
materials

Article

Functionally Graded Scaffolds with Programmable
Pore Size Distribution Based on Triply Periodic
Minimal Surface Fabricated by Selective
Laser Melting

Xueyong Zhou 1, Yuan Jin 1,2,* and Jianke Du 1,*
1 School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China;

1811081107@nbu.edu.cn
2 State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering,

Zhejiang University, Hangzhou 310027, China
* Correspondence: jinyuan@nbu.edu.cn (Y.J.); dujianke@nbu.edu.cn (J.D.)

Received: 27 October 2020; Accepted: 6 November 2020; Published: 9 November 2020
����������
�������

Abstract: Functional graded materials are gaining increasing attention in tissue engineering (TE)
due to their superior mechanical properties and high biocompatibility. Triply periodic minimal
surface (TPMS) has the capability to produce smooth surfaces and interconnectivity, which are very
essential for bone scaffolds. To further enhance the versatility of TPMS, a parametric design method
for functionally graded scaffold (FGS) with programmable pore size distribution is proposed in this
study. Combining the relative density and unit cell size, the effect of design parameters on the pore
size was also considered to effectively govern the distribution of pores in generating FGS. We made
use of Gyroid to generate different types of FGS, which were then fabricated using selective laser
melting (SLM), followed by investigation and comparison of their structural characteristics and
mechanical properties. Their morphological features could be effectively controlled, indicating that
TPMS was an effective way to achieve functional gradients which had bone-mimicking architectures.
In terms of mechanical performance, the proposed FGS could achieve similar mechanical response
under compression tests compared to the reference FGS with the same range of density gradient.
The proposed method with control over pore size allows for effectively generating porous scaffolds
with tailored properties which are potentially adopted in various fields.

Keywords: functionally graded scaffold; triply periodic minimal surfaces; programmable pore
size distribution; mechanical property; selective laser melting

1. Introduction

Scaffolds that are commonly fabricated using metallic materials and bioactive glasses have been widely
used for rehabilitative therapy of segmental bone defects [1–4]. The mechanical properties of scaffolds are
expected to match that of natural bone tissue for transferring stress adequately [5,6]. The mechanical
strength of bioactive glass scaffolds can be modulated from many aspects, including chemical component
adjustment, processing technique, and porosity [7]. However, the elastic moduli of metallic materials
are significantly higher, resulting in the surrounding bone tissue not being able to bear adequate load
and beginning to degenerate since the osteocytes do not have adequate stress stimulation. This issue
caused by the mismatch in the elastic modulus of the scaffold and the bone is known as the stress
shielding effect [8,9]. To avoid this issue, the scaffold is generally designed as a porous structure to
reduce the elastic modulus to the level of human bones [10–12]. Moreover, the distributed pores within
the scaffold can effectively strengthen contact between the bone and the scaffold by providing the
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necessary space for osteocytes and other cells [13,14]. Therefore, scaffold design plays an important
role in improving the properties of fabricated porous scaffolds.

A triply periodic minimal surface (TPMS) is a 3D surface with a mean curvature of zero and
periodic structures in three coordinate directions and is implicitly expressed using mathematical
equations [15,16]. The function-defined surface can be directly enclosed to generate network-based
structures or thickened to create sheet-based structures [17]. Porous scaffolds based on TPMS
possess various excellent properties, such as continuous and smooth surface, interconnected network,
and accurate porosity control [18–21]. There have been a number of studies concentrating on the
performance of TPMS scaffolds, such as surface curvature [19], fatigue behavior [22], and biomechanical
influence [23]. These studies indicate that TPMS scaffolds are not only conducive biologically to cell
penetration and nutrient diffusion [24] but also beneficial mechanically for mimicking the elastic
modulus and strength of bone tissue [25]. Thanks to the development of additive manufacturing (AM),
TPMS scaffolds with complex inner structures can be fabricated with high precision, reproducibility,
and reasonable cost [26–28]. As a result, the TPMS scaffolds can be designed with increasing complexity
at both the macro-scale (target specific geometry) and micro-scale (porous topology), offering feasibility
for designing functionally graded scaffold (FGS).

