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Abstract: Several tests were conducted to ratify the reliability and durability of the solar photovoltaic
(PV) devices before deployment in the real field (non-ideal conditions). In the real field, the temperature
of the PV modules was varied during the day and night. Nowadays, people have been bearing in
mind the deployment of PV modules on concrete roads to make use of the space accessible on roads.
In this regard, a comparative study on the failure and degradation behaviors of crystalline Si PV
modules with and without a concrete slab was executed via a thermal cycling stress test. The impact of
the concrete slab on the performance degradation of PV modules was evaluated. Electroluminescence
(EL) results showed that the defect due to thermal cycling (TC) stress was reduced in the PV module
with a concrete slab. The power loss due to the thermal cycling was reduced by approximately
1% using a concrete slab for 200 cycles. The Rsh value was reduced to approximately 91% and
71% after thermal cycling of 200 cycles for reference PV modules, respectively. The value of I0 was
increased to approximately 3.1 and 2.9 times the initial value for the PV modules without and with
concrete, respectively.

Keywords: renewable energy; thermal cycling; solar roadways; PV degradation; EL scanning; PV
cell parameters

1. Introduction

Over the years, the photovoltaic (PV) community has put great efforts into reducing the cost
per kWh of PV power, which is mainly dependent on the manufacturing costs of the PV system,
its efficiency, and its lifetime. In this regard, extensive research work is going into the study of
the reliability and durability of PV modules with a focus on their thermomechanical and corrosive
degradation under different operating conditions [1–3]. In particular, the temperature fluctuation in the
PV module heated by solar radiation causes thermal stress at the interfaces between layers, leading to
a significant module failure with a degradation rate of up to 0.8% per year [4]. It was reported that the
variation in the coefficient of thermal expansion of constituent materials bonded together to form the
module induces the thermomechanical stress [5]. Moreover, highly corrosive wet atmospheres, such as
marine environments, lead to the corrosion of some metallic parts and the deterioration of the properties
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of the protective coatings and plastics by the assimilation of salts, causing permanent damages that
could impair their functioning [6]. To reduce the testing time under simulated working conditions,
specific artificial aging tests were established by the International Electrotechnical Commission (IEC)
61215 and are a key point for efficient and fast development of PV modules optimized for the use in
specific climatic conditions [7,8]. The PV module testing procedures under combined climatic and
environmental stresses (temperature, thermal cycles, humidity, mechanical load, salt mist, etc.) allow
shortening the test time by using simulated test conditions, which are more severe than the actual field
operating conditions. Various standard test procedures have been used to evaluate the reliability and
identify possible manufacturing defects of the PV modules when operating under standard conditions.
Among these tests, thermal cycling (TC) is widely used to profile the progression of degradation,
allowing the investigation of the PV module’s reliability of construction, manufacturing processes,
and expected field performance.

Recently, solar-powered roads that incorporate embedded crystalline silicon (c-Si) modules have
attracted great interest since they can be used for transportation and power generation. A few examples
are finally being rolled out around the world to replace asphalt roads with solar panels [9,10]. However,
since the power output of PV modules is affected by various environmental factors, it is necessary
to assess their durability/reliability as a function of different aging conditions. Although numerous
studies have been conducted [11–13], the temperature and corrosion-induced degradation remain
important issues, and further work is required to elucidate the response of the PV modules to these
aging factors.

In this work, a comprehensive study on the failure and degradation behaviors of c-Si PV modules
fixed over a concrete slab is performed via a TC stress test, and a relationship between the device
performance and TC duration is established. Combined analysis techniques are employed to examine
the degradation mechanisms in the PV modules subjected to the TC stress test. Current–voltage (I-V)
measurements are performed to determine the PV cell parameters (shunt resistance Rsh, series resistance
Rs, diode ideality factor n, and reverse saturation current I0) under the illuminated condition concerning
the observed degradation of the PV module performance. An electroluminescence (EL) imaging
technique is also used for the detection of defects such as microcracks and poor electrical contacts and
the analysis of degradation processes that occur during the test.

