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Abstract: This study aimed to develop series analytical solutions based on the Mindlin plate theory for
the free vibrations of functionally graded material (FGM) rectangular plates. The material properties
of FGM rectangular plates are assumed to vary along their thickness, and the volume fractions of the
plate constituents are defined by a simple power-law function. The series solutions consist of the
Fourier cosine series and auxiliary functions of polynomials. The series solutions were established by
satisfying governing equations and boundary conditions in the expanded space of the Fourier cosine
series. The proposed solutions were validated through comprehensive convergence studies on the
first six vibration frequencies of square plates under four combinations of boundary conditions and
through comparison of the obtained convergent results with those in the literature. The convergence
studies indicated that the solutions obtained for different modes could converge from the upper or
lower bounds to the exact values or in an oscillatory manner. The present solutions were further
employed to determine the first six vibration frequencies of FGM rectangular plates with various
aspect ratios, thickness-to-width ratios, distributions of material properties and combinations of
boundary conditions.

Keywords: analytical solution; Fourier cosine series; vibrations; FGM rectangular plates; Mindlin
plate theory

1. Introduction

Functionally graded materials (FGMs) were first produced in the mid-1980s [1]. An FGM is
composed of varying mixtures of different materials, such as ceramics and metals. The material
properties of FGMs smoothly and continuously vary, in contrast to conventional laminated composite
materials. Consequently, FGMs do not comprise stress singularities formed due to discontinuities in the
material properties. FGMs can be designed to possess the high heat resistance and corrosion resistance
of ceramics as well as the high mechanical strength of metals. Over the previous three decades,
FGMs have been extensively explored in various fields including aerospace, energy, electronics, optics,
biomedicine, and mechanical engineering.

Plates are employed in a wide range of mechanical and structural system components in civil,
mechanical and aeronautical engineering. The behaviors of FGM plates have attracted research
attention. Different reviews [2–6] have provided exhaustive summaries of the studies published on the
free vibrations and buckling of FGM plates according to various plate theories and the three-dimensional
elasticity theory.

Numerous studies have investigated the free vibrations of FGM rectangular plates, and most of
these studies have employed various numerical methods. For example, on the basis of the classical
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plate theory, Abrate [7] and Zhang and Zhou [8] reported that an FGM plate behaves similar to a
homogeneous plate if a suitable reference plane is adopted, while Yang and Shen [9] employed a
one-dimensional differential quadrature approximation and the Galerkin procedure to determine
the frequencies of initially stressed plates. According to the first-order shear deformation plate
theory, Zhao et al. [10] applied the element-free kp-Ritz method to analyze the vibrations of square
and skew plates under different combinations of boundary conditions. Fu et al. [11] employed the
Ritz method with admissible functions consisting of double Fourier cosine and several closed-form
auxiliary functions to study the vibrations of orthotropic FGM plates with general boundary restraints.
Ferreira et al. [12] investigated the vibrations of square plates employing the first-order and third-order
shear deformation plate theories and the collocation method with multiquadric radial basis functions.
Huang et al. [13] adopted the third-order shear deformation plate theory and Ritz method for analyzing
the vibrations of rectangular plates with and without side cracks. Hong [14] investigated the thermal
vibrations of plates via the generalized differential quadrature method and the third-order shear
deformation plate theory. Using the higher-order shear deformation plate theories, Qian et al. [15]
applied the Petrov–Galerkin meshless method and Roque et al. [16] adopted the multiquadric radial
basis function method to find the vibration frequencies of thick plates. Using the Ritz method and
three-dimensional elasticity theory, Uymaz and Aydogdu [17] studied the vibrations of plates with
various combinations of boundary conditions, and Cui et al. [18] performed vibration analysis of
an FGM sandwich rectangular plate resting on an elastic foundation using admissible trigonometric
functions. Huang and his coworkers [19,20] proposed a set of admissible functions, which can
accurately describe the behaviors of a crack, for examining the vibrations of cracked FGM rectangular
plates and also showed the natural frequencies of intact plates. Burlayenko et al. [21] employed the
commercial finite element package ABAQUS to analyze the vibrations of thermally loaded FGM
sandwich plates.

Only a few studies have been devoted to analytical solutions for the free vibrations of FGM
rectangular plates based on various plate theories. The solutions in these studies consider rectangular
plates with two opposite edges or four simply supported edges (faces). Using the first-order shear
deformation plate theory, Hosseini-Hashemi et al. [22,23] introduced new potential and auxiliary
functions to construct exact closed-form solutions for the vibrations of rectangular plates having two
opposite edges simply supported with and without considering the in-plane displacement components,
respectively, while Ghashochi-Bargh and Razavi [24] proposed analytical solutions for the vibrations
of orthotropic FGM rectangular plates without considering the in-plane displacement components.
Hosseini-Hashemi et al. [25] extended their studies by using a third-order shear deformation theory.
Considering simply supported conditions on four edge surfaces, Matsunaga [26] and Sekkal et al. [27]
developed solutions for FGM rectangular plates and sandwich plates, respectively, according to the
higher-order shear deformation plate theories. Based on three-dimensional elasticity theory, Vel and
Batra [28] used the power series method to construct solutions for the vibrations of FGM rectangular
plates, while Reddy and Cheng [29] employed an asymptotic approach along with a transfer matrix.
Huo et al. [30] employed the recursive matrix method to develop the solutions for the vibrations of
FGM sandwich plates.

According to plate theories, there are 21 distinct combinations of boundary conditions (i.e., free,
simply supported and clamped) for rectangular plates. The literature review found that except for the
six cases in which two opposite edges are simply supported, no analytical solution for the vibrations
of FGM rectangular plates with various combinations of boundary conditions exists. The present
study aims to fill a gap in the literature and proposes analytical solutions based on the Mindlin plate
theory for the vibrations of FGM rectangular plates with 21 combinations of boundary conditions.
The proposed solutions are established using the Fourier cosine series with polynomial supplementary
functions, which eliminate the validity requirement for the term-wise differentiation of the Fourier
sine series of a function to accurately represent the differential of the function [31]. The validity of
the present solutions is confirmed through comprehensive convergence studies for plates with four
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combinations of boundary conditions and by comparing the obtained vibration frequencies with those
published in the literature. The material properties along the thickness of an FGM plate are estimated
using the power-law or the Mori–Tanaka scheme. The solutions are further applied to determine
the vibration frequencies of Al/Al2O3 FGM plates with nine combinations of boundary conditions.
The obtained analytical results can serve as a benchmark for the evaluation of other solutions obtained
through various approximate or numerical approaches.

