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Abstract: Nanocarrier-based systems hold a promise to become “Dr. Ehrlich’s Magic Bullet” capable
of delivering drugs, proteins and genetic materials intact to a specific location in an organism down
to subcellular level. The key question, however, how a nanocarrier is internalized by cells and how
its intracellular trafficking and the fate in the cell can be controlled remains yet to be answered. In
this review we survey drug delivery systems based on various polymeric nanocarriers, their uptake
mechanisms, as well as the experimental techniques and common pathway inhibitors applied for
internalization studies. While energy-dependent endocytosis is observed as the main uptake pathway,
the integrity of a drug-loaded nanocarrier upon its internalization appears to be a seldomly addressed
problem that can drastically affect the uptake kinetics and toxicity of the system in vitro and in vivo.

Keywords: drug delivery systems; endocytosis; polymeric micelles; amphiphilic block copolymers;
nanoparticles; drug release

1. Introduction

Nanocarriers have great potential as drug delivery systems (DDS). They enhance the bioavailability
of drugs, extent circulation times and can accumulate in compromised tissue via an effect known as
enhanced permeability and retention (EPR) [1–3]. In the past few years, the amount of nanocarriers
in clinical trials has tripled [4]. Specifically, polymeric micelles have received growing attention due
to their small size, simplicity and ability to transport hydrophobic drugs inside their core [3,5,6].
Furthermore, improved polymerization techniques lead to well-defined structures, narrow molecular
weight distributions and tunable properties [1]. Polymeric micelles are composed of amphiphilic
block copolymers (ABCs) containing hydrophobic and hydrophilic blocks [7]. When these ABCs are
dissolved (in aqueous solution) at a concentration above their critical aggregation concentration (CAC),
they will self-assemble into aggregates with a hydrophobic core and hydrophilic corona (Figure 1).
Due to their low CAC and further stabilization due to a hydrophobic load, these polymeric micelles
are relatively stable at working concentrations in the blood [1].
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Figure 1. Above the critical aggregation concentration, amphiphilic block copolymers self-assemble 
into a micellular structure (adapted from Reference [8] with permission from Elsevier). 

The hydrophobic block will influence the stability and drug release characteristics, while the 
corona influences the pharmacokinetic properties in vivo and can potentially be further modified 
(e.g., for active targeting, facilitated cell penetration and so forth. [1,9,10]). Poly(ethylene 
glycol/oxide) (PEG/PEO) is most commonly used as the hydrophilic block, while the hydrophobic 
block varies widely [11,12]. Poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA) is a hydrophilic 
polymer that is a worthy competitor of PEG; it is biocompatible, non-toxic, non-charged and 
non-immunogenic [13]. Furthermore, the polymer contains hydroxyl moieties, which can be 
functionalized with targeting ligands, used for drug conjugation or facilitate other modifications that 
could potentially lead to the development of new micelle-based technologies [1]. 
Poly(N-vinyl-2-pyrrolidone) (PVP) has also been used to create polymeric micelles and potentially 
has the ability to cross membranes via biologically independent mechanisms, based on size [1,9,14]. 
It can be further modified with acrylic acid allowing a broad range of further modifications [15]. A 
relatively new class of polymer being used as DDS is poly(2-oxazoline) (POz). It is very versatile, 
and many different monomers can be produced with a wide variety of properties [1,16]. An example 
is poly(2-ethyl-2-oxazoline) (PEOz) which is used in polymeric micelles [17]. 

Polymeric micelles are intensively studied, and many excellent review articles give an overview 
of the composition of different polymeric micelles [2,7,18–22]. However, often only the cytotoxicity 
of these nanocarriers and their cargo are investigated, while the specific nanocarrier uptake and 
intercellular trafficking are mostly overlooked. The interaction between polymeric micelles and cell 
membranes is largely unknown and the fate of these polymeric micelles and their cargo after 
internalization remains to be clarified [6]. One of the concerns after internalization could be 
autophagy, which can greatly reduce the therapeutic effects of the drug [6,23]. Therefore, a better 
understanding of polymeric micelle uptake and drug release is crucial for creating an optimal DDS 
[24]. 

However, the uptake mechanisms of polymeric micelles are hard to generalize, since not only 
the physicochemical characteristics of the polymeric micelles but also the actual encapsulated drug 
and cell type play a crucial role in the uptake [25,26]. In this review, the uptake mechanisms for 
different polymeric nanocarriers are discussed, alongside with various experimental techniques 
commonly applied for discerning specific uptake mechanisms. 

2. Endocytosis as the Main Uptake Mechanism in Cells 

Nutrients and other substances are mainly taken up by cells in a cellular process called 
endocytosis. Most nanocarriers are also thought to be taken up by this process. Traditionally, 
endocytosis can be divided into phagocytosis (uptake of large particles) and pinocytosis (uptake of 

Figure 1. Above the critical aggregation concentration, amphiphilic block copolymers self-assemble
into a micellular structure (adapted from Reference [8] with permission from Elsevier).