Inspired by graded structures in nature and their outperformed properties including high porosity,
specific stiffness, energy absorption, and tissue friendly, FGS has drawn increasing attention from
different fields [5,29–32]. The combination of mechanical and biological properties with grading
distribution can better match biomechanical properties using local manipulation of the internal pore
architectures and can meet the biological requirements for bone tissue regeneration as well. Besides,
another advantage of FGS is the possibility to optimize the biological and mechanical performance by
properly tuning design parameters to control the spatial distribution of pores in different sizes [33].
The graded porous structures are expected to exhibit similar morphology and mechanical properties
with natural bones; multiple methodologies have been proposed for the designing process according
to the required biological and mechanical properties [34,35]. Both network and sheet-based TPMS
scaffolds can be used to construct FGS by continuously changing several morphological parameters,
such as pore size, porosity, and strut thickness.

The mathematics-based modeling approach for the TPMS scaffold enables the generation of
FGS with different pore geometries and architectural features readily [36]. There are mainly three
methodologies to construct FGS using TPMS structures. First, a gradient in relative density can be
achieved by defining the porous domain of unit cells as a function of location vector. This strategy
has been widely used for obtaining gradients of biological and mechanical properties [35,37,38].
Afshar et al. [37] chose two different TPMSs (P and D surfaces) to construct linearly graded porosity
scaffolds to explore their mechanical responses for stretching and bending dominated deformations
compared to their corresponding uniform porous structures. Li et al. [39] tried to achieve better
structural or thermal performances by controlling the relative density distribution. Second, grading cell
types can be generated with a transition between different cell types by properly selecting the basic
substructures and by arranging the control points [40]. Yang et al. adopted this method to generate
graded porosity based on micro-CT data [41] and to construct composite porous scaffolds [42] and
stochastic porous structures [43]. Third, the gradient in cell size is commonly observed within human
bone and can be accomplished by continuously varying the coefficients that determine the cell size
in the implicit functions [44]. Al-Ketan et al. investigated the mechanical properties numerically
and experimentally for sheet-based TPMS scaffolds with grading in cell size, uncovering that testing
along one perpendicular direction exhibits higher Young’s moduli values than the other perpendicular
direction and the parallel direction [45].

Clearly, gradients in the relative density, cell type, and cell size of TPMS FGS can be considered
effective strategies to optimize the overall performance as well as to enhance the controllability over
their physical, mechanical, and geometrical properties. Various applications with grading properties
can be accomplished with parametric design on parameters, as mentioned above [45]. However,
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an issue behind all of these current methods for constructing TPMS-based FGS is that the pore
size would change accordingly when one of design parameters varies (relative density, cell type,
and cell size). Specifically, since the cell size or the relative density is commonly kept constant for the
gradients in relative density or the gradients in cell size, the obtained pore size distribution is directly
determined with consideration of only one design parameter and it cannot be modulated further.

Various studies have been conducted to investigate how the pore sizes of porous scaffolds affect
their biological performances, and the results revealed that the ability of scaffolds for cells to grow
and proliferate is pore size-related [46–49]. Therefore, the pore size should be fully considered in the
scaffold design to achieve graded scaffolds similar to natural bones. As for an FGS designed based on
TPMS, the pore size distribution is also required to be programmable to enhance the versatility of the
fabricated scaffolds.

In this work, a type of FGS is proposed by changing the spatial distribution of pores to achieve
a gradient of relative density, while the pore size is also programmable within the whole scaffold.
To verify the feasibility and effectiveness of the proposed method, a typical FGS with constant pore
size is adopted in this work for investigation. It should be noted that different gradients on the
pore size can be generated using the proposed method. It is noteworthy that both network and
sheet-based TPMS structures will be discussed here since they can be both tuned to design scaffolds
with biological and mechanical properties similar to that of natural human bones [50]. On the other
hand, Gyroid is a widely used TPMS structure and much more suitable in biological contexts [17], so all
the samples in this study are designed based on the Gyroid unit cell and then fabricated using Ti6Al4V,
for which excellent mechanical properties and biocompatibility have been extensively studied [14,51].
In Section 2, the design and modeling of the proposed FGS is described. Section 3 illustrates the
process of fabrication, characterization, and mechanical evaluation. Section 4 presents the observed and
recorded results before concluding by summarizing the main contributions of this work in Section 5.