2. Methodology

2.1. Material Models

Depicted in Figure 1 is a rectangular FGM plate with a length of a, width of b and thickness of
h. The material properties of FGM plates are assumed to vary along their thickness (z) according to
the power-law or Mori–Tanaka scheme, which are two popular material models used in the literature.
The FGM plates under consideration are made of aluminum (Al) and ceramic (zirconia (ZrO2) or
alumina (Al2O3)), the material properties of which are given in Table 1.
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Figure 1. Geometry of a functionally graded material (FGM) plate and coordinates: (a) top view,
(b) side view.

Table 1. Material properties of the FGM ingredients.

Material
Properties

E (GPa) Poisson’s Ratio (ν) ρ (kg/m3)

Aluminum (Al) 70.0 0.3 2702
Alumina (Al2O3) 380 0.3 3800
Zirconia (ZrO2) 200 0.3 5700

A power-law distribution of material properties is often assumed for FGMs. The material
properties (i.e., Young’s modulus (E = E(z)), Poisson’s ratio (ν(z)), and mass density (ρ = ρ(z))) along
the thickness of an FGM plate are given as follows:

P(z) = Pb + V(z)(Pt − Pb) = Pb + V(z)∆P (1)

where V(z) = ( z
h + 1

2 )
m

; Pb and Pt denote the material properties at the bottom face (z = −h/2) and
top face (z = h/2), respectively; ∆P is the difference between Pb and Pt, and m is the material property
gradient index that governs the material variation profile in the thickness direction. Equation (1)
indicates that if Pb = Pt or m = 0, P(z) is constant. FGM plates consisting of Al and ZrO2 (or Al2O3)
exhibit a constant Poisson’s ratio because Al and ZrO2 (or Al2O3) have the same Poisson’s ratio.
Figure 2 illustrates the distributions of E(z) and ρ(z) along the thickness of the Al/Al2O3 plates when
m = 0.5, 2, and 5, where Ec and ρc are the Young’s modulus and density of Al2O3, respectively.
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The Mori–Tanaka scheme is also frequently used to describe the material properties of FGMs.
The effective mass density along the thickness of an FGM plate is given by

ρ(z) = ρ1V1(z) + ρ2V2(z) (2)

V1(z) + V2(z) = 1 (3)

V1(z) = Vb
1 + (Vt

1 −Vb
1)(

z
h
+

1
2
)m (4)

where subscripts 1 and 2 indicate materials 1 and 2, respectively, and Vt
1 and Vb

1 are the volume fractions
of material 1 on the top and bottom surfaces of the plate, respectively. The effective local bulk modulus
K and the shear modulus G are given by

K(z) −K1

K2 −K1
=

V2(z)

1 + (K2−K1)V1(z)
K1+(4/3)G1

,
G(z) −G1

G2 −G1
=

V2(z)

1 + (G2−G1)V1(z)
G1+ f1

(5)

where f1 =
G1(9K1+8G1)

6(K1+2G1)
. After the effective moduli K and G are estimated, the effective Young’s

modulus and Poisson’s ratio are obtained using the following equation:

E(z) =
9K(z)G(z)

3K(z) + G(z)
and ν(z) =

3K(z) − 2G(z)
2(3K(z) + G(z))

(6)

In the Mori–Tanaka scheme, the Poisson’s ratio is a function of z even when materials 1 and
2 have the same Poisson’s ratio. Equation (2) can be converted to the form of Equation (1), so the
density distribution based on the Mori–Tanaka scheme is the same as that described by Equation (1).
The distributions of E(z) and ρ(z) along the thickness of Al/Al2O3 plates with m = 0.5, 2, and 5 are
illustrated in Figure 2 and denoted by “M–T”.

2.2. Governing Equations and Boundary Conditions

In the Mindlin plate theory [32], the displacement components of a plate are expressed as follows:

u(x, y, z, t) = u0(x, y, t) + zψx(x, y, t), v(x, y, z, t) = v0(x, y, t) + zψy(x, y, t),
w(x, y, z, t) = w0(x, y, t)

(7)



Materials 2020, 13, 3820 5 of 20

where u, v, and w are the displacement components in the x-, y-, and z-directions, respectively; u0,
v0, and w0 are the displacements on the mid-plane, and ψx and ψy are the rotations of the mid-plane
normal in the x- and y-directions, respectively. The stress resultants are defined as follows:

Qβ =

∫ h/2

−h/2
σβzdz,

{
Nββ

Mββ

}
=

∫ h/2

−h/2
σββ

{
1
z

}
dz,

{
Nxy

Mxy

}
=

∫ h/2

−h/2
σxy

{
1
z

}
dz (8)

where the subscript β represents x or y, and σi j represents the stress components. The equations of
motion are given as follows:

Nxx,x + Nxy,y = I0
..
u0 + I1

..
ψx, Nxy,x + Nyy,y = I0

..
v0 + I1

..
ψy,Qx,x + Qy,y = I0

..
w0,

Mxx,x + Mxy,y −Qx = I1
..
u0 + I2

..
ψx, Mxy,x + Myy,y −Qy = I1

..
v0 + I2

..
ψy

(9)

where Il =
h/2∫
−h/2

ρ(z)zldz (l = 0, 1 and 2). The subscript comma denotes the partial derivative with

respect to the coordinates defined by the variable after the comma.
Substituting linear strain–displacement (Equation (10)) and stress–strain relationships

(Equation (11)) into Equation (8) yields the expressions for stress resultants in terms of displacement
related components (Equation (12)).

εxx =
∂u
∂x

, εyy =
∂v
∂y

, εxy =
1
2
(
∂v
∂x

+
∂u
∂y

), εyz =
1
2
(
∂w
∂y

+
∂v
∂z

), εzx =
1
2
(
∂u
∂z

+
∂w
∂x

) (10)



σxx

σyy

σxy

σyz

σzx


=



E
1−ν2

νE
1−ν2 0 0 0

νE
1−ν2

E
1−ν2 0 0 0

0 0 2G 0 0
0 0 0 2G 0
0 0 0 0 2G





εxx

εyy

εxy

εyz

εzx


(11)

Nxx = E0u0,x + E1ψx,x + D0v0,y + D1ψy,y, Nyy = D0u0,x + D1ψx,x + E0v0,y + E1ψy,y,

Nxy = G0(u0,y + v0,x) + G1(ψx,y +ψy,x), Mxx = E1u0,x + E2ψx,x + D1v0,y + D2ψy,y,

Myy = D1u0,x + D2ψx,x + E1v0,y + E2ψy,y, Mxy = G1(u0,y + v0,x) + G2(ψx,y +ψy,x),

Qx = κG0(w0,x +ψx), Qy = κG0(w0,y +ψy)

(12)

where

Gi =

h/2∫
−h/2

Gzidz, Ei =

h/2∫
−h/2

E
1− ν2 zidz and Di =

h/2∫
−h/2

νE
1− ν2 zidz

The parameter κ is the transverse shear correction coefficient and is taken as 5/6 in the
following analyses.