The hydrophobic block will influence the stability and drug release characteristics, while the
corona influences the pharmacokinetic properties in vivo and can potentially be further modified
(e.g., for active targeting, facilitated cell penetration and so forth. [1,9,10]). Poly(ethylene glycol/oxide)
(PEG/PEO) is most commonly used as the hydrophilic block, while the hydrophobic block varies
widely [11,12]. Poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA) is a hydrophilic polymer that is
a worthy competitor of PEG; it is biocompatible, non-toxic, non-charged and non-immunogenic [13].
Furthermore, the polymer contains hydroxyl moieties, which can be functionalized with targeting
ligands, used for drug conjugation or facilitate other modifications that could potentially lead to the
development of new micelle-based technologies [1]. Poly(N-vinyl-2-pyrrolidone) (PVP) has also been
used to create polymeric micelles and potentially has the ability to cross membranes via biologically
independent mechanisms, based on size [1,9,14]. It can be further modified with acrylic acid allowing
a broad range of further modifications [15]. A relatively new class of polymer being used as DDS is
poly(2-oxazoline) (POz). It is very versatile, and many different monomers can be produced with a
wide variety of properties [1,16]. An example is poly(2-ethyl-2-oxazoline) (PEOz) which is used in
polymeric micelles [17].

Polymeric micelles are intensively studied, and many excellent review articles give an overview
of the composition of different polymeric micelles [2,7,18–22]. However, often only the cytotoxicity
of these nanocarriers and their cargo are investigated, while the specific nanocarrier uptake and
intercellular trafficking are mostly overlooked. The interaction between polymeric micelles and
cell membranes is largely unknown and the fate of these polymeric micelles and their cargo after
internalization remains to be clarified [6]. One of the concerns after internalization could be autophagy,
which can greatly reduce the therapeutic effects of the drug [6,23]. Therefore, a better understanding of
polymeric micelle uptake and drug release is crucial for creating an optimal DDS [24].

However, the uptake mechanisms of polymeric micelles are hard to generalize, since not only the
physicochemical characteristics of the polymeric micelles but also the actual encapsulated drug and
cell type play a crucial role in the uptake [25,26]. In this review, the uptake mechanisms for different
polymeric nanocarriers are discussed, alongside with various experimental techniques commonly
applied for discerning specific uptake mechanisms.

2. Endocytosis as the Main Uptake Mechanism in Cells

Nutrients and other substances are mainly taken up by cells in a cellular process called endocytosis.
Most nanocarriers are also thought to be taken up by this process. Traditionally, endocytosis can be
divided into phagocytosis (uptake of large particles) and pinocytosis (uptake of fluids and solutes)
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(Figure 2). The latter can be further divided into macropinocytosis, clathrin-mediated endocytosis,
caveolae-mediated endocytosis and clathrin- and caveolae-independent endocytosis. While these
different uptake mechanisms have been extensively studied, they are still not fully understood. This is
caused by the complexity of the processes, overlap of proteins involved in different mechanisms and
the lack of mechanism-specific inhibitors [24].

Polymers 2019, 11, 1648 2 of 13

Figure 1. Scheme of the experimental procedure.

Figure 2. Scheme of the experimental procedure.

Figure 2. Overview of uptake and internal trafficking via various endocytic pathways in a typical
eukaryotic cell, with an estimated maximum uptake size for different pinocytosis mechanisms
(reproduced from Reference [24] with permission from The Royal Society of Chemistry).

2.1. Phagocytosis

Phagocytosis is only performed by a few specialized cells named phagocytes (macrophages,
neutrophils, dendritic cells, etc.). Some other cells types, such as fibroblasts, epithelial and endothelial
cells, might also display phagocytic behavior but to a much lesser extent [27,28]. The main task of
phagocytes is to kill and remove pathogens, dead cells and cell debris. Phagocytosis is triggered
via recognition of the particle via receptors on the phagocyte, which leads to recruitment of actin
around the particle, followed by engulfment (Figure 3A) [29]. The created phagosomes are believed to
eventually fuse with lysosomes, creating phagolysosomes. The acidic and enzyme-rich environment
in these phagolysosomes will (promote) break down of any biodegradable nanocarriers or sensitive
drugs [27]. Coating of the particle with immunoglobulins, complement proteins and other molecules
enhancing phagocytosis (opsonins)—the so-called opsonization—will promote phagocytic uptake.
Therefore, it is essential for a DDS to avoid opsonization, which will lead to subsequent clearing by the
reticuloendothelial system (RES) from the bloodstream (Figure 4) [27].