2. Design and Modeling of TPMS-Based FGS

2.1. TPMS-Based Scaffolds

As a type of implicit surface, a Gyroid surface can be implicitly described using the following
level-set equation [52]:

FG ≡ sin(X) cos(Y) + sin(Y) cos(Z) + sin(Z) cos(X) = c (1)

where X = 2απx, Y = 2βπy, and Z = 2γπz, in which α, β, and γ are coefficients determining the size of
unit cells in the x, y, and z directions, respectively. In the equation, the function FG determines the
surface topology, while the level parameter c controls the volume fraction of two domains separated
by the surface. If one domain is solidly filled while the other is left empty, a network-based porous
structure would be generated as shown in Figure 1a. Generally, the solid volume is defined as
the domain where FG ≤ c for subsequent generation of porous structures together with a specific
outer boundary. On the other hand, a sheet-based porous structure can be obtained using a Boolean
difference operation of two TPMSs with the same topology FG but different level parameter c, as shown
in Figure 1b.

The relative density ρ is an important parameter for porous materials that directly affects some
mechanical properties, such as elastic modulus and yield stress [33]. For a specified Gyroid unit
cell, ρ is directly determined by the level parameter c but is independent of α, β, and γ. Therefore,
the relationship between parameter c and relative density ρmust be established. An approximately
linear relationship can be found between them by plotting with several Gyroid samples, as shown in
Figure 1c, which is consistent with previous reports [53]. On the other hand, the cell size, determined by
α, β, and γ, can also affect several properties such as the pore size and surface area, which are important
for cell adhesion and growth. The effects on the surface area exerted by cell size (determined by α, β,
and γ) and relative density (determined by c) have been investigated [44].
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Figure 1. Illustration of Triply periodic minimal surface (TPMS) scaffolds: (a) a network-based scaffold,
(b) a sheet-based scaffold, and (c) the relationship between relative density and the level parameter for
two types of scaffolds.

2.2. Functional Gradients with TPMS

FGS can be constructed by varying the level parameter or the values of α, β, and γ spatially
depending on a certain function or tabulated data to achieve smooth variation of corresponding
properties. A gradient in the relative density would appear when the level parameter c is designed as
a continuous function in 3D space, and its mathematical function can be expressed as follows:

F∗G ≡ sin(X) cos(Y) + sin(Y) cos(Z) + sin(Z) cos(X) = c(x, y, z) (2)

where c (x, y, z) is obtained based on the required relative density of certain points. If the relative
density can be described as an s continuous spatial function to achieve complex distribution of the
elastic modulus, a continuous FGS with Gyroid unit cells can be obtained. As shown in Figure 2a,
a Gyroid-based FGS is generated based on the designed distribution of level parameter, which can
perfectly map the expected material properties. In the example, the relative density ranges from
20% to 80% and the level parameter changes from −0.937 to 0.887 and from 0.303 to 1.21 for network
and sheet-based FGS, respectively. Variation on the pore size can be achieved by varying the values
of α, β, and γ while preserving a constant level parameter to guarantee a constant relative density.
The mathematical function of the FGS with varying cell size can be expressed as follows:

F#
G ≡ sin(X′) cos(Y′) + sin(Y′) cos(Z′) + sin(Z′) cos(X′) = c0 (3)

where X′ = α(x, y, z)·x, Y′ = β(x, y, z)·y, and Z′ = γ(x, y, z)·z, in which these functions control
the cell size in three directions and should satisfy some criteria to avoid shape distortion [45].
Figure 2b shows an example of the FGS constructed by the variation of cell size based on network and
sheet structures, respectively.
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Figure 2. Examples of a Gyroid-based functionally graded scaffold (FGS) using network and sheet
structures by (a) grading level parameter and (b) grading cell size.

2.3. FGS with Programmalbe Pore Sizes

The current strategies as described in the last section for designing FGS cannot achieve distributed
pores with programmable pore sizes. Specifically, the change of level parameter with a given Gyroid
unit would change the pore size to affect the overall porosity in the relative density gradient, and the
pore size would also vary accordingly in the cell size gradient. The pore size distribution cannot be
further tuned after the gradient design with the current methods. To satisfy more circumstances for
FGS with specified pore size distribution, we design a new type of FGS by properly adjusting the
relative density and cell size simultaneously to achieve programmable pore sizes. The mathematical
expression of this type of FGS can be described as in Equation (4).