By substituting Equation (12) into Equation (9), the governing equations are obtained in terms of
the displacement functions as follows:

E0u0,xx + E1ψx,xx + D0v0,xy + D1ψy,xy + G0(u0,yy + v0,xy)+G1(ψx,yy +ψy,xy) = I0
..
u0 + I1

..
ψx (13)

D0u0,xy + D1ψx,xy + E0v0,yy + E1ψy,yy + G0(u0,xy + v0,xx)+G1(ψx,xy +ψy,xx) = I0
..
v0 + I1

..
ψy (14)

κG0
[
(w0,xx +ψx,x) + (w0,yy +ψy,y)

]
= I0

..
w0 (15)
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E1u0,xx + E2ψx,xx + D1v0,xy + D2ψy,xy + G1(u0,yy + v0,xy)

+G2(ψx,yy +ψy,xy) − κG0(w0,x +ψx) = I1
..
u0 + I2

..
ψx

(16)

D1u0,xy + D2ψx,xy + E1v0,yy + E2ψy,yy + G1(u0,xy + v0,xx)

+G2(ψx,xy +ψy,xx) − κG0(w0,y +ψy) = I1
..
v0 + I2

..
ψy

(17)

Each edge of a rectangular plate is simply supported (S), clamped (C) or free (F). For the edge
with y = constant, the S, C and F boundary conditions are defined as follows:

Simply supported: u0 = w0 = ψx = Nyy = Myy = 0;
Clamped: u0 = v0 = w0 = ψx = ψy = 0, and
Free: Nyy = Nxy = Qy = Myy = Mxy = 0.

Similar definitions of boundary conditions are also applicable for the edge with x = constant.

2.3. Series Solutions

To establish the Fourier cosine series solutions for the vibrations of plates, let

u0(x, y, t) = U0(x, y) · eiωt, v0(x, y, t) = V0(x, y) · eiωt, w0(x, y, t) = W0(x, y) · eiωt,
ψx(x, y, t) = Ψx(x, y) · eiωt, ψy(x, y, t) = Ψy(x, y) · eiωt (18)

And

U0(x, y) =
M∑

m=0

N∑
n=0

A(1)
mn cosαmx cosβny +

2∑
l=1

ξl(x)
N∑

n=0

B(1)
ln cos βny+

2∑
l=1

ηl(y)
M∑

m=0

C(1)
lm cosαmx (19)

V0(x, y) =
M∑

m=0

N∑
n=0

A(2)
mn cosαmx cosβny +

2∑
l=1

ξl(x)
N∑

n=0

B(2)
ln cos βny+

2∑
l=1

ηl(y)
M∑

m=0

C(2)
lm cosαmx (20)

W0(x, y) =
M∑

m=0

N∑
n=0

A(3)
mn cosαmx cosβny +

2∑
l=1

ξl(x)
N∑

n=0

B(3)
ln cos βny+

2∑
l=1

ηl(y)
M∑

m=0

C(3)
lm cosαmx (21)

Ψx(x, y) =
M∑

m=0

N∑
n=0

A(4)
mn cosαmx cosβny +

2∑
l=1

ξl(x)
N∑

n=0

B(4)
ln cos βny+

2∑
l=1

ηl(y)
M∑

m=0

C(4)
lm cosαmx (22)

Ψy(x, y) =
M∑

m=0

N∑
n=0

A(5)
mn cosαmx cosβny +

2∑
l=1

ξl(x)
N∑

n=0

B(5)
ln cos βny+

2∑
l=1

ηl(y)
M∑

m=0

C(5)
lm cosαmx (23)

where αm = mπ/a, βn = nπ/b, and ξl(x) and ηl(y) are supplementary functions.
Tolstov [31] showed the following theorem on the differentiation of the Fourier series of a function:

Theorem 1. Let f(x) be a continuous function and have an absolutely integrable derivative on [0, L]. When f(x)
is expanded as

f (x) =
∞∑

n=1

b̃n sinλnx, where λn = nπ/L, (24)

f ′(x) =
f (L) − f (0)

L
+
∞∑

n=1

{
2
L
[(−1)n f (L) − f (0)] + λñbn} cosλnx (25)

When f(x) is expanded as

f (x) = ã0 +
∞∑

n=1

ãn cosλnx, f ′(x) = −
∞∑

n=1

λnãn sinλnx (26)
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The theorem indicates that the Fourier cosine series can be differentiated term-by-term, while
such an operation can be applied to the Fourier sine series only if f (0) = f (L) = 0. To remedy such
shortcoming of the sine series, Li [33] proposed to add some supplementary functions into the cosine
series in Equation (26) and to determine f ′′ (x) and f (iv)(x) via term-by-term differential.

According to Li [33,34], the supplementary functions are typically determined by satisfying the
following conditions:

ξ1,x(0) = 1, ξ1,x(a) = 0, ξ2,x(0) = 0 , ξ2,x(a) = 1 , η1,y(0) = 1, η1,y(b) = 0, η2,y(0) = 0 ,

η2,y(b) = 1,
∫ a

0 ξl(x)dx = 0 and
∫ b

0 ηl(y)dy = 0 (l = 1, 2).
(27)

If polynomial functions are used, Equation (27) leads to

ξ1(x) = −
x2

2a
+ x−

a
3

, ξ2(x) =
x2

2a
−

a
6

, η1(y) = −
y2

2b
+ y−

b
3

, η2(y) =
y2

2b
−

b
6

. (28)

Substituting Equations (18)–(23) and (28) into the boundary conditions yields a set of linear
algebraic equations for the coefficients A(i)

mn, B(i)
ln and C(i)

ln . For instance, when U0(a, y) = 0, which is one
of the fixed boundary conditions at x = a, the following equation is obtained:

