordinate Ti–O bonding (dTi–O = 1.974 Å, ETi–O = 37.45 kcal mol−1 and two hydrogen 
bonds (O–H∙∙∙O). Since ∇2ρ(rc) > 0 and H(rc) > 0, the Ti-O bond represents an ionic type of interaction. 
As shown in Figure 4b, one O–H∙∙∙O hydrogen bond was accomplished between the hydrogen atom 
from the hydroxyl group of same phosphonate group and the oxygen atom in the (TiO2)10 cluster 
(dO∙∙∙H = 1.598 Å, EO∙∙∙H = −13.99 kcal mol−1), another between the hydrogen atom from the hydroxyl 
group of the C–O–H branch and the oxygen atom in the (TiO2)10 cluster (dO∙∙∙H = 1.813 Å, EO∙∙∙H = −7.93 
kcal mol−1; see Figure 4b). It is important to emphasize the presence of a free NH2 group in the 
alendronate molecule, oriented in the upper part of the (TiO2)10–alendronate structure, as can be seen 
in the motif in Figure 4b. When one strong Ti–O and two hydrogen (O–H∙∙∙O) bonds were formed, 
the free energy of (TiO2)10–alendronate interactions was released (ΔG*INT = −10.16 kcal mol−1). 

 
Figure 4. (a) The most stable structure and (b) less stable structure of the (TiO2)10–alendronate, 
predicted by density functional theory (DFT), with calculated bond distances in Å and bond energies 
in kcal mol−1. 

Most likely, both of the above-discussed thermodynamically most stable (TiO2)10–alendronate 
structures would become energetically competitive, providing pronounced dynamics of self-
assembling coating process. Spontaneous formation of both above-mentioned most stable (TiO2)10–
alendronate structures plays an important role in fully clarifying the coating’s formation mechanism. 
It was established that the binding is more exergonic in case of direct interaction of alendronate with 
implant surface via two strong bonds, Ti–N and Ti–O, through simultaneous participation common 
to both phosphonate and amine branches (Figure 4a), in comparison to the binding accomplished 

Figure 4. (a) The most stable structure and (b) less stable structure of the (TiO2)10–alendronate,
predicted by density functional theory (DFT), with calculated bond distances in Å and bond energies in
kcal mol−1.

Besides the most stable (TiO2)10–alendronate structure (Figure 4a), the theoretical study was
extended to another stable (TiO2)10–alendronate structure (Figure 4b), energetically closely competitive
exhibiting ∆G*INT = −10.16 kcal mol−1, in detail, being for 3.48 kcal mol−1 less stable than the most
stable structure. The observed DFT results clearly indicate a different motif and possible ways of
alendronate molecules bonding to the implant surface compared to the most stable structure. Herein,
in a different manner, the binding was accomplished solely through the phosphonate group, which
involves coordinate Ti–O bonding (dTi–O = 1.974 Å, ETi–O = 37.45 kcal mol−1 and two hydrogen bonds
(O–H···O). Since ∇2ρ(rc) > 0 and H(rc) > 0, the Ti-O bond represents an ionic type of interaction. As
shown in Figure 4b, one O–H···O hydrogen bond was accomplished between the hydrogen atom from
the hydroxyl group of same phosphonate group and the oxygen atom in the (TiO2)10 cluster (dO···H =

1.598 Å, EO···H = −13.99 kcal mol−1), another between the hydrogen atom from the hydroxyl group of
the C–O–H branch and the oxygen atom in the (TiO2)10 cluster (dO···H = 1.813 Å, EO···H = −7.93 kcal
mol−1; see Figure 4b). It is important to emphasize the presence of a free NH2 group in the alendronate
molecule, oriented in the upper part of the (TiO2)10–alendronate structure, as can be seen in the motif
in Figure 4b. When one strong Ti–O and two hydrogen (O–H···O) bonds were formed, the free energy
of (TiO2)10–alendronate interactions was released (∆G*INT = −10.16 kcal mol−1).