The maximum size of nanocarriers that can be taken up via phagocytosis seems to be determined
by the phagocyte’s cell volume. However, the particle shape might also influence the uptake.
Champion et al. created polystyrene particles of different shapes and sizes and showed that the
curvature of the particle at the initial point of contact determined the ability of the phagocyte to engulf
the particle [30,31].
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discovered in 1964 by Roth and Porter [24,33]. CME is mainly responsible for the uptake of essential 
nutrients, down regulation of cell signaling and maintaining cellular homeostasis (Figure 3C) [29]. In 
short, CME involves engulfment and upconcentration of transmembrane receptors bound to ligands 
on the plasma membrane. On the cytosolic side of the membrane, a coated pit is formed by cytosolic 
proteins, with clathrin as main unit [34]. These clathrin-coated pits are then pinched off the 
membrane by a small GTPase known as dynamin, forming clathrin-coated vesicles (CCV). Once the 
CCV is detached from the membrane, the coat will disassemble, and the vesicle will undergo further 
intracellular trafficking. Nanocarriers that enter the cell through CME are mostly targeted to 
degradative lysosomes. First, the cargo will be transported to early endosomes (pH ~ 6), which will 
mature into late endosomes (pH ~ 5). These late endosomes will fuse with prelysosomal vesicles to 
form lysosomes that have an acidic (pH ~ 4–5) and enzyme-rich environment (containing e.g., 
hydrolases) for degradation [27,35]. This pathway could be utilized to release the drug via 
biodegradation of the carriers only when the nanocarriers contain drugs that are stable under these 
harsh conditions. Otherwise, endosome escape strategies could be explored to optimize drug 
delivery [35–37]. 

Caveolae-mediated endocytosis (CvME) is another major uptake route responsible for biological 
functions, such as cell signaling, lipid regulation and vesicular transport (Figure 3D). The dimeric 
protein caveolin-1 (and caveolin-3 in muscle cells) is responsible for the specific flask shape of the 
vesicles and can be found as a striated coat on the cytosolic surface of the membrane [34]. As in 
CME, dynamin is responsible for scissoring of the vesicle from the membrane. These vesicles seem to 
fuse with caveosomes, thereby bypassing lysosomes. Therefore, CvME could be an interesting 
pathway for DDS to avoid lysosomal degradation [38]. 

Figure 3. Uptake mechanisms of mammalian cells: (A) phagocytosis, (B) macropinocytosis,
(C) clathrin-mediated endocytosis and (D) caveolae-mediated endocytosis. See text for more details.
(Reproduced from Reference [32] with permission from The Royal Society of Chemistry).

2.2. Pinocytosis

In contrast to phagocytosis, pinocytosis can be found in nearly all cells. Of the different pinocytosis
mechanisms, clathrin-mediated endocytosis (CME) is the most studied to date and was first discovered
in 1964 by Roth and Porter [24,33]. CME is mainly responsible for the uptake of essential nutrients,
down regulation of cell signaling and maintaining cellular homeostasis (Figure 3C) [29]. In short, CME
involves engulfment and upconcentration of transmembrane receptors bound to ligands on the plasma
membrane. On the cytosolic side of the membrane, a coated pit is formed by cytosolic proteins, with
clathrin as main unit [34]. These clathrin-coated pits are then pinched off the membrane by a small
GTPase known as dynamin, forming clathrin-coated vesicles (CCV). Once the CCV is detached from
the membrane, the coat will disassemble, and the vesicle will undergo further intracellular trafficking.
Nanocarriers that enter the cell through CME are mostly targeted to degradative lysosomes. First, the
cargo will be transported to early endosomes (pH ~ 6), which will mature into late endosomes (pH ~ 5).
These late endosomes will fuse with prelysosomal vesicles to form lysosomes that have an acidic (pH ~
4–5) and enzyme-rich environment (containing e.g., hydrolases) for degradation [27,35]. This pathway
could be utilized to release the drug via biodegradation of the carriers only when the nanocarriers
contain drugs that are stable under these harsh conditions. Otherwise, endosome escape strategies
could be explored to optimize drug delivery [35–37].

Caveolae-mediated endocytosis (CvME) is another major uptake route responsible for biological
functions, such as cell signaling, lipid regulation and vesicular transport (Figure 3D). The dimeric
protein caveolin-1 (and caveolin-3 in muscle cells) is responsible for the specific flask shape of the
vesicles and can be found as a striated coat on the cytosolic surface of the membrane [34]. As in CME,
dynamin is responsible for scissoring of the vesicle from the membrane. These vesicles seem to fuse
with caveosomes, thereby bypassing lysosomes. Therefore, CvME could be an interesting pathway for
DDS to avoid lysosomal degradation [38].

Macropinocytosis is an endocytic process that entails engulfment of a large volume of the extra
cellular milieu and is not directly driven by cargo (Figure 3B). This uptake is associated with membrane
ruffling and can be induced by growth factors, bacteria, viruses and necrotic cells [24]. Some of these
membrane protrusions can fall back onto the membrane and fuse with it, creating macropinosomes.
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These membrane protrusions are actin-driven and induced by the Rho-family GTPases [17]. Why
only some protrusions result in micropinocytosis and how this process is regulated, is yet unknown.
Macropinosomes are believed to fuse with lysosomal compartments, leading to degradation of the
contents [27].