N∑
n=0

[
M∑

m=0

A(1)
mn cosαma +

2∑
l=1

ξl(a)B
(1)
ln +

2∑
l=1

cln

M∑
m=0

C(1)
lm cosαma] cosβny = 0 (29)

In establishing Equation (29), ηl(y) is expressed in its Fourier cosine series as follows:

ηl(y) =
N∑

n=0

cln cos βny (30)

where cln =
∫ b

0 ηl(y) cosβnydy/
∫ b

0 (cosβny)2dy. Equation (29) includes N + 1 functions of cos βny, and
each coefficient of cos βny must equal zero in order to satisfy the equation. Consequently, Equation (29)
provides N + 1 linear algebraic equations for the coefficients A(1)

mn, B(1)
ln and C(1)

ln ,

M∑
m=0

A(1)
mn cosαma +

2∑
l=1

ξl(a)B
(1)
ln +

2∑
l=1

cln

M∑
m=0

C(1)
lm cosαma = 0 (n= 0, 1, 2, · · · , N) (31)

Similarly, one can establish 10 (M + N + 2) linear algebraic homogeneous equations for A(i)
mn,

B(i)
ln and C(i)

ln from the boundary conditions along the four edges of a rectangular plate. Such set of
equations can be further expressed in the matrix form as follows:

Bp P = BA A (32)

where P = (B(1)
ln C(1)

lm B(2)
ln C(2)

lm · · ·B
(5)
ln C(5)

lm )
T

and A = (A(1)
mn A(2)

mn · · ·A
(5)
mn)

T
(l = 1, 2; m= 0, 1, · · ·M;

n = 0, 1, · · ·N).
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To satisfy the governing equations, substituting Equations (18)–(23) and (28) into Equations
(13)–(17) also yields a set of linear algebraic equations for the coefficients A(i)

mn, B(i)
ln and C(i)

ln . For
example, Equation (13) yields the following equation:

M∑
m=0

N∑
n=0

{
(−α2

mE0 − β2
nG0)A

(1)
mn +

2∑
l=1

( − β2
nG0C̃lm + E0C̃(2)

lm )B(1)
ln +

2∑
l=1

(−α2
mE0 J̃ln+G0 J̃(2)ln )C(1)

lm +

M∑
i=0

N∑
j=0

αiβ j(D0 + G0)S
(i j)
mn A(2)

i j +
N∑

j=0

2∑
l=1
−β j(D0 + G0)C̃

(1)
lm S̃( j)

yn B(2)
l j +

M∑
i=0

2∑
l=1
−αi(D0 + G0 )̃J(1)ln S̃(i)

xn C(2)
li + (−α2

mE1 − β2
nG1)A

(4)
mn +

2∑
l=1

(E1C̃(2)
lm − β

2
nG1C̃lm)B

(4)
ln +

2∑
l=1

(−α2
mE1 J̃ln + G1 J̃(2)ln )C(4)

lm +
M∑

i=0

N∑
j=0

αiβ j(D1 + G1)S
(i j)
mn A(5)

i j +

N∑
j=0

2∑
l=1
−β j(D1 + G1)C̃

(1)
lm S̃( j)

yn B(5)
l j +

M∑
i=0

2∑
l=1
−αi(D1 + G1 )̃J(1)ln S̃(i)

xn C(5)
li

 cosαmx cosβny =

−ω2
M∑

m=0

N∑
n=0

{
I0A(1)

mn + I1A(4)
mn +

2∑
l=1

C̃lm(I0B(1)
ln + I1B(4)

ln ) +
2∑

l=1
J̃ln(I0C(1)

lm + I1C(4)
lm )

}
cosαmx cosβny.

(33)

In establishing Equation (33), the following functions are expressed in terms of the Fourier cosine
series to factor out cosαmx cosβny:

ξl(x) =
M∑

m=0
C̃lm cosαmx, ξl,x(x) =

M∑
m=0

C̃(1)
lm cosαmx, ξl,xx(x) =

M∑
m=0

C̃(2)
lm cosαmx

ηl(y) =
N∑

n=0
J̃ln cos βny, , ηl,y(y) =

N∑
n=0

J̃(1)ln cos βny, ηl,yy(y) =
N∑

n=0
J̃(2)ln cos βny,

sinαix =
M∑

m=0
S̃(i)

xm cosαmx, sin βiy =
N∑

n=0
S̃(i)

yn cos βny,

sinαix sinβ jy =
M∑

m=0

N∑
n=0

S̃(i j)
mn cosαmx cosβny.

(34)

Similarly, one can establish 5 (M + 1) (N + 1) linear algebraic homogeneous equations for A(i)
mn,

B(i)
ln and C(i)

ln from the governing equations (Equations (13)–(17)). Such set of equations can be further
expressed in the following matrix form:

(K̂A + K̃P) −ω2(M̂A + M̃P) = 0 (35)

Equation (32) gives
P = (B−1

p BA) A = ΓA (36)

Substituting Equation (36) into Equation (35) yields

(K̂ + K̃Γ)A = ω2(M̂ + M̃Γ)A (37)

which forms an eigenvalue problem.

3. Convergence Studies and Comparisons

The boundary conditions for a rectangular plate at the edges x = 0, y = 0, x = a and y = b
are specified by four letters in a respective series. For example, CSFF boundary conditions mean a
clamped boundary condition at x = 0, a simply supported boundary condition at y = 0 and a free
boundary condition at x = a and y = b. To validate the proposed solutions, comprehensive convergence
studies were carried out for the nondimensional vibration frequencies Ω (=ω(a2/h)

√
ρc/Ec, where

the subscript “c” indicates ceramic material properties) of the first six modes of square plates with
h/b = 0.1 and with SSSS, SCSC, CFFF and FFFF boundary conditions. The obtained results were
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compared with the published results from the literature. In the following, the solution terms M and
N in Equations (19)–(23) are set equal, and M (= M + 1) mainly equals 5, 10, 15, 25, 30 and 35 in the
convergence studies. An Al/Al2O3 FGM, whose material properties are described by Equation (1)
(the power-law model), is mainly considered.