Most likely, both of the above-discussed thermodynamically most stable (TiO2)10–alendronate
structures would become energetically competitive, providing pronounced dynamics of self-assembling
coating process. Spontaneous formation of both above-mentioned most stable (TiO2)10–alendronate
structures plays an important role in fully clarifying the coating’s formation mechanism. It was
established that the binding is more exergonic in case of direct interaction of alendronate with implant
surface via two strong bonds, Ti–N and Ti–O, through simultaneous participation common to both



Materials 2020, 13, 3220 9 of 16

phosphonate and amine branches (Figure 4a), in comparison to the binding accomplished solely
through the phosphonate group via the Ti–O bond (Figure 4b). Considering the DFT results, one
might conclude that the alendronate coating’s formation process occurs mainly through the most stable
(TiO2)10–alendronate structure (Figure 4a), where alendronate simultaneously participates via both
bonding groups, phosphonate (Ti–O) and amine (Ti–N), rather than solely through phosphonate group
(Figure 4b).

However, it was not possible to clearly establish the mechanism of the alendronate coating’s
formation on the implant surface solely from the DFT results. A reliable experimental confirmation
was needed. Therefore, DFT results were correlated with experimental results of wetting properties
and XPS measurements, and these findings enabled to suggest general conclusions regarding the
alendronate coating formation mechanism on the oxide-covered (TiO2) implant surface.

Wetting properties changed upon the alendronate functionalization from closely hydrophobic
(as-received implant, θ = 87.5± 2.2◦) to hydrophilic (alendronate-modified surface, θ = 41.9± 2.0◦). The
presence of the TiO2 layer on the as-received implant, confirmed by XPS, reflects a hydrophobic character
of the investigated surface. On the other hand, a hydrophilic nature of the alendronate-modified
surface can be explained by DFT and XPS findings. Namely, two above-discussed thermodynamically
stable (TiO2)10–alendronate structures (Figure 4a,b) are, according to DFT calculations, energetically
competitive and most probably both occur simultaneously during the formation process. This
conclusion, verified by the XPS (Section 3.2), which detected Ti–N and Ti–O linkages but also free
–NH2 and –COH groups, is in agreement with both investigated (TiO2)10–alendronate structures
(Figure 4a,b). In the case of alendronate bonding via the phosphonate group, DFT results indicate most
probably a bidentate-bonding mode (1 coordinate bond + 1 hydrogen bond). Free hydroxyl and amine
groups, as well as the second, unbounded –PO3H group of the alendronate molecule, are oriented in
the coating’s upper part, and they are responsible for the hydrophilic character observed by contact
angle measurements.

To sum up, results of all techniques used in the present study confirm formation of the alendronate
coating on the oxide-covered implant surface via both phosphonate (–PO3H) and amine (–NH2)
functional groups. It is important to emphasize that the resulting hydrophilic character of the dental
implant surface is essential from the osseointegration point of view, and it could be obtained by
self-assembly of bioactive molecules, like alendronate.

3.4. The Electrochemical Chracterization of Implant Samples

The electrochemical stability of the alendronate-modified implant after 1 h- and 7 days-exposure
to an artificial saliva solution was investigated in vitro by an electrochemical impedance spectroscopy
technique. Results, in the form of Bode plots, are displayed in Figure 5. In the case of the as-received
implant after a 1-h immersion period, the dependence phase angle against log f in the middle frequency
range is quite wide (Figure 5a) due to the TiO2 presence on the implant surface as was confirmed by
XPS (Figure 3a). At the same time, the dependence log |Z| against log f achieves a high value close to
107 Ω cm2 and points to a protective/barrier role of the TiO2 layer in the corrosion protection of the
as-received implant in an aggressive saliva solution.

The formation of the alendronate coating on the implant/TiO2 interface influenced the structure
of the electrified implant/TiO2/electrolyte interface (Figure 5a). This is especially visible in the
dependence phase angle against log f that is wider in the middle-frequency range compared
to the corresponding response of the as-received implant. The structural-sensitive phase angle
reflected coating’s microstructural transformations (implant/TiO2/alendronate) after modification of
the implant/TiO2 surface.
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Although the TiO2 layer offered a good anti-corrosion protection to the implant (107 Ω cm2;
Figure 5a), |Z| values at low frequencies, obtained after 7 days-immersion period, decreased more than
one order of magnitude compared to the response recorded after a 1-h immersion period, indicating
the deterioration of anti-corrosion protection. On the other hand, from Figure 5b, a positive impact
of the alendronate coating on implant protective properties is clearly visible. The coating presence
on the implant surface extended anti-corrosion protection up to 7 days; the phase angle versus log f
dependence is wider and |Z| values are higher in comparison to |Z| values of the as-received implant
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(Figure 5b). This behavior is very important for the successful long-life applications of dental implants
in aggressive environment, like the human body.