Cells that are depleted of CME and CvME still show some form of endocytosis. All these different
uptake mechanisms are grouped together as clathrin- and caveolae-independent endocytosis. The uptake
seems to be cholesterol dependent and involve lipid raft sorting on the membrane, however most
pathways are still poorly understood [29]. A noteworthy example is the uptake of interleukin-2
receptors (IL-2), which seems to be clathrin- and caveolae-independent [34].
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Figure 4. Opsonization of nanoparticles in the bloodstream will lead to rapid clearing by the
reticuloendothelial system via phagocytic uptake of the particles by macrophages (reproduced from
Reference [39] with permission from Elsevier).

2.3. Elucidating Endocytic Pathways of Nanocarriers

A common way to analyze the uptake mechanisms of nanocarriers is by using endocytic inhibitors.
When inhibition of a certain pathway drastically lowers the uptake of a nanocarrier, it is assumed
to be responsible for nanocarrier uptake. However, most inhibitors are not specific to one endocytic
pathway and may induce other side effects [5]. Furthermore, by inhibiting one specific mechanism, a
secondary uptake mechanism might compensate, while it may not have been originally active [40].
These limitations to endocytic inhibitors are often overlooked, therefore the use of multiple inhibitors
is recommended to verify the results. Table 1 gives an overview of some of the most used inhibitors
with their main mechanism(s) and limitations.

Another, more precise approach for elucidating a specific uptake mechanism is the use of siRNAs.
siRNAs can be used to reversibly inhibit the production of certain key proteins in endocytosis
(e.g., clathrin, caveolin), which should reduce off-target effects [40–42]. Furthermore, it gives a better
understanding of the involvement of certain proteins in endocytic pathways [43].
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Table 1. Overview of commonly used endocytic inhibitors, their effects and limitations [40,44–46].

Agent Mechanism Affected 1 Effect Limitation Ref.

Low temp (4 degrees) All energy dependent
processes

Slows down/inhibits all energy
dependent processes

Low temperature may influence
fluidity of cell membrane [47,48]

Sodium azide All energy dependent
processes Inhibits respiratory system of cells Toxic at higher concentrations [49,50]

Chlorpromazine CME Translocates clathrin and AP2 from the
cell surface to intracellular endosomes

Not efficient in all cell lines, might
interfere with the biogenesis of

intracellular vesicles

[51–53] [54]
(pp. 19–20)

Cytosol acidification CME Inhibits the budding-off of clathrin-
coated pits from the membrane

Interferes with macropinocytosis and
the actin cytoskeleton [54] (p. 19)

Hypertonic sucrose CME Removes plasma membrane-associated
clathrin lattices

Nonspecific, interferes with fluid
phase macropinocytosis

[54] (pp. 17–18)
[55,56]

Monodansylcadaverine CME Stabilizes clathrin-coated pits Induces global changes in actin
dynamics [54] (p. 20)

Phenylarsine oxide CME Mechanisms unknown, possibly a
tyrosine phosphate inhibitor

Also inhibits micropinocytosis and is
toxic at higher concentrations [57,58]

Potassium depletion CME Removes plasma membrane-associated
clathrin lattices Nonspecific; affects actin cytoskeleton [54] (p. 18) [59]

Dynasore CME, CvME Inhibitor of dynamin (small GTPase) Has other off-target effects, including
inhibition of membrane ruffling [60,61]

Genistein CvME Inhibitor of several tyrosine kinases,
causes disruption of the actin network Affects several uptake processes [62,63]

Okadaic acid CvME Phosphatase inhibitor, stimulates
trafficking and internalization of caveolae Nonspecific, off-target effects [64]

Cholesterol inhibitors

Filipin CvME, Lipid raft Binds to cholesterol in the membrane
Unstable and toxic, cholesterol

influences other endocytic pathways
besides CvME

[54] (pp. 23–24)
[65,66]



Materials 2020, 13, 366 7 of 21

Table 1. Cont.

Agent Mechanism Affected 1 Effect Limitation Ref.

Statins CvME, Lipid raft

Lowering of cholesterol formation by
inhibiting the enzyme

3-hydroxy-3-methylglutaryl CoA
(HMG-CoA) reductase

Nonspecific, many off-target effects [54] (p. 22)
[67,68]

Methyl-β-cyclodextrin CvME, Lipid raft
Removes cholesterol out of the plasma

membrane by forming soluble inclusion
complexes with cholesterol

Nonspecific, interferes with fluid phase
endocytosis and CME, might induce

membrane curvature

[54] (pp. 22–23)
[69,70]

Nystatin CvME, Lipid raft Binds to cholesterol in the membrane Toxic [54] (pp. 23–24)

(Endosome) acidification inhibitors

Monensin Prevents acidification of
endosomes

Acts as an ionophor, thereby inhibiting
the acidification of endosomes [71–73]

Nigericin Prevents acidification of
endosomes

Acts as an ionophor, thereby inhibiting
the acidification of endosomes [74,75]

Bafilomycin A1 Prevents acidification of
endosomes

Inhibits the vacuolar ATPase endosomal
proton pump.