Table 2 presents the convergence studies for Al/Al2O3 and Al/ZrO2 FGM (m = 1) plates with
SSSS boundary conditions. Notably, the material properties of the Al/ZrO2 FGM are determined
by the Mori–Tanaka scheme. In the following tables, the mode denoted by “*” is the in-plane
displacement-dominated mode. The results determined from simple exact closed-form solutions
(see Appendix A) are given, and the superscripts “(m, n)” denote the wave numbers in the x-direction
and y-direction, respectively. Some published results based on the Mindlin plate theory are also given
in Table 2 for comparison. The published results presented in the table include (1) the results provided
by Hosseini-Hashemi et al. [23], who proposed exact analytical solutions for FGM rectangular plates
having two simply supported opposite edges; (2) the numerical results of Zhao et al. [10], who obtained
solutions by using an element-free kp-Ritz method with shape functions constructed based on the
kernel particle concept; (3) the numerical results of Ferreira et al. [12], who used the global collocation
method with multi-quadric radial basis functions.

Table 2. Convergence of Ω = ω(a2/h)
√
ρc/Ec for SSSS FGM square plates with h/b = 0.1 and m = 1.

Material
Model

Material
Ingredient Mode

M=M+1 Exact
Closed-Form

Sol.
Published

5 10 15 25 30 35

Power-Law Al/Al2O3

1 4.510 4.433 4.422 4.419 4.418 4.418 4.419 (1,1) <4.420>
(4.347)

2 11.03 10.63 10.60 10.60 10.58 10.58 10.59 (1,2) <10.59>
(10.42)

3 11.03 10.63 10.60 10.56 10.58 10.58 10.59 (2,1) </>
(10.42)

4 * 16.22 16.20 16.20 16.20 16.20 16.20 16.20 (1,0) <×>
(15.94)

5 * 16.22 16.20 16.20 16.20 16.20 16.20 16.20 (0,1)
<×>
(/)

6 16.90 16.34 16.31 16.30 16.30 16.30 16.31 (2,2) <16.31>
(/)

M-T Al/ZrO2

1 5.288 5.205 5.193 5.190 5.190 5.190 5.192 (1,1) {5.096}

2 12.90 12.45 12.42 12.41 12.41 12.41 12.41 (1,2) {12.30}

3 12.90 12.45 12.42 12.41 12.41 12.41 12.41 (2,1) {12.30}

4 * 18.10 18.09 18.08 18.08 18.08 18.08 18.08 (1,0) {17.49}

5 * 18.10 18.09 18.08 18.08 18.08 18.08 18.08 (0,1) {17.49}

6 19.74 19.12 19.08 19.07 19.06 19.06 19.09 (2,2) {18.87}

Note: ‘×’denotes data missed; ‘/’ denotes data not available; < > denotes results of Hosseini-Hashemi et al. [23];
( ) denotes results of Zhao et al. [10]; { } denotes results of Ferreira et al. [12]; “*” denotes the in-plane
displacement-dominated model; the superscripts “( )” denote the wave numbers in the x-direction and y-direction.

The present results converge from the upper-bounds of solutions as the number of solution terms
increases. The results obtained using M = 15 show the agreement of three significant figures with the
results determined from the simple exact closed-form solutions given in Appendix A, and the differences
are less than 0.1%. It is interesting to observe that although the solutions of Hosseini-Hashemi et al. [23]
provided accurate results for out-of-plane displacement-dominated modes, they did not provide
the results for a wave number of zero in the x-direction or y-direction, which corresponded to the
in-plane displacement-dominated modes. The first six modal shapes are depicted in Figure 3. In this
figure, the contours of out-of-plane displacement (W0) (represented by solid lines) and the nodal lines
(represented by dashed lines) are depicted for the out-of-plane flexural modes. Moreover, the in-plane
modal deformations are displayed for the in-plane displacement-dominated modes. Compared with
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the results obtained from the exact closed-form solutions, the results of Zhao et al. [10] exhibited a
difference of approximately 1.6% and the results of Ferreira et al. [12] exhibited a difference between
0.9% and 3.3%. Consequently, the present results obtained using M = 15 are more accurate than those
of Zhao et al. [10] and Ferreira et al. [12].
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Table 3 lists the non-dimensional natural frequencies Ω obtained using M equal to 5, 10, 15, 25,
30 and 35 for FGM (m = 0 and 1) square plates with SCSC boundary conditions. As M increases, the
natural frequencies converge from the upper-bounds of solutions. The results obtained using M = 15
and 35 show the consistency of three significant figures. The present results for the homogeneous
plate (m = 0) obtained using M = 35 show excellent agreement of four significant figures with those
of Liew et al. [35] and Du et al. [36], who investigated the vibrations of homogeneous rectangular
plates. Liew et al. [34] determined the frequencies of out-of-plane modes via the conventional Ritz
method with polynomial admissible functions, while Du et al. [36] established series solutions for the
in-plane vibrations of rectangular plates. The present results for out-of-plane displacement-dominated
modes obtained using M ≥ 25 for the FGM (m = 0 and 1) square plates are consistent with the
results of Hosseini-Hashemi et al. [23] for at least three significant figures. Again, the solutions of
Hosseini-Hashemi et al. [23] neglected the in-plane mode for a wave number of zero in the x-direction.

Table 4 presents the convergence of the non-dimensional natural frequencies Ω of cantilevered
FGM (m = 0 and 5) square plates with various numbers of solution terms. Interestingly, the results
indicate different convergence trends from those observed from Tables 1 and 2. The values of Ω for the
homogeneous plate (m = 0) reveal convergence from the upper-bounds of solutions for the first and
third modes, convergence from the lower-bounds of solutions for the second, fourth and sixth modes,
and oscillatory convergence for the fifth mode. These findings are not applied to the results for the
FGM plate with m = 5. For example, oscillatory convergence is observed for the first and fifth modes.
The present results obtained using M ≥ 25 exhibit excellent agreement with those of Liew et al. [35]
with the differences less than 0.1%. The differences between the present convergent results and those
of Zhao et al. [10] can be larger than 1%.
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Table 3. Convergence of Ω for SCSC FGM square plates with h/b = 0.1.

m Mode
M=M+1

Published
5 10 15 25 30 35

0

1 8.183 8.079 8.073 8.071 8.071 8.070 {8.070}
<8.070>

2 15.37 14.91 14.88 14.87 14.86 14.86 {14.86}
<14.86>

3 18.25 17.95 17.93 17.92 17.92 17.92 {17.92}
<17.92>

4 * 19.50 19.49 19.48 19.48 19.48 19.48 [19.48]
< × >

5 24.49 23.91 23.87 23.85 23.85 23.85 {23.85}
<23.85>

6 27.72 26.44 26.32 26.29 26.29 26.28 {26.28}
</>

1

1 6.320 6.228 6.223 6.221 6.221 6.221 <6.220>
2 11.89 11.51 11.48 11.47 11.47 11.47 <11.47>
3 14.17 13.94 13.92 13.91 13.91 13.91 <13.92>

4 * 16.22 16.20 16.20 16.20 16.20 16.20 <×>
5 19.05 18.57 18.54 18.53 18.53 18.53 <18.54>
6 21.62 20.48 20.38 20.35 20.35 20.35 </>

Note: ‘×’ denotes data missed; ‘/’ denotes data not available; { } denotes results of Liew et al. [35]; [] denotes
results of Du et al. [36]; < > denotes results of Hosseini-Hashemi et al. [23]; “*” denotes the in-plane
displacement-dominated mode.