F∗#G ≡ sin( X′) cos( Y′) + sin( Y′) cos( Z′) + sin( Z′) cos( X′) = c(x, y, z) (4)

First, we need to confirm the relationship between pore size and adjustable variables,
including level parameter (c) and coefficients determining the cell size (α, β, and γ). As discussed above,
a negative correlation exists between the pore size and the level parameter when the cell size is specified.
On the other hand, the pore size increases gradually with an increase in the cell size proportionally.
Therefore, the expected properties of the target scaffold can be quantified and transferred into a 3D matrix
at first to generate the density distribution for subsequent calculation of the design parameters. As the
material properties of a porous scaffold are mainly affected by their relative density distribution [54],
the density values for all points can be organized into a tabulated data. After that, cell size would
be graded based on the calculated density matrix and the given pore size distribution using bilinear
interpolation method. To achieve programmable pore sizes, the level parameter at each point c (x, y, z)
is supposed to be adjusted based on the required density simultaneously. The above procedure can
be described in a flowchart, as illustrated in Figure 3. Therefore, an FGS with programmable pore
sizes that satisfies the required properties can be generated by simultaneous consideration of level
parameter and cell size.
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2.4. Modeling of FGS with Programmable Pore Sizes

Hence, an FGS with expected heterogeneous properties can be generated by simultaneously
changing relative density and cell size, while the pore size is also programmable. The relative density
is generally prior to other factors in designing FGS [55]. Based on a given 3D matrix describing the
expected relative density, the porosity at each point equals to value of 1 − ρ(x, y, z). At the same time,
the pore size at each point p(x, y, z) is also specified based on the intended usage, so the cell size
distribution corresponding to each point s(x, y, z) can be calculated. Unlike general scaffolds with
regular pores, the pore shape of Gyroid-based scaffolds is irregular and hard to be quantified using a
2D length. As illustrated in Figure 1a,b, the topology of a pore in a Gyroid unit cell is always changing,
so it is reasonable to quantify the pore size by its volume within a unit cell. Therefore, s (x, y, z) can be
expressed as follows:

s(x, y, z) =
p(x, y, z)

1− ρ(x, y, z)
(5)

Based on the relationship between unit cell size and coefficients, α, β, and γ can be readily
expressed as follows:

α(x, y, z) = β(x, y, z) = γ(x, y, z) =
2 ∗π

3
√

s(x, y, z)
= 2 ∗π ∗ 3

√
1− ρ(x, y, z)

p(x, y, z)
(6)

Therefore, the coefficients (α, β, and γ) in the implicit function at each point can be obtained
based on Equation (6), and the level parameter c (x, y, z) is simultaneously determined according to
Equation (7).

c(x, y, z) = H−1[ρ(x, y, z)] =

 ρ(x,y,z)−0.5083
0.329 network structure

ρ(x,y,z)
0.661 sheet structure

(7)

where H is the function defining the relationship between the level parameter and relative density and
can be obtained from Figure 1c.

3. Fabrication and Characterization

3.1. Model Preparation for Fabrication

The topology and volume fraction of Gyroid-based structures are totally controlled by the level
parameter and cell size based on Equation (4). When the level parameter and cell size have been defined
in a 3D data field, the solid model can be created by extracting the surfaces using the Marching Cubes
(MC) algorithm [56]. After that, triangular facets are obtained and saved as STL (Stereo Lithography)
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models. Here, Gyroid-based structures with functional gradient were generated using C# codes by
defining the equations of TPMS surfaces as well as by providing the Boolean operations between
the defined surfaces and the specified outer boundary (a cube in this work). It should be noted that
a challenge in using the MC algorithm for surface extraction is achieving a balance between high
accuracy and a proper file size. As a result, the transition area between the TPMS surface and the outer
boundary has some sharp geometries which are not beneficial for fabrication, so the Magics software
(Materialise, Leuven, Belgium) was used to repair these geometries.

Four different FGSs were studied, as illustrated in Table 1. A linear gradient in the relative
density from 0.4 to 0.2 along the Z axis was assigned for all samples. The side length of samples
was 15 mm. An FGS with constant pore size at the value of 18.9 mm3 was chosen in the first two
groups as a typical FGS with programmable pore sizes for investigation. Based on Equations (5)–(7),
the coefficients (α, β, and γ) varied from 1.988 to 2.189, while the level parameter changed from
H−1(0.4) to H−1(0.2) accordingly. The FGSs with constant pore size based on network (NP) and sheet
structures (SP) were generated using these parameters. The void parts were also rendered for better
visualization. It can be observed that porosity and interconnectivity were achieved with the proposed
method. The pore size (represented by a green color) was kept constant based on the design intension,
while the relative density and the cell size were linearly changed, as can be seen from the side view.
For comparison, another two groups of general FGS with constant cell size (NC and SC) were also
generated. The coefficients were set as 2.088 to obtain constant and similar unit cell size with the edge
length of 3 mm. As can be seen, a continuous gradient in the relative density was obtained and the unit
cell size was always the same within the whole structure. The pore size in the latter two groups was
varied as the factor determining the relative density. The nominal average relative density of samples
can be calculated by the volume fraction of solid parts.