Prevents maturation of autophagic
vacuoles by inhibiting fusion between

autophagosomes and lysosomes.
Potentially inhibits Ca2+ pump SERCA

[76–78]

Chloroquine Prevents acidification of
endosomes

Increases pH of acidic vesicles (e.g.,
lysosomes), possibly inhibits some

lysosomal hydrolases
Affects many other cellular processes [79,80]

(pp. 49–54)

Amiloride Macropinocytosis

Inhibits macropinocytosis by lowering
submembranous pH (cytosolic pH close
to the membrane) and prevents Rac1 and

Cdc42 signaling.

[81–83]

F-actin inhibitors

Cytochalasin D Macropinocytosis Inhibits actin polymerization and may
thus lead to actin filament disassembly

Nonspecific, may affect other endocytic
processes

[54] (p. 26)
[84,85]

Jasplakinolide Macropinocytosis Stabilizes actin and promotes actin
assembly

Various effects depending on cell line and
assay conditions [84,86]
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Table 1. Cont.

Agent Mechanism Affected 1 Effect Limitation Ref.

Latrunculin Macropinocytosis
Sequesters actin monomers, blocks actin

polymerization and may thus lead to
actin filament disassembly

Not necessarily efficient in adherent
cells

[54] (p. 26)
[87,88]

Swinholide A Macropinocytosis Has F-actin severing activity Nonspecific, may affect other
endocytic processes [86,89]

Phosphoinositide 3-kinase inhibitors

LY294002 Macropinocytosis Inhibits phosphatidylinositol 3-kinase
class I and III

Nonspecific, also affects CME and
CvME

[54] (pp. 26–27)
[90,91]

Wortmannin Macropinocytosis Inhibits phosphatidylinositol 3-kinase
class I and III

Nonspecific, also affects CME and
CvME

[54] (pp. 26–27)
[90,91]

3-methyladenine Macropinocytosis Inhibits phosphatidylinositol 3-kinase
class III

Nonspecific, also affects CME and
CvME

[54] (pp. 26–27)
[92]

1 Abbreviations: Clathrin-mediated endocytosis (CME), Caveolae-mediated endocytosis (CvME).
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3. Uptake Mechanisms of Polymeric Micelles

The endocytic pathways for several classes of nanoparticles have been summarized in
References [25,27]. However, despite the amount of research on polymeric micelles, data regarding
the uptake mechanisms and intracellular trafficking of these micelles remains behind. Furthermore,
most research that investigated the endocytic uptake of polymeric micelles only analyzed the uptake
of the drug, hence, only providing indirect evidence for nanocarrier uptake [47,93–101]. As will be
discussed below, this assumption may not always be correct, as the carrier and the load can separate
upon the uptake. To proof nanoparticle uptake, the polymer should be labelled and colocalized with
the drug. Labelling of the hydrophobic polymer segment is preferable, since changes in the charge of
the corona can severely alter the uptake mechanisms of the polymeric micelles compared to unlabeled
polymer [49,102–104]. Table 2 gives an overview of the uptake mechanisms of different polymeric
micelles in mammalian cells. A better understanding of the fate of polymeric micelles and cargo after
cellular uptake might prove useful in optimizing the efficiency of the DDS. Furthermore, when the fate
and intracellular trafficking of the polymeric micelles is known, various release or escape strategies
could be implemented for optimal drug delivery into the cytosol. These topics have been extensively
reviewed by Varkouhi et al. [105] or with a specific focus on nanoparticles by Smith et al. [36].
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Table 2. Overview of the proposed uptake mechanisms of different polymeric micelles.

Material 1,2 Uptake Mechanism(s) 1 Cell type 3 Drug 1 Comments Ref.

Mixed micelles:
TPGS2K, HS15, F127

Energy dependent
CME

CvME
Caco-2 Curcumin

DOX Only analyzed uptake of drug [93]

OCC CME
CvME Caco-2 Silybin

Rhodamine-123 Only analyzed uptake of drug [94,95]

OGC
SH-OGC

CME
CvME Caco-2 Paclitaxel

Rhodamine-123 Only analyzed uptake of drug [96,97]

P(PEGMEMA)75u-b-PMMA80u

Clathrin and caveolae independent
CME

CvME
WiDr DOX

NileRed

80% of the uptake was via a
different, undefined uptake

mechanism
[106]

PEG2000-b-PLGA5000
Energy dependent

CME
Calu-3

NCI-H441
NileRed

Curcumin acetate Only analyzed uptake of drug [98,99]

PEG3000/2000/5000-PLA40000
PEG2000/5000-PLGA40000

Energy dependent
Lipid raft mediated Caco-2 Curcumin

Coumarin 6 Only analyzed uptake of drug [100]

PEG5000-b-PLA5000

Direct drug transfer to cell membrane
Energy dependent

Caveolae/lipid raft-mediated endocytosis
A2780

Paclitaxel
NileRed

FRET, DAF/NileRed
[5,107]

PEG-b-PLGA CvME MCF-7 DTX, 3-MA, CQ
Coumarin 6 Only analyzed uptake of drug [6]

PEO2000/5000/13000-b-PCL5000
PEO5000-b-PCL13000/24000

CME MCF-7 DiIC
PEO5000-b-PCL13000 showed
fastest uptake, only analyzed

drug uptake
[101]

PEO2000-b-PCL2600/2800
PEO5000-b-PCL4000

Direct drug transfer to cell membrane HCT-116 Pheo
Conjugated Fluorescein [108]

PEO45u-b-PCL23u
Energy dependent

CME P19 Conjugated Rhodamine [3,109]

PEO44u-b-PCL20u Temperature, pH and energy dependent PC12 DiIC Only analyzed uptake of drug [110]

PEO5000-b-PCL2000
PEO5000-b-PDLLA5000

Direct drug transfer to cell membrane KB DiIC/DiOC
Conjugated Fluorescein [49]
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Table 2. Cont.