Table 4. Convergence of Ω for CFFF FGM square plates with h/b = 0.1.

m Mode
M=M+1

Published
5 10 15 25 30 35

0

1 1.039 1.038 1.038 1.038 1.038 1.038 {1.038}
(1.030)

2 2.399 2.428 2.435 2.438 2.439 2.439 {2.440}
(2.391)

3 6.134 6.082 6.079 6.079 6.079 6.079 {6.080}
(6.005)

4 * 6.548 6.576 6.578 6.580 6.581 6.581 {/}
(7.636)

5 7.742 7.702 7.712 7.715 7.716 7.716 {7.716}
(/)

6 8.417 8.518 8.533 8.544 8.545 8.546 {8.548}
(/)

5

1 0.6833 0.6826 0.6827 0.6828 0.6828 0.6828 (0.6768)
2 1.575 1.594 1.599 1.601 1.601 1.601 (1.568)
3 4.017 3.983 3.981 3.981 3.981 3.981 (3.927)

4 * 4.253 4.272 4.273 4.274 4.274 4.275 (4.263)
5 5.065 5.039 5.045 5.047 5.047 5.047 (/)
6 5.510 5.577 5.586 5.593 5.594 5.594 (/)

Note: ‘/’ denotes data not available; { } denotes results of Liew et al. [35]; ( ) denotes results of Zhao et al. [10];
“*” denotes the in-plane displacement-dominated mode.

Similar to Table 4, Table 5 considers the plates with FFFF boundary conditions. Notably,
using supplementary functions given in Equation (28) yields singular Bp in Equation (32), and its
inverse cannot be found for Equation (36). To overcome such numerical difficulties, in addition to



Materials 2020, 13, 3820 12 of 20

the conditions presented in Equation (27), the following conditions are proposed to establish the
polynomial supplementary functions:

ξi(0) = ξi(a) = ηi(0) = ηi(b) = 0 (for i = 1 and 2). (38)

Satisfying Equations (27) and (38) yields

ξ1(x) = − 5x4

2a3 + 6x3

a2 −
9x2

2a + x, ξ2(x) = 5x4

2a3 −
4x3

a2 + 3x2

2a ,

η1(y) = − 5y4

2b3 +
6y3

b2 −
9y2

2b + y, η2(y) = 5y4

2b3 −
4y3

b2 +
3y2

2b

(39)

Table 5 lists the results obtained using M = 5, 15, 25, 35, 40 and 45. Notably, six rigid body
modes with zero frequencies are not considered in the table. The convergence of the numerical
results is slower than that of the results presented in Tables 2–4. When the results of the homogenous
plate (m = 0) are under consideration, oscillatory convergence is found for the third to sixth modes,
while convergence from lower-bounds and upper-bounds is observed for the first and second modes,
respectively. The results obtained using m ≥ 35 are consistent with those of Liew et al. [35] with the
differences less than 0.1%.

Table 5. Convergence of Ω for FFFF FGM square plates with h/b = 0.1

¯
m Mode

M=N
Published

5 15 25 35 40 45

0

1 3.823 3.842 3.846 3.847 3.849 3.849 {3.849}
2 6.921 5.794 5.745 5.737 5.736 5.736 {5.733}
3 7.821 7.091 7.064 7.059 7.060 7.060 {7.058}
4 10.08 9.665 9.656 9.655 9.660 9.660 {9.660}
5 10.08 9.665 9.656 9.655 9.660 9.660 {9.660}
6 16.93 16.76 16.74 16.74 16.75 16.75 {16.75}

5

1 2.508 2.521 2.523 2.524 2.524 2.524 (2.512)
2 4.516 3.790 3.759 3.753 3.752 3.752 (3.746)
3 5.111 4.640 4.623 4.620 4.620 4.619 (4.608)
4 6.579 6.314 6.309 6.308 6.308 6.308 (6.270)
5 6.579 6.314 6.309 6.308 6.308 6.308 (6.270)
6 11.03 10.92 10.91 10.91 10.91 10.91 (/)

Note: ‘/’ denotes data not available, { } denotes results of Liew et al. [35]; ( ) denotes results of Huang et al. [20].

The convergence behaviors of the results for the FGM plate with m =5 and FFFF boundary
conditions are different from those for the homogeneous plate. The convergence of natural frequencies
for different modes is monotonic from the upper- or lower-bounds. The results obtained using
M ≥ 35 are in good agreement with those obtained from the Ritz method based on three-dimensional
elasticity [20] with the differences less than 0.6%.

To simply demonstrate the convergence rates of the present solutions for other combinations of
boundary conditions, Table 6 shows the average relative differences in the Ω values of the first six
modes obtained using M = N = 15 and M = N = 35 for Al/Al2O3 FGM square plates with h/a = 0.1
and m = 5 at 16 combinations of boundary conditions. All the differences are less than 0.1%, which
indicates that the solutions derived in this study provide accurate results even when M = N = 15
is used. Differences larger than 0.08% occur in the results for SFSF and SFFF boundary conditions,
while the differences are less than 0.03% when CSSF, CSCF, CCSF and CCCF boundary conditions are
under consideration.
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Table 6. Average differences of
∣∣∣∣∣Ω(M=N=35)−Ω(M=N=15)

Ω(M=N=35)

∣∣∣∣∣ of the first six modes.