Table 1. Analysis and comparison of a sheet/network-based FGS with programmable pore sizes and
constant cell size: (a) sheet-based FGS with programmable pore size (SP), (b) network-based FGS with
programmable pore size (NP), (c) sheet-based FGS with constant cell size (SC), and (d) network-based
FGS with constant cell size (NC).

Type Solid Part Void Part Combined
Structure

Pore
Distribution Fabricated Part

(a) SP
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3.2. SLM Fabrication and Visual Characterization

All samples were fabricated using the DiMetal-100 SLM machine (LeiJia, Guangzhou, China) with
Ti6Al4V ELI powder (Oerlikon Metco Inc., Westbury, NY, USA), and a 150-W fiber laser with a beam
diameter of 60–80 µm was assembled. The layer thickness was set to 30 µm for adequate accuracy.
The particle size distribution of the powder was d10 = 21.0 µm, d50 = 34.0 µm, and d90 = 46.0 µm,
and the chemical composition of the powder is listed in Table 2 provided by the supplier. All fabricated
samples were carefully cleaned through a sandblasting posttreatment to remove adhered powder
particles using a sandblasting machine.

Table 2. Chemical analysis of the Ti6Al4V ELI powder.

Element Al C Fe Ti V T.A.O. H O

wt% 6.39 0.02 0.16 89.33 3.95 0.05 0.002 0.10

A digital microscope (Axio imager A2m, Zeiss, Oberkochen, Germany) was used to capture
microscopic images of additively fabricated samples, especially focusing on the surface morphologies
of samples in order to evaluate their manufacturability. The overall density of samples was calculated
by dividing their masses by the mass of a solid cylinder with the same dimensions. The measured
mass might be slightly larger due to adhered particles inside the fabricated specimens. The mass was
weighed using an electronic balance, and dimensions were measured using the digital micrometer to
calculate the volume. The surface area was approximately evaluated based on the models.

3.3. Investigation of Mechanical Properties

For investigating the mechanical properties, uniaxial compressive tests were conducted on a MTS
testing machine (Instron, Shanghai, China) equipped with a maximal load capacity of 200 KN. The FGS
samples were compressed under displacement-controlled conditions with a loading rate of 2 mm/min,
accompanied by a video camera capturing the deformation behaviors. The applied loading direction
aligns with the printing direction for all samples. The compression process was terminated when the
loading displacement reached at a certain value (8 mm) considering the maximal strain. The record
force and displacement for each sample would be used to obtain the corresponding stress–strain curves
considering the height and cross-sectional area of samples. The Young’s modulus was calculated by
the slope in the elastic stage, and the yield stress was determined considering a strain offset of 0.2%.
The plateau stress was the average value of the stresses between 0.2 and 0.5 of the strain.

4. Results and Discussion

4.1. Microstructural Characterization

The additively manufactured FGS samples of each group were weighted and then used to calculate
their actual relative densities. The average masses and corresponding deviations for each group
(5 replicas) are listed in Table 3, and the bulk density was 4.52 g/cm3 based on preliminary studies
on fabricated specimens. Hence, their actual relative densities were calculated by dividing the mass.
Deviations in the relative densities (RD) between fabricated samples and designed CAD models
existed, as can be observed. The reasons behind the deviation can be attributed to the technical
limitations of selective laser melting (SLM). The powder particles close to the boundary would adhere
to the fabricated parts due to the thermal difference between unmolten and molten powder [45].
At the same time, the molten particles along the tracking paths are not heated evenly; partial melting
surrounding the edge of the paths would appear, resulting in more bonded powders. Moreover,
there are many small geometric features in the designed FGS models causing the bonded particles to
be not easy to clean after fabrication. That is why the error of sheet-based scaffolds is larger than that
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of network-based ones. All of these mentioned process-related factors can result in excess of the actual
RD over designed models.

Table 3. Relative densities (RD) of fabricated samples.