Material 1,2 Uptake Mechanism(s) 1 Cell type 3 Drug 1 Comments Ref.

PEO5000-b-PCL4000 Direct drug transfer to cell membrane MCF-7 Pheo
DiIC/DiOC

Micelle uptake is slow (>4 hr),
while release of drug is fast [111]

PEOz6000-b-PLA1100/2200/3900/8500/10000/13700
PEOz2600/3300/4500/5600/6700/8900-b-PLA4000

Energy dependent
Cholesterol dependent

Caveolae/lipid raft-mediated
endocytosis

MCF-7 Paclitaxel
Conjugated DEC

PEOz/PLA ratio of 1.7-2.0 for
optimal uptake [17]

Val-TPGS
Phe-TPGS

Energy dependent
CvME
CME

Macropinocytosis

Caco-2 Curcumin
Coumarin 6

Enhanced transport across
intestinal epithelial barrier, Only

analyzed uptake of drug
[47]

1 Abbreviations: N-octyl-O, N-carboxymethyl chitosan (OCC), N-mercapto acetyl-N′-octyl-O, N”-glycol chitosan (OGC), poly(poly(ethylene glycol) methyl ether
methacrylate)(P(PEGMEMA)), poly(methyl methacrylate) (PMMA), Poly(ethylene glycol)/poly(ethylene oxide) (PEG/PEO), poly(lactide-co-glycolide) (PLGA), poly(lactide) (PLA),
poly(ε-caprolactone) (PCL), poly((D,L-lactide) (PDLLA), poly(2-ethyl-2-oxazoline) (PEOz), D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), Clathrin-mediated endocytosis
(CME), Caveolae-mediated endocytosis (CvME), Doxorubicin (DOX), 5-dodecanoylaminofluorescein (DAF), Docetaxel (DTX), 3-methyladenine (3-MA), Chloroquine (CQ),
1,1′-Dioctadecyl-3,3,3′,3′-Tetramethylindocarbocyanine Perchlorate (DiIC), Pheophorbide-a (Pheo), 3,3′-Dihexyloxacarbocyanine Iodide (DiOC), 7-N,N-diethylamino-coumarin-3
(DEC). 2 When available, the average molecular weight of the polymer block is listed (Dalton). If the number of monomeric units was provided, it is denoted by a number followed by ‘u.’
If different sizes of the same polymer were used, they are listed separated by ‘/.’ 3 Information on the various cell lines: human colon cancer cell lines (Caco-2 and WiDr, HCT-116), human
lung cancer cell lines (Calu-3 and NCI-H441), human ovarian cancer cell line (A2780), human breast cancer cell line (MCF-7), mouse pluripotent embryonic carcinoma cell line (P19),
pheochromocytoma rat cell line (PC12), HeLa contaminant human tumor cell line (KB).
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3.1. PEO-b-PCL Micelles

Poly(ethylene oxide)-b-poly(ε-caprolactone) (PEO44u-b-PCL20u) micelles loaded with the
fluorphore DiI were originally reported to be taken up via endocytosis, since the uptake was time,
temperature, pH and energy dependent [110]. Uptake of conjugated rhodamine-PEO45u-b-PCL23u

micelles in P19 cells was also shown to follow an endocytic pathway, which provided direct evidence
of uptake of the whole carrier [109]. Furthermore, conjugated TMRCA-PCL23u-b-PEO45u micelles
showed an increased uptake compared to the free model drug [3].

Kerdous et al. [111] has shown that pheophorbide-a (Pheo) loaded, PEO5000-b-PCL4000 micelles
did promote cellular uptake in MCF-7 cells but did not alter the subcellular distribution of Pheo when
compared to the free drug. To follow the kinetics, the fluorescent signal was measured over time. This
showed that the uptake of the Pheo-loaded micelles involved two processes (a fast, high intensity and
slow, low intensity), while the uptake of the free drug could be described by a single rate. Förster
resonance energy transfer (FRET) analysis, by incorporation of both DiI (acceptor) and DiO (donor)
inside the micelles, showed that the nanocarriers as such were not effectively taken up by the cells
(4+ h), suggesting separation of the load (Pheo) followed by its rapid uptake (fast process) while
uptake of the nanocarriers corresponded to the slow process. The observed effect was not caused by
disassembly of the micelles in media, since the nanocarriers were found to be stable in culture media,
within cell cultures and in the presence of proteins.