Case SFSF SSSF SCSF SCSS SFFF SSFF CSFF CSSF

Ave. Differences (%) 0.080 0.045 0.040 0.054 0.088 0.045 0.056 0.030

Case CFSF CFCF CSCF CCFF CCSF CCSS CCCF CCCS

Ave. Differences (%) 0.056 0.044 0.020 0.055 0.028 0.045 0.024 0.049

4. Numerical Results

After validating the proposed analytical solutions through convergence studies, we employed
the solutions to determine the first six nondimensional frequencies (Ω) of Al/Al2O FGM plates with
various aspect ratios (b/a = 1 and 2), thickness-to-length ratios (h/a = 0.02 and 0.1), power-law index
values (m = 0, 0.5, 2 and 5), and combinations of boundary conditions (CCCC, FFFF, CFFF, CFSF,
SSFF, CSFF, CSSF, CCFF and CCCF). The results are summarized in Tables 7–10, in which “*” denotes
the in-plane displacement-dominated modes. Figures 4 and 5 depict the variations in Ω with m for
Al/Al2O FGM rectangular plates (b/a = 2 and h/a = 0.1) with CFFF and CFSF boundary conditions,
respectively. These results were obtained using M = N = 35, except for FFFF plates, whose natural
frequencies were determined by using M = N = 45. Since exact closed-form solutions exist for plates
with two simply supported opposite edges, such boundary conditions are not under consideration in
this section. These tabulated results can serve as benchmark data for evaluating numerical approaches.

Table 7. Nondimensional natural frequencies Ω of CCCC Al/Al2O FGM rectangular plates.

b/a h/a m
Mode

1 2 3 4 5 6

1

0.02

0 10.84 22.03 22.03 32.36 39.29 39.49
0.5 9.184 18.67 18.67 27.44 33.32 33.48
2 7.527 15.30 15.30 22.49 27.30 27.44
5 7.133 14.49 14.49 21.29 25.84 25.97

0.1

0 9.842 18.77 18.77 26.31 31.00 31.30
0.5 8.409 16.11 16.11 22.64 26.73 26.98
2 6.902 13.23 13.23 18.58 21.94 22.15
5 6.451 12.27 12.27 17.15 20.18 20.38

2

0.02

0 7.413 9.593 13.48 19.05 19.23 21.34
0.5 6.281 8.128 11.43 16.14 16.29 18.09
2 5.148 6.662 9.363 13.23 13.35 14.83
5 4.879 6.313 8.872 12.53 12.65 14.04

0.1

0 6.897 8.815 12.16 16.64 16.75 18.30
0.5 5.882 7.523 10.39 14.27 14.33 15.70
2 4.827 6.173 8.521 11.71 11.75 12.88
5 4.526 5.779 7.960 10.88 10.95 11.95

Table 8. Nondimensional natural frequencies Ω of FFFF Al/Al2O FGM rectangular plates.

b/a h/a m
Mode

1 2 3 4 5 6

1

0.02

0 4.038 5.976 7.361 10.44 10.44 18.41
0.5 3.421 5.067 6.238 8.849 8.849 15.59
2 2.804 4.153 5.112 7.252 7.252 12.78
5 2.657 3.932 4.843 6.869 6.869 12.11

0.1

0 3.849 5.735 7.060 9.660 9.660 16.75
0.5 3.269 4.861 5.988 8.213 8.213 14.25
2 2.677 3.969 4.893 6.711 6.711 11.63
5 2.525 3.752 4.621 6.312 6.312 10.91
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Table 8. Cont.

b/a h/a m
Mode

1 2 3 4 5 6

2

0.02

0 1.656 1.997 4.389 4.511 6.690 7.604
0.5 1.405 1.693 3.719 3.821 5.670 6.442
2 1.152 1.387 3.048 3.132 4.647 5.280
5 1.090 1.315 2.888 2.969 4.401 5.004

0.1

0 1.610 1.927 4.196 4.382 6.419 7.176
0.5 1.364 1.636 3.563 3.717 5.443 6.099
2 1.117 1.341 2.918 3.042 4.446 4.991
5 1.058 1.267 2.753 2.875 4.201 4.700

Table 9. Nondimensional natural frequencies Ω of CFFF and CFSF FGM square plates; “*” denotes the
in-plane displacement-dominated mode.

BC h/a m Material Model
Mode

1 2 3 4 5 6

CFFF

0.02

0

Power-Law

1.049 2.552 6.418 8.180 9.273 16.17

0.5 0.8888 2.162 5.437 6.930 7.857 13.70
2 0.7284 1.772 4.456 5.678 6.439 11.23
5 0.6907 1.680 4.224 5.383 6.102 10.63

0.1

0 Power-Law or M-T 1.038 2.439 6.079 6.581 * 7.716 8.546

0.5
Power-Law 0.8000 2.072 5.168 5.907 * 6.555 7.280

M-T 0.8089 1.960 4.879 5.606 * 6.186 6.877

2
Power-Law 0.7211 1.698 4.230 4.946 * 5.359 5.962

M-T 0.6973 1.643 4.087 4.650 * 5.176 5.759

5
Power-Law 0.6828 1.601 3.981 4.275 * 5.047 5.594

M-T 0.6666 1.564 3.886 4.073 * 4.926 5.457

CFSF

0.02

0

Power-Law

4.591 6.191 11.91 14.90 16.90 23.15
0.5 3.664 4.950 9.511 11.89 13.50 18.48
2 3.084 4.162 8.000 10.00 11.36 15.55
5 2.950 3.981 7.652 9.569 10.86 14.87

0.1

0 4.401 5.820 10.89 13.45 15.05 15.57 *
0.5 3.526 4.678 8.742 10.83 12.14 13.27 *
2 2.963 3.922 7.316 9.071 10.16 10.99 *
5 2.818 3.724 6.935 8.563 9.569 9.641 *

Table 10. Nondimensional natural frequencies Ω of FGM square plates (h/a = 0.1) with SSFF, CSFF,
CSSF, CCFF and CCCF boundary conditions; “*” denotes the in-plane displacement-dominated mode.

BC m
Mode

1 2 3 4 5 6

SSFF

0 0.9943 5.011 5.600 10.63 12.16 * 14.10
0.5 0.8432 4.254 4.754 9.044 10.92 * 12.00
2 0.6910 3.481 3.891 7.398 9.134 * 9.806
5 0.6538 3.286 3.672 6.951 7.896 * 9.204

CSFF

0 1.571 5.472 6.977 8.176 * 11.71 14.51
0.5 1.333 4.648 5.936 7.340 9.984 12.35
2 1.093 3.804 4.860 6.148 * 8.171 10.10
5 1.033 3.585 4.569 5.313 * 7.653 9.470

CSSF

0 4.837 8.710 13.92 16.36 * 17.23 17.83
0.5 4.113 7.416 11.89 14.63 * 14.74 15.25
2 3.372 6.072 9.747 11.98 12.31 * 12.49
5 3.175 5.703 9.106 10.60 * 11.23 11.64
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Table 10. Cont.