Type Grading Density Measured Mass (g) Theoretical RD Actual RD Error

SP 0.2–0.4 4.75 ± 0.16 0.2936 0.3113 6.0%
NP 0.2–0.4 4.62 ± 0.27 0.2945 0.3028 2.8%
SC 0.2–0.4 4.78 ± 0.14 0.2951 0.3133 6.1%
NC 0.2–0.4 4.58 ± 0.19 0.293 0.3002 2.5%

Figure 4 shows the captured surfaces of the fabricated samples. As for the types of SP and NP,
the change in relative density was achieved by simultaneously controlling the level parameter and
unit cell size to confirm programmable pore size. The pore sizes on the top surface (Figure 4a,c) and
the bottom surface (Figure 4b,d) of the fabricated FGS samples were supposed to be the same. On the
other hand, the pore sizes were always changing along the grading direction to confirm constant unit
cell size for the types of SC and NC. The pore size and wall thickness could be measured from the
captured pictures, and their changes along the grading direction are illustrated in Figure 4e. Take SP as
an example, the designed relative density at the bottom surface was 0.4, the edge length of a unit cell
was 3.43 mm, while it decreased to 2.57 mm on the top surface with a decreased relative density of 0.2.
The wall thickness was affected by the level parameter as well as the unit cell size. The measured wall
thickness at the bottom surface is about 0.32 mm, while it reduces to 0.12 mm on the top. As illustrated
in Figure 4e, both SP and NP could achieve uniform pore size within the whole scaffold by varying the
wall thickness and unit cell size at the same time. The wall thickness changed with the same trend as
the unit cell size to make sure that the pore size unchanged. However, the unit cell size was always the
same in SC and NC, the pore size decreased in company with the increasing wall thickness based on
the expected distribution of relative density.
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Surface area plays an important role on cell adhesion for scaffolds, and its gradient caused by
the design parameters was discussed here. From a three-dimensional perspective, the surface area
of a scaffold can be calculated by counting all the small surfaces, but it is difficult to figure out the
change in surface area along a certain direction. In this study, the 3D model was sliced into layers
along the grading direction and the surface area of each layer could be approximately obtained using
the product of the contour length and the layer height. By doing so, the effect on the surface area of
design parameters could be investigated. As illustrated in Figure 5, the CAD models were sliced with
a layer height of 0.1 mm and the contour length of each layer could be obtained. As for SP in Figure 5a,
the surface area slightly increased because the unit cell size gradually went down when the relative
density varied from 0.4 to 0.2, while the only change of level parameter could barely affect the surface
area for the sheet-based scaffold as seen from SC in Figure 5c. However, the decreasing level parameter
in NC could result in a smaller surface area due to the shrinking struts in the scaffold, as shown in
Figure 5d. The combined effects of decreasing unit cell size and decreasing level parameter for NP
enabled the surface area to not change monotonically, as observed from Figure 5b. It should be noted
that the above discussion was conducted on the basis of the relative density ranging from 0.4 to 0.2.Materials 2020, 13, x FOR PEER REVIEW 11 of 18 
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4.2. Mechanical Properties