Therefore, the uptake of the drug might be direct, via Brownian collisions between the nanocarrier
and membranes (collision mechanism) or via drug diffusion through the aqueous phase (diffusion
mechanism) before incorporation into the cell membrane (Figure 5A). These two proposed mechanisms
are based on the theoretical model developed by Kuzelova et al. [112]. Large Unilamellar vesicles and the
fluorescent sensitivity of Pheo to different environments (Figure 5B) were utilized by Kerdous et al. [111]
to experimentally determine the uptake mechanism. Based on these kinetic models and experiments,
it was suggested that the uptake of Pheo agrees most with the collision mechanism, in which there is
direct transfer of the drug to the cell membrane.

Till et al. [108] investigated Pheo-loaded, PEO2000-b-PCL2600/2800 and PEO5000-b-PCL4000 micelle
uptake in HCT-116 human colon cells and observed a similar effect as described by Kerdous et al. [111].
They suggested that the direct drug transfer might be facilitated by the PEO corona inducing dehydration
of the lipid bilayer and enhancing membrane permeability [49,111,113].

Interestingly, when the nanocarriers were loaded with the fluorphore DiI, instead of Pheo, direct
transfer was not observed [111]. Slow uptake of DiI-loaded nanocarriers was also previously shown
by Maysinger (PEO44u-b-PCL21u) [114] and Mahmud et al. [101] (PEO2000/5000/13000-b-PCL5000 and
PEO5000-b-PCL13000/24000). Pheo is less hydrophobic then DiI and might escape the nanocarrier more
easily. These results show/suggest that not only the nanocarrier itself but also the drug can influence
the uptake.

Therefore, Kerdous [111] and Till et al. [108] proposed that PEO-b-PCL micelles may be taken
up differently depending on size and cargo. (1) Slow uptake, due to low penetration of the drug
and carrier (e.g., DiI loaded), (2) drug release from carrier followed by transfer to the cell membrane
(diffusion mechanism), (3) direct transfer (collision mechanism, Pheo loaded) of the drug between
carrier and cell membrane.

These findings highlight the importance of not only tracing the drug but also the polymer in
uptake studies. Several methods for labelling of polymeric micelles and their stability in various media
were further reviewed by Savic et al. [115].
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drug and the membrane within minutes. The same uptake was observed in mammalian KB cells 
(Figure 6). Once inside the cell membrane, Chen et al. [49] suggested that the drug was further 
internalized via endocytosis, since both sodium azide and cytochalasin D treatment inhibited further 
uptake. This type of direct transfer seems similar to the one observed for PEO-b-PCL micelles 
described above. 

 

Figure 5. (A) Uptake of Pheophorbide-a (Pheo) loaded, PEO-b-PCL micelles might follow the
collisional or diffusional kinetic mechanism. Which describes the free aqueous concentration of
nanoparticles (NP), Pheo (PF), vesicles (V); Pheo associated to nanoparticles (PNP), vesicles (PV) and
the Pheo-Nanoparticle-Vesicle complex (NP-P-V). (B) Pheo shows a different emission spectrum when
present in DOPC vesicles (solid), nanoparticles (dashed) or phosphate buffered salin (PBS) (dotted),
which can be used to investigate the uptake mechanisms of PEO-b-PCL micelles (reprinted from
Reference [111] with permission from Elsevier).

3.2. PEG-b-PLA

Monodisperse poly(ethylene glycol)-b-poly(lactide) (PEG-b-PLA) micelles were already produced
by Yasugi et al. [116] in 1999 with a PDI of <0.1 and are still being investigated as a potential DDS [117].

Chen et al. [49] investigated the uptake of DiI loaded, fluorescein labelled PEG5000-b-PDLLA5000

polymeric micelles in KB cells. After a 24 h incubation, almost no uptake of the nanocarriers was
observed, while the model drug was. The fluorphores DiI (acceptor) and DiO (donor) were used as a
FRET pair to monitor the drug release into model membranes in real-time. The loss of FRET would be
proportional to the uptake of the drug, since FRET only occurs when the fluorphores are in very close
proximity to each other (below ca. 5 nm, loaded inside the nanocarriers). The results showed that
the model membrane acted as a ‘sink,’ facilitating an efficient transfer between the hydrophobic drug
and the membrane within minutes. The same uptake was observed in mammalian KB cells (Figure 6).
Once inside the cell membrane, Chen et al. [49] suggested that the drug was further internalized via
endocytosis, since both sodium azide and cytochalasin D treatment inhibited further uptake. This type
of direct transfer seems similar to the one observed for PEO-b-PCL micelles described above.