BC m
Mode

1 2 3 4 5 6

CCFF

0 2.019 6.700 7.481 12.71 15.41 * 16.62
0.5 1.714 5.703 6.369 10.85 13.80 * 14.22
2 1.405 4.668 5.217 8.883 11.42 * 11.78
5 1.327 4.385 4.900 8.300 9.983 * 10.87

CCCF

0 6.685 10.78 16.41 19.75 20.31 23.79 *
0.5 5.701 9.207 14.01 16.90 17.43 21.36 *
2 4.678 7.546 11.55 13.83 14.29 17.88 *
5 4.385 7.050 10.72 12.85 13.25 15.46 *
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The following inferences are drawn from Tables 7–10 and Figures 4 and 5:

1. The constraint increases when a free boundary condition changes to a simply supported boundary
condition. The constraint further increases in a clamped boundary condition. Higher constraint
results in higher plate stiffness and larger natural frequencies. Therefore, ΩCCCC > ΩCSSF > ΩCSFF

> ΩSSFF and ΩCCCC > ΩCCCF > ΩCCFF > ΩCSFF > ΩCFFF > ΩFFFF (where the subscripts indicate
the boundary conditions) if the first six rigid body modes with zero frequencies are considered
for plates with FFFF boundary conditions.

2. The Mori–Tanaka material model provides a larger Young’s modulus than the power-law material
model does; however, both models yield the same density distribution (Figure 2). Consequently,
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FGM plates following the Mori-Tanaka material model have larger natural frequencies than those
following the power-law material model.

3. An increase in m results in a decrease in Ω. Furthermore, as displayed in Figures 4 and 5, the
change rate of Ω with m gradually decreases with an increase in m. Notably, an increase in m
leads to a decrease in the plate stiffness and mass (Figure 2).

4. No in-plane displacement-dominated mode exists in the first six modes for thin square plates
with h/a = 0.02; however, such a mode may exist for moderately thick plates with h/a = 0.1.

5. The nondimensional frequencies (Ω) of plates with h/a = 0.1 are less than those of plates with h/a
= 0.02 because h/a is involved in the definition of Ω. When converting Ω to ω, one finds that the
trend is opposite for ω because the plate rigidity increases with h/a.

5. Concluding Remarks

In this study, analytical solutions based on the Mindlin plate theory were developed for the
vibrations of FGM rectangular plates with various combinations of boundary conditions. The solutions
were established using the Fourier cosine series with polynomial supplementary functions. Fourth-order
polynomial supplementary functions were adopted in the solutions for FFFF boundary conditions,
and second-order polynomial supplementary functions were adopted in the solutions for the other
boundary conditions. The present solutions were validated through comprehensive convergence
studies as well as comparisons with published results and the exact closed-form solutions for plates with
SSSS boundary conditions. When increasing the number of solution terms, the trends of convergence
in vibration frequencies (i.e., monotonous convergence from upper-bounds or lower-bounds or
convergence in an oscillatory manner) varied according to the vibration modes, distributions of
material properties, and boundary conditions. The vibration frequencies of the first six modes obtained
using M = N = 15 were in good agreement with those obtained using M = N = 35, and the average
differences were less than 0.1% for FGM square plates with h/a = 0.1 and m = 5 under 17 combinations
of boundary conditions, excluding FFFF boundary conditions. The average difference was about 0.6%
for FFFF boundary conditions.

The present solutions were also applied to determine the vibration frequencies of Al/Al2O FGM
plates with CCCC, FFFF, CFFF, CFSF, SSFF, CSFF, CSSF, CCFF and CCCF boundary conditions.
The effects of the plate thickness, material model (Mori–Tanaka and power-law models), and power-law
index, m on the vibration frequencies were investigated. With a fixed m, the Mori–Tanaka model
yielded higher plate stiffness and larger vibration frequencies for plates than the power-law model.
An increase in m caused a decrease in the vibration frequencies of Al/Al2O FGM plates. The tabulated
data in this study can be used as a standard to judge the accuracy of numerical methods. The present
solutions can be simply modified to determine the buckling loads of an FGM rectangular plate under
uniform initial stresses and to perform linear static and dynamic analyses of an FGM rectangular plate.
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Appendix A

The exact closed-form solutions for vibrations of SSSS FGM rectangular plates are given herein.
To satisfy SSSS boundary conditions, let

u0(x, y, t) =
∞∑̃

m=0

∞∑̃
n=0

am̃ñ cos( m̃π
a x) sin( ñπ

b y)eiωt,

v0(x, y, t) =
∞∑̃

m=0

∞∑̃
n=0

bm̃ñ sin( m̃π
a x) cos( ñπ

b y)eiωt,

w0(x, y, t) =
∞∑̃

m=0

∞∑̃
n=0

cm̃ñ sin( m̃π
a x) sin( ñπ

b y)eiωt,

ψx(x, y, t) =
∞∑̃

m=0

∞∑̃
n=0

dm̃ñ cos( m̃π
a x) sin( ñπ

b y)eiωt

ψy(x, y, t) =
∞∑̃

m=0

∞∑̃
n=0

em̃ñ sin( m̃π
a x) cos( ñπ

b y)eiωt

where am̃ñ, bm̃ñ, cm̃ñ, dm̃ñ and em̃ñ are coefficients to be determined. Substituting are coefficients to be
determined. Substituting the above equations into Equations (13)–(17) yields

(K−ω2M)



am̃ñ
bm̃ñ
cm̃ñ
dm̃ñ
em̃ñ


= 0

where

K =



(α2E0 + β2G0) αβ(D0 −G0) 0 (α2E1 + β2G1) αβ(D1 −G1)

αβ(D0 −G0) (β2E0 + α2G0) 0 αβ(D1 −G1) (β2E1 + α2G1)

0 0 (−α2
− β2)κG0 ακG0 βκG0

(α2E1 + β2G1) αβ(D1 −G1) ακG0 (α2E2 + κG0 + β2G2) αβ(D2 −G2)

αβ(D1 −G1) (β2E1 + α2G1) βκG0 αβ(D2 −G2) (β2E2 + κG0 + α2G2)


,

M =


I0 0 0 I1 0
0 I0 0 0 I1

0 0 I0 0 0
I1 0 0 I2 0
0 I1 0 0 I2


, α = m̃π

a and β = ñπ
b .
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