

Supporting information

Reversible Aggregation of Molecular-Like Fluorophores Driven by Extreme PH in Carbon Dots

Stefania Mura, Luigi Stagi, Robert Ludmerczki, Luca Malfatti and Plinio Innocenzi *

Laboratorio di Scienza dei Materiali e Nanotecnologie, CR-INSTM, Dipartimento di Chimica e Farmacia, Università di Sassari, Via Vienna 2, 07100 Sassari, Italy; stmura@uniss.it (S.M.); lstagi@uniss.it (L.S.); ludmerczki@gmail.com (R.L.); luca.malfatti@uniss.it (L.M.)

* Correspondence: plinio@uniss.it

Received: 1 July 2020; Accepted: 13 August 2020; Published: date

Figure S1. Representative TEM images of (a) CU2 and (b) CU25.

Figure S2. 3D photoluminescence spectra (excitation (y-axis), emission (x-axis), intensity (false colors scale)) of citrazinic acid (**a**) in water and (**b**) in H₂SO₄ 10% at concentration of 10 mg L^{-1} .

Figure S3. PL emissions of CU2 C-dots in sulfuric acid (10%) with excitation at 350 nm (black) and 420 nm (red) at the C-dots concentrations of (**a**) 1 mg L⁻¹ and (**c**) 0.1 mg L⁻¹ and after neutralization with NaOH pellets with excitation at 350 nm (black) and 420 nm (red) at the C-dots concentrations of (**b**) 1 mg L⁻¹ and (**d**) 0.1 mg L⁻¹.The asterisks indicate Raman vibrational modes of water; Figure S4: Light scattering analysis of CU2 and CU25 C-dots in the aqueous solutions (10 mg L⁻¹) at different pH values (water = 7, H₂SO₄ = 1, NaOH = 14); * The asterisks indicate Raman vibrational modes of water.

Intensity / %

14 -

12

10

8

6

4

2

0

100

1000

Diameter / nm

(e)

Figure S4. Light scattering analysis of CU2 and CU25 C-dots in the aqueous solutions (10 mg L⁻¹) at different pH values (water = 7, H₂SO₄ = 1, NaOH = 14). CU2 in (**a**) water; (**b**) H₂SO₄ and (**c**) NaOH; CU25 in (**d**) water, (**e**) H₂SO₄ and (**f**) NaOH.

SAMPLE	τ1	τ2
CU2/water (λ_{ex} = 340 nm; λ_{em} = 420 nm)	4.7 ns	10.0 ns
$CU2/H_2SO_4(\lambda_{ex} = 340 \text{ nm}; \lambda_{em} = 420 \text{ nm})$	2.1 ns	7.7 ns
$CU2/H_2SO_4(\lambda_{ex} = 405 \text{ nm}; \lambda_{em} = 510 \text{ nm})$	2.5 ns	6.2 ns
CU2/NaOH (λ_{ex} = 340 nm; λ_{em} = 420 nm)	5.3 ns	9.1 ns
CU25/water (λ_{ex} = 405 nm; λ_{em} = 510 nm)	4.4 ns	9.1 ns
CU25/H ₂ SO ₄ (λ_{ex} = 405 nm; λ_{em} = 510 nm)	3.2 ns	6.9 ns
CU25/NaOH (λ_{ex} = 340 nm; λ_{em} = 420 nm)	2.3 ns	7.8 ns
CU25/NaOH (λ_{ex} = 405 nm; λ_{em} = 510 nm)	2.8 ns	9.1 ns

Table 1. Decay lifetimes under excitations at 340 and 405 nm.