The mechanical properties of manufactured FGSs were characterized by compression tests.
All samples were graded from 0.2 to 0.4 in relative density, and the loading was applied to the grading
direction. Three samples were tested for each design, and their compressive responses were nearly
matched, verifying the high repeatability of the adopted SLM process.
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The experimental stress–strain curves of the network-based FGS with constant pore size (NP) and
constant cell size (NC) are shown in Figure 6a,b. An initial nonlinear stage appeared due to the rough
and uneven surface of the sample before establishing full contact [50]. The curves continued with a
linear elastic state, where the elastic modulus of the structure could be determined from the curve slope.
After that, the stress climbs up to the yield strength and the elastic-plastic stage appeared at about
0.08 strain. An abrupt collapse of the stress appeared due to a loss of strength, which is a common
brittle failure behavior of strut cellular materials [45]. Then, a layer-by-layer deformation process
took place and the stress–strain curves experienced several peaks and valleys with an upward trend.
For network-based structures, the stress concentration on the struts during the compression process as
well as the brittle fracture would result in some crumbled fragments. It could be observed that the
stress–strain curves of specimens in each group matched well in the early stage while the discrepancy
became significant gradually, which could explain the crushed fragments being located randomly
inside the scaffolds and affecting the volume distribution of the remaining structures. From Figure 6c,
the collapse happened from top to bottom, so the early stage was mainly affected by the upper part.
Compared to the NC type, the cell size was smaller and the cell number was larger in NP, so its yield
strength was relatively higher. The deformation continued downwards to the bottom layers, and the
crushed parts were stacked and started to contact the next layer.
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Figure 6d,e illustrates the stress–strain curves of sheet-based FGS with constant pore size (SP) and
constant cell size (SC). Compared to network-based FGS, the curves for both SP and SC were highly
matched since the sheet-based structures during the compression process would not be crumbled.
Similarly, the elastic stage finished at around 0.08 strain and the stress dropped with a slightly smooth
trend. Then, the curve started to increase gradually with a non-obvious layer-by-layer response because
the change of the cross-sectional shape between layers was much smaller, as illustrated in Figure 5.
Additionally, the deformation behavior as shown in Figure 6f indicates that the collapse moved slightly
downwards and that the deformed parts densified and enabled the top layers to become much harder.
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Performance based on the experimentally obtained stress–strain curves, such as Young’s modulus
(E), yield strength (σs), ultimate strength (σmax), and plateau stress (σpl), are summarized in Table 4.
It shows that all mechanical properties of the sheet-based FGSs were significantly higher than that
of network-based FGSs. This could be explained by the sheet structures possessing smaller pores
and much thinner walls, which would buckle under compression. The buckled walls resulted in a
gentler stress collapse after each peak and less stress fluctuation in the plateau stage. On the other
hand, the Young’s modulus and yield strength of NP were slightly higher than that of NC due to the
smaller cell size on the top layers [44]. Besides the process-related errors mentioned in Section 4.1,
the inconsistency during the compression tests would also affect the measured data. These factors can
explain the experimentally obtained deviation of mechanical properties between different specimens.
Based on the Gibson–Ashby plot, their performance with respect to other engineering materials can be
specified [57]. It can be concluded that all the designed graded porous structures fall into the domain
of natural materials based on their densities and Young’s moduli. Therefore, the porous structures
with the material can be adopted in the field of bone scaffolds.

Table 4. Mechanical properties of different types of FGS.

Type E (GPa) σs (MPa) σmax (MPa) σpl (MPa)

NP 3.16 ± 0.05 98.58 ± 3.34 109.67 ± 2.73 122.99 ± 5.81
NC 2.58 ± 0.17 73.43 ± 2.16 90.52 ± 7.50 114.18 ± 2.77
SP 4.32 ± 0.13 179.17 ± 0.15 195.57 ± 1.47 227.92 ± 3.03
SC 4.31 ± 0.09 178.17 ± 0.11 187.03 ± 2.63 228.54 ± 0.43

4.3. Discussion

Scaffold design based on implicit function has been proven to be versatile, as it allows geometries
to be simply designed by pure mathematical expressions. There exist variables in the equations affecting
the relative density and unit cell size, which are essential to controlling the biomechanical properties of
the fabricated TPMS scaffolds [57]. Therefore, parametric design of scaffolds for structural gradients
can be realized by properly tuning related parameters. On the other hand, the design of scaffolds for
bone tissue engineering should be guided by different structural and functional material properties,
such as adequate porosity and multi-scale organization and hierarchy [58,59]. Different strategies,
such as gradients in density, cell size, or cell shape, have been proposed to satisfy the required
specific properties and architectures. However, the pore size varies without any quantitative control
in these gradients and its relationship with all the design parameters has not been comprehensively
considered yet.

The pore size of TPMS scaffolds is controlled by both the unit cell size and relative density.
Changing either of the two parameters would result in variation in pore size. To obtain a functional
gradient with programmable pore size, both of them must to be adjusted based on the expected
properties. The strategy illustrated in Figure 4 is proposed based on the premise that the expected
properties are described by the density distribution, so the unit cell size is accordingly adjusted spatially.
However, there are some circumstances where the unit cell size has the highest priority while the
relative density is allowed to be changed. The proposed method can also be adapted to satisfy this
requirement. The specified distribution of the unit cell size is achieved by determining the coefficients
at each point within a given domain, followed by adjustment of the level parameter based on the
designed pore size distribution. Figure 7 shows an example of the generated sheet-based FGS with
programmable pore size based on the specified relative density and unit cell size, respectively. In the
former method, the unit cell size distribution is directly determined by the relative density and pore
size, while it is specified in advance and the relative density (controlled by level parameters) needs to
be adjusted to achieve a programmable pore size in the latter method.