The quantification of the anti-corrosion protection was performed by modeling of EIS data
(Figure 5) using the electrical equivalent circuit (EEC) presented as Rs(C1(R1(CPE2R2))); see the inset in
Figure 5a. In the case of the as-received implant/artificial saliva interface, the chosen model represents
the oxide film of the bi-layered structure formed on the titanium [69,70]. Rs is the electrolyte resistance
and (R1C1) time constant, in the high/middle-frequency region, is associated with the outer part of the
oxide layer with R1 as the resistance and C1 representing the capacitance of the oxide outer part. The
second time constant, (R2CPE2), in the low-frequency region, is correlated to the inner part of the oxide
layer with CPE2 as the capacitance and R2 as the resistance of the inner part of the oxide.

In the case of the alendronate-modified implant, the high/middle-frequency time constant (R1C1)
represents surface coating’s (alendronate over TiO2 layer) resistance and capacitance, respectively,
while the low-frequency time constant (R2CPE2) is connected with resistance and capacitance of
coating’s structural defects [71]. Calculated values can be found in Table 2.

Table 2. Impedance parameters calculated from EIS data (Figure 5) for the as-received implant (Implant)
and the alendronate-modified implant (Implant/AL).

Rs/
Ω cm2

C1/
µF cm−2

R1/
Ω cm2

Q2·106/
Ω−1 cm−2 sn1 n2

C2/
µF cm−2

R2/
MΩ cm2

Exposure time of 1 h
Implant 111 3.02 760 5.16 0.850 1.38 9.90

Implant/AL 109 2.00 307 9.21 0.820 2.03 39.0

Exposure time of 7 days
Implant 123 2.71 307 9.21 0.810 1.88 0.44

Implant/AL 109 1.98 302 7.23 0.795 1.15 5.88

Microscopic inhomogeneities of investigated interfaces [72,73] were the reason for using the
constant phase element (CPE) instead of a capacitor. The impedance of the constant phase element is
defined as ZCPE = [Q(jω)n]−1, whereω is the angular frequency, and Q is the frequency-independent
constant. If the CPE exponent n has a value, n = 1, the CPE can be replaced by a pure capacitor, C. [72].
The Brug’s Equation (1) [73] was used to calculate capacitance values, C, which are also presented in
Table 2.

C = Q1/n [Rs
−1 + R−1](n−1)/n (1)

As can be seen from resistance values in Table 2, the oxide inner part (implant/oxide interface) is
responsible for good barrier properties (R2 is high compared to R1) of the as-received implant during 1
h-immersion in the artificial saliva (Figure 5a). Due to the imperfect structure of the outer oxide part
by longer immersion in the saliva up to 7 days, water/ions attack deeper in the oxide structure was
enabled and, consequently, resistance values decreased. The polarization resistance, Rp [74], which is
the sum of both R1 and R2 values, defines overall corrosion protection of the TiO2 layer provided to
the underlying titanium.

As mentioned before, the coating (alendronate + TiO2) presence improves anti-corrosion protection
of the investigated implant, confirmed also by results in Table 2. Alendronate molecules obviously
filled in oxide surface imperfections, and overall corrosion resistivity was increased. Since the time
constant in the low-frequency range (R2CPE2), representing microstructural defects, appeared during
the formation process, their influence was, according to high resistance R2 value, almost negligible
after a short immersion period of the modified implant in the saliva solution. However, the effect of
microstructural defects on coating’s overall resistivity is clearly visible in the decreased R2 value after a
prolonged immersion period of 7 days. The explanation of such behavior lies in surface hydrophilicity
of the alendronate coating determined by contact angle measurements (Section 3.1). Terminal groups
at the outer alendronate coating interface (coating/artificial saliva), free –NH2, –COH, and –PO3H
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groups, determined by DFT and XPS (Figures 3 and 4), affected wettability of the modified surface and
were responsible for hydrophilic character. Hydrophilic surfaces interact easily with water molecules
and other ions, especially Cl− ions in artificial saliva solution through dipole-dipole and ion-dipole
interactions [44]. Structural rearrangement occurs, and the alendronate coating structure transforms
into structures that favor ions/water penetration into the coating. The result of this rearrangement is an
increase of defect density and size, while water/ions become trapped into the coating’s structure, as
reflected in a decreased coating’s resistivity.