2. Theoretical

Illuminated I-V characteristics based on a one-diode model [14,15] of p-n junction solar cells
under steady state condition is designated by Equation (1) [16]

I = Iph − I0
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where Iph is the photogenerated current and VT (= kT/q) is the thermal voltage (k = Boltzmann’s constant,
T = operating temperature, and q = elementary electronic charge).

A one-diode exponential model-based analytical method is used to extract the PV cell parameters
of the PV modules at a given temperature under illumination conditions [16,17]. The following
equations can be derived to extract the values of Rsh, Rs, n, and I0:
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I0 =
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Voc

Rsc
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e−

Voc
nVT (5)

where Rsc and Roc are the inverse of the slope (dI/dV)−1 at short circuit (V = 0, I = Isc) and open circuit
(V = Voc, I = 0) conditions, respectively. Equations (2)–(5) can be used to extract the values of PV
cell parameters using the values of Isc, Voc, Rsc, Roc, Im, and Vm of single I-V characteristics under
illumination conditions.

3. Experimental Details

The study has been carried out on monocrystalline PV modules (approximately 20 W) with an area
of 1540 cm2. The rigid modules included 36 cells, with an Al frame (cell area = 31.2 cm2). The modules
were subjected to a thermal cycling (TC) test to evaluate the ability of the module to withstand thermal
mismatch, fatigue, and other stresses caused by temperature fluctuations. The test was conducted
using an environmental chamber equipped with an automatic temperature control (−40 to 85 ◦C).
The TC stress was conducted using a chamber (NEC EC−1100, M/s. NET Co. Ltd., Suwon, Korea).
First, the temperature of the environmental chamber was decreased from 25 ◦C to −40 ◦C in 35 min;
then, the temperature was kept constant at −40 ◦C for 30 min. The temperature was increased from
−40 ◦C to 85 ◦C in 90 min.

The PV modules were mounted on a concrete slab to protect the back surface from exposure in an
environment [18]. The back surface of the PV modules was isolated from the environment by fixing
on the metallic isolation box (filled with concrete), and the gap between the metallic wall and frame
of the PV module was covered with insulating tape. The PV module without concrete, in which the
backside of the PV module was unprotected, was used as a reference PV module. Figure 1 shows the
optical images of PV modules in the thermal cycling chamber. The PV modules were taken out from
the environmental chamber after every 20 cycles for I-V and electroluminescence (EL) measurements
and appearance.
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Figure 1. Optical image of photovoltaic (PV) modules inside the thermal cycling chamber.

I-V characterization was done after every 20 thermal cycles of each batch. The I-V measurements
were carried out under a 100 mW/cm2 intensity AM 1.5G solar spectrum using a Keithley 2420
source-meter along with a solar simulator (SPI−SUN SIMULATOR 4600SLP, M/s Spire, The Hague,
The Netherlands). All measurements were done after stabilizing the temperature of PV modules
(at 25 ◦C). The illumination intensity of the solar simulator was calibrated using a reference Si solar
cell (M/s. PV Measurements, Washington, DC, USA). EL scanning was carried out after every 20
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cycles using the EL system (TE−2000, M/s. TNETECH, Gyeonggi-do, Korea) equipped with a camera
(HR–830SensoCam, M/s. Sensovation, Radolfzell, Germany).

4. Results and Discussion

4.1. Performance Parameters Analysis

In this study, the c-Si PV modules were fixed on a concrete slab using an isolation box and
insulating tape to reduce the heat flow toward the back surface of the PV modules. Thus, two PV
modules with a concrete slab were analyzed, while other PV modules without a concrete slab were
used as a reference. It is worth noting that the use of the concrete leads to an improvement of
the normalized power values compared to that of a reference PV module. I-V characteristics were
measured periodically (after every 20 cycles) during the TC test (200 cycles) to profile the progression of
degradation. The optical images of the reference PV module before and after TC (100 and 200) cycles are
shown in Figure 2. However, Figure 3 shows the optical images of the PV module with the concrete slab
before and after TC (100 and 200) cycles. For the further investigation of the performance degradation,
some of the performance parameters of the PV modules (maximum power Pm, short-circuit current Isc,
open-circuit voltage Voc, and efficiency η) were extracted from the I-V curves, and their dependency on
the thermal cycling was discussed concerning the EL images.
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Figure 3. Optical images of the PV module with a concrete slab after thermal cycles of (a) 0, (b) 100,
and (c) 200 cycles).