This drug transfer to the cell membrane was also observed by Xiao et al. [107] in the ovarian cell
line A2780. PEG5000-b-PLA5000 micelles loaded with the fluorphore Nile red (acceptor) and labelled
cell membranes with DAF (donor), were used for FRET analysis. No FRET should be observed, if
the whole nanocarrier would be taken up, since the distance between the donor and acceptor would
be to large (Figure 7). However, Xiao et al. [107] showed that Nile red gets effectively and quickly
released into the cell membrane (within 15 min). Although fusion of polymeric micelles with the cell
membrane (as shown in Figure 7) cannot be directly proven with this method, supporting AFM data
suggests roughening of the cell membrane upon exposure to micelles [107]. Nile red released into the
membrane was further internalized using an endocytic pathway, in which lipid raft/caveolae-meditated
endocytosis played a major role.
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A follow-up study further investigated this specific uptake mechanism using wild-type or
dominant negative forms of proteins, since chemical inhibitors can lead to nonspecific disruption in
the cell [5]. The inhibitor dynasore indicated that the uptake was dynamin dependent, which was
further confirmed with a dynamin-2 negative protein. The uptake was greatly reduced when using
a negative caveolin-1 protein but clathrin did not seem to be involved in the uptake. In conclusion,
uptake was deemed dynamin- and caveolin-dependent but clathrin-independent, in line with [107].

The uptake of PEG3000-PLA40000 nanoparticles was also investigated in Caco-2 cells, however only
the uptake of the drug was measured [100]. Since drug-nanocarrier separation cannot be therefore
excluded, the uptake did appear to be energy-dependent, lipid raft-mediated but caveolae-independent.

While such a direct drug release into a membrane might seem beneficiary in vitro, premature
release of a drug to other hydrophobic compartments in vivo could greatly reduce the DDS’s efficiency.
Cheng et al. [118] showed that intravenous (iv) injection of PEG-PLA micelles led to drug release
and carrier breakdown within 15 min. This breakdown was mainly caused by association of the
nanocarriers with alpha and beta globulins. Sun et al. [119] also showed that 80% of PEG-PCL/PLA
micelles, upon iv injection, quickly dissociated into unimers. This effect was most likely caused by shear
force and association with bloodborne proteins (particularly albumin). Therefore, the pharmacological
effects of simple polymeric micelles might be limited in vivo.
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3.3. PEG-b-PLGA

Poly(ethylene glycol)-b-poly(lactide-co-glycolide) (PEG-b-PGLA) seems to be a promising
DDS [120–122], capable of passing the blood brain barrier [123,124]. Liu et al. [125] investigated
PEG2000/5000-b-PLGA (different ratio’s) micelles on their biocompatibility and indicated that all micelles
presented very low cytotoxicity. PEG2000-PLGA7600 micelles have been conjugated successfully to
doxorubicin and the micelles showed a slow, steady release of the drug (over several weeks) and
enhanced uptake, compared to free doxorubicin [126]. However, literature on the specific uptake
mechanisms of this DDS is rather limited.

Zhang et al. [6] observed internalization of Courmarin-6 loaded, PEG-b-PLGA (Mn 10000) micelles
in MCF-7 cells after treatment of two hours. The model drug was only located in late endosomes and
lysosomes, possibly indicating that the model drug bypassed early endosomes. Since this effect is
also observed in caveolae-mediated endocytosis, Zhang et al. [6] suggested this as the main uptake
pathway. Since only the fluorescence of the drug was measured, no conclusions about the fate of the
nanocarrier can be made. The uptake of the drug/nanocarriers further induced autophagocytosis,
which the same group also observed with PEG-b-PLGA nanoparticles [23].

PEG2000-b-PLGA5000 micelles were previously created by Hu et al. [98] and the uptake in Calu-3 or
NCI-H441 cells investigated [99]. After an incubation of one hour, the drug was observed in the cytosol.
The uptake was deemed to be energy, cholesterol and clathrin dependent. Again, only the fluorescence
of the drug was observed, which does not clearly indicate the fate of the polymeric micelles. However,
the nanocarrier was loaded with both Nile red and Curcumin acetate and these could be colocalized.

4. Conclusions

Uptake of polymeric nanocarriers in mammalian cells is a complex process with many unknowns.
Most of the reviewed studies indicate energy-dependent endocytic uptake, which can follow caveolae-,
clathrin- or lipid-raft mediated pathways, as the main mechanism of internalization. As these pathways
are interrelated and can be up or down regulated by a cell upon exposure to inhibitors, singling
out a specific pathway is generally not possible. Interestingly, in many experiments where the
loaded drug and the ABCs forming a nanocarrier were traced separately, drug-nanocarrier separation
and direct drug transfer to the cell membrane were observed. While for in vitro experiments this
additional mechanism can be considered as advantageous, greatly accelerating the uptake, it should
be considered as indication of nanocarrier instability. Such a destabilization of nanocarriers can be
particularly important in vivo, leading to opsonization, reduced circulation time, undesired drug
distribution and toxicity due to incorporation of amphiphilic polymers into cell membranes. While
some observations suggest that amphiphilicity or moderate hydrophobicity of the loaded drug can
facilitate drug-nanocarrier separation, the factors leading to it have not yet received systematic
experimental attention. Better understanding of this phenomenon and uptake mechanisms in general
will lead to improved DDS with enhanced pharmaceutical efficiency and bring us one step closer to
controlling the nanocarrier internalization mechanisms by design.
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