Although the as-received titanium implant shows good anti-corrosion properties, functionalization
by alendronate molecules provides an additional barrier during its exposure to the artificial saliva
solution. The alendronate coating is stable on the implant surface during the 7 days-immersion period
due to the coordinate Ti–O and Ti–N bonding (XPS and DFT results) being additionally stabilized by
the formation of the hydrogen bonds (DFT results). Beside good anti-corrosion protection, alendronate
molecules, due to their known positive influence on the bone system, make the implant surface
potentially more bioactive for a faster osseointegration process. The assumption is that the alendronate
coating will attract bone-building cells, osteoblasts to the implant surface, and thus accelerates the
osseointegration process that will be tested in the continuation of investigations.

4. Conclusions

Correlation of results of all techniques used in this study, both theoretical and experimental,
provides strong indication of the preparation of stable and chemically bonded alendronate coating on
the titanium dental implant by a simple immersion procedure.

Chemical characterization of the coating was obtained from XPS measurements. The coated
implant surface is covered with an inner TiO2 layer and an outer alendronate layer. Alendronate
molecules are bonded to the TiO2-covered implant surface via amine (–NH2) and phosphonate (–PO3H)
functional group. Simultaneously, a significant part of (–NH2), as well as (–COH), groups of alendronate
molecules remains free and determines surface properties of the modified implant.

Free –COH, –NH2, as well as unbounded –PO3H, groups of the alendronate molecule are presented
at the alendronate coating/water drop interface and responsible for a hydrophilic character of the
modified implant surface (θ = 41.9 ± 2.0◦).

XPS and wettability results correlate well with the results of DFT calculations. According to the
DFT findings, formation of the alendronate coating occurs most probably through two energetically
competitive structures, one in which the alendronate molecule is bound to the implant surface via amine
(–NH2) and phosphonate (–PO3H) groups (∆G*INT = −13.64 kcal mol−1) and the other in which the
alendronate molecule is bound solely via phosphonate (–PO3H) group (∆G*INT = −10.16 kcal mol−1).

Both structures include the additional formation of hydrogen bonds, and this kind of bonding
provides very good coating stability during 7-days exposure of the modified implant to the artificial
saliva solution (overall resistivity, R ≈ 5.9 MΩ cm2).

From a practical point of view, a low-cost and simple procedure can be used for producing a
stable, corrosion-resistant, and, at the same time, potentially bioactive coating, which could prolong a
life cycle of titanium dental implants in the body.

Due to well-known bioactivity of the alendronate as a drug for bone diseases, there is a need for
evaluation of its bioactivity as a surface coating. Therefore, a part of future work will be focused on
in vitro investigations of osteoconductivity and bioactivity of the alendronate-modified dental implants.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/13/14/3220/s1,
Figure S1: The thickness of the most stable (TiO2)10–alendronate(1) and (TiO2)10–alendronate(2) species, Table S1:
Formation of the most stable (TiO2)10−alendronate(1) and (TiO2)10−alendronate(2) species(a). Standard state (1M)
free energies of interaction ∆rG*INT computed by using the SMD solvation model at the M06/6-311++G(2df,2pd) +
LANL2DZ// M06/6-31+G(d,p) + LANL2DZ level of theory, Table S2: Bond lengths (d), energies I and QTAIM
properties of the selected bonds in the most stable (TiO2)10–alendronate(1) and (TiO2)10–alendronate(2), Table S3:
Total electronic energy, ETot

soln, obtained at the SMD/M06/6-311++G(2df,2pd)+ LANL2DZ//SMD/M06/6-31+G(d,p)
+ LANL2DZ level of theory, thermal correction to the Gibbs free energy, ∆G*VRT,soln, obtained at the
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SMD/M06/6-31+G(d,p) + LANL2DZ level of theory, and total free energy, G*X, (G*X = ETotsoln + ∆G*VRT,soln) in
water media of the investigated species (all energies in hartree), Table S4: Cartesian coordinates of the calculated
syste–s-alendronate on the surface of (TiO2)10 cluster in water media.
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R.P.; formal analysis, I.D., R.P., and M.P. (Mladen Petravić); investigation, Ž.P., J.K., and R.P.; resources, J.K., I.D.,
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Houska, M.; Rypáček, F. Self-assembled anchor layers/polysaccharide coatings on titanium surfaces: A study
of functionalization and stability. Beilstein J. Nanotechnol. 2015, 6, 617–631. [CrossRef] [PubMed]
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