Figure 4 depicts the measured I-V characteristics for both the PV modules before and after
thermal cycles (100 and 200). These characteristics showed clear signs of series resistance increase,
which is mainly attributed to the thermal fatigue undergone by the PV module. The corresponding
power-voltage (P-V) characteristics are shown in Figure 5.
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without concrete and (b) with concrete.

The values of Pm, Isc, Voc, and ηwere determined from the I-V data, and dependency is illustrated
in Figure 6. As can be seen in Figure 6a–c, a reduction in maximum power are observed during the
thermal cycle, along with a decrease in Isc and Voc. This degradation is evident after 40 cycles with
a significant variance in power loss. The Pm value of the PV module with concrete was reduced to
98.9% and 97.1% of its initial value (before TC) after thermal cycling of 100 and 200 cycles, respectively.
However, the degradation in the reference PV module was slightly higher than the concrete PV module.
The Pm value of the reference PV module is reduced to 97.6% and 96.1% of the initial value, respectively.
The Isc value of the concrete PV module is slightly increased up to 100 cycles, while the reduction in
the Isc of reference PV module started after 40 cycles. This slight improvement in the Isc might be due
to the reduction of the resistive loss caused by proper contact formation. The Isc values after 200 cycles
were reduced by 97.4% and 98.7% for the reference and concrete PV modules, respectively. The Voc

value of both the PV modules started to reduce after 20 cycles. However, the rate of reduction of Voc

value for the PV module with concrete was higher than the reference PV module. After 200 cycles,
the obtained Voc value was reduced by 1.4% and 1.0% for the reference and concrete PV modules,
respectively. Moreover, the Voc and Isc losses for the concrete PV module were lower compared to
those obtained for the reference PV module. The power degradation for the concrete PV module after
200 cycles was approximately 2%, while the maximum power loss measured for the reference module
was approximately 3%. These values are below the limit of 5% allowed by the IEC. On the other hand,
the η value was reduced to approximately 3% and 2% of its initial value for the reference and concrete
PV modules, respectively.
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Figure 6. The variation of (a) maximum power, (b) short circuit current, (c) open-circuit voltage, and (d)
conversion efficiency with thermal cycles.

To identify the specific degradation mechanisms and module defects that manifest during the TC
test, EL images were taken for all modules. Figure 7 shows the EL images of the reference PV module
after different thermal (0, 40, 80, 120, 160, and 200) cycles. There was no obvious change in the EL
images of the reference module up to 40 thermal cycles, while the brightness of the EL has diminished
in all the areas of the module after 40 cycles. As a result of the extreme temperatures changes during
the thermal cycling test, the electrical connections in the PV module are practically stressed. Thus,
thermal fatigue-induced defects lead to an increase in the series resistance of the cells, which directly
contributes to power degradation. It is well known that the thermal stresses can weaken the electrical
connections and soldering in the module and therefore increase the contact resistivity. The serial
resistance Rs increases, and consequently, the maximum power of the module decreases. EL images of
the PV module with concrete are displayed in Figure 8. The EL results also showed similar behavior
with the appearance of dark areas during the TC test. However, the darkness of the EL images in the
concrete PV module is lower than the reference module. It can be inferred from these results that a
lower number of defects was generated in the PV modules with concrete, which revealed that the
impact of TC stress on the PV module containing a concrete slab is smaller than the reference module.
This confirms that the impact of the temperature on the PV modules can be reduced through using
concrete, which eventually enhanced the performance lifetime of the PV modules.
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4.2. PV Cell Parameters Analysis

The performance parameters are directed via PV cell parameters. The origins of the degradation
in the performance parameters can be investigated by analyzing the PV cell parameters of the PV
cells/modules. The degradation of the performance parameters can also be explained via the PV cell
parameters, whose variation is shown in Figure 9. The value of Rsh of the PV module with concrete is
initially increased with the increase in the number of thermal cycles. The Rsh value up to 80 cycles is
slightly higher than the initial value (before thermal cycling). With a further increase in the thermal
cycle, the Rsh value started to decrease. However, the Rsh value of the reference PV module is constantly
decreasing with the increase in the thermal cycle. For the reference PV module, both the surface
(front and back) are exposed to the environment. However, the back surface of the PV module with
a concrete slab is covered, which isolates the back surface from exposure to the environment. Thus,
the impact of TC on the PV module with concrete is slightly lower than the reference PV module.
Usually, Rsh is due to the parallel current flow through a highly conductive path, which is caused by
local defective regions [19]. The defective regions contain a huge number of traps. These traps act as
a sink for charge carriers [20,21]. The surface traps can be increased with an increase in the thermal
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cycle duration [22]. The generation of traps can create inhomogeneity in the vicinity [23]. Thus, the Rsh
values are decreased with the thermal cycle, which results in an increase in the leakage current through
the p–n junction or from the edge [19]. A low value of Rsh has a miserable impact on Voc. Therefore,
the output power or overall efficiency is reduced. The Rsh value is reduced to approximately 71% and
91% after thermal cycling of 200 cycles.
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In both the PV modules, the value of Rs slightly decreased up to 100 cycles. With the increase in
the number of cycles, Rs started to increase. A similar variation in the Rs value is obtained for both the
PV modules. After 200 cycles, the Rs value was increased to approximately 108% and 109% for the
reference and concrete PV modules, respectively. The Rs of a PV device is the collective resistance of the
base material of the PV cell, the contact resistance between PV material and contacts, metallic resistance,
etc. Initially, the decrease in the Rs value with the increase in the thermal cycle is mainly due to the
reduction of the contact resistance. However, furthermore, the increase in thermal cycling caused
the rise in the value of Rs due to the increase in the contact resistance at the metal contact–solder
interface. Both the n and I0 values are increased with an increase in the number of cycles. However,
the variation of the n and I0 is lower for the PV modules with concrete. The increment in the value
of n is 4% and 5% for the reference and concrete PV modules, respectively. Moreover, the value of
I0 is increased to approximately 3.1 and 2.9 times the initial value for the reference and concrete PV
modules, respectively. n and I0 are indicative of the recombination in the PV devices, which rigorously
reduced the performance of the PV modules [21,24]. An increase in the n value decreases the value of
the curve factor (CF), while Voc decreases with the increase of I0 [15]. Thus, the overall performance is
reduced with the increase in the n and I0 values.

5. Conclusions

The impact of the concrete slab on the performance degradation of PV modules was evaluated as
per IEC standard TC stress testing conditions. EL results showed that the defect due to TC stress was
reduced in the PV module with a concrete slab. After 200 thermal cycles, approximately 3% and 2%
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power loss was obtained for the reference and concrete PV modules, respectively, which revealed that
the performance degradation in the concrete PV module was reduced via protecting the backside of
the PV modules. The concrete slab can slightly protect the PV module from thermal soaks. Moreover,
the Voc and Isc losses for the concrete PV module were also lower compared to those obtained for
the reference PV module. PV cell parameters were determined using an analytical method based
on a single diode model. The obtained PV cell parameters were examined to investigate the loss
mechanism. The Rsh value was reduced to approximately 91% and 71% after thermal cycling of 200
cycles for reference PV modules, respectively. However, the Rs value was increased for both the PV
modules. Moreover, the value of n was slightly increased in both the cases, while the value of I0
was increased to approximately 3.1 and 2.9 times the initial value for the reference and concrete PV
modules, respectively.
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