Materials 2020, 13, 5046 13 of 17
Materials 2020, 13, x FOR PEER REVIEW 14 of 18 

Materials 2020, 13, x; doi: FOR PEER REVIEW www.mdpi.com/journal/materials 

 
Figure 7. A generated FGS with programmable pore size using two methods: (a) a CT image 
of a bone tissue, (b) a constructed FGS based on the specified relative density, (c) a generated 
FGS with varying unit cell size and constant level parameters based on the expected unit cell 
size distribution, and (d) adjusted level parameters to obtain a programmable pore size based 
on (c). 

Therefore, the pore size distribution is fully programmable in the proposed method. The 
pore size distribution can be provided as a 3D matrix based on the functional gradients of 
natural bone tissues. At the same time, the distribution of relative density or unit cell size is 
specified based on the expected properties. Then, the FGS with two expected gradients can be 
achieved. When the pore size and relative density are specified, the unit cell size at each point 
can be calculated based on Equation (5). If the pore size and unit cell size are given, the level 
parameter at each point can be determined based on Equation (7). 

Both network and sheet FGS with programmable pore size can be successfully additively 
fabricated using SLM. Their mechanical performance shows good agreement with that of FGS 
constructed by grading level parameters, indicating the potential for mimicking bones in terms 
of morphology and mechanical properties. A sheet FGS possesses superior performance of 
mechanical behavior and larger surface area compared with a network FGS, but its pore size is 
much smaller under the same relative density. The attached powder particles inside the pores 
are very difficult to remove, and this is verified by the actual relative density of fabricated 
specimens, as illustrated in Table 3. Moreover, the wall thickness of sheet FGS is much 
narrower, which requires consideration on the limitations of SLM fabrication process. 
Therefore, the SLM processing parameters should be integrated into the design process to 
ensure successful manufacturing. 

5. Conclusions 

A new type of TPMS-based FGS with programmable pore size distribution was 
parametrically designed, and the difference on the structural morphologies and mechanical 
properties compared to general FGSs was investigated. TPMS was verified as an effective and 
feasible tool for designing porous and interconnected structures with desired functional 
gradients in terms of relative density and unit cell size. The pore size was affected by the cell 
size and level parameter, both of which could be effectively controlled by tuning parameters 
in the mathematical equation while maintaining smooth transition. Both network and sheet-
based FGSs with the proposed method were designed and fabricated by SLM. The geometric 
morphologies of specimens, including pore size, wall thickness, and surface area, were studied 

Figure 7. A generated FGS with programmable pore size using two methods: (a) a CT image of a
bone tissue, (b) a constructed FGS based on the specified relative density, (c) a generated FGS with
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and (d) adjusted level parameters to obtain a programmable pore size based on (c).

Therefore, the pore size distribution is fully programmable in the proposed method. The pore size
distribution can be provided as a 3D matrix based on the functional gradients of natural bone tissues.
At the same time, the distribution of relative density or unit cell size is specified based on the expected
properties. Then, the FGS with two expected gradients can be achieved. When the pore size and
relative density are specified, the unit cell size at each point can be calculated based on Equation (5).
If the pore size and unit cell size are given, the level parameter at each point can be determined based
on Equation (7).

Both network and sheet FGS with programmable pore size can be successfully additively fabricated
using SLM. Their mechanical performance shows good agreement with that of FGS constructed by
grading level parameters, indicating the potential for mimicking bones in terms of morphology and
mechanical properties. A sheet FGS possesses superior performance of mechanical behavior and larger
surface area compared with a network FGS, but its pore size is much smaller under the same relative
density. The attached powder particles inside the pores are very difficult to remove, and this is verified
by the actual relative density of fabricated specimens, as illustrated in Table 3. Moreover, the wall
thickness of sheet FGS is much narrower, which requires consideration on the limitations of SLM
fabrication process. Therefore, the SLM processing parameters should be integrated into the design
process to ensure successful manufacturing.

5. Conclusions

A new type of TPMS-based FGS with programmable pore size distribution was parametrically
designed, and the difference on the structural morphologies and mechanical properties compared to
general FGSs was investigated. TPMS was verified as an effective and feasible tool for designing porous
and interconnected structures with desired functional gradients in terms of relative density and unit cell
size. The pore size was affected by the cell size and level parameter, both of which could be effectively
controlled by tuning parameters in the mathematical equation while maintaining smooth transition.
Both network and sheet-based FGSs with the proposed method were designed and fabricated by
SLM. The geometric morphologies of specimens, including pore size, wall thickness, and surface area,
were studied from the microscopic observations and designed models. The results showed that the
fabricated FGSs with programmable pore sizes could achieve expected gradients with the mapping
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method. In terms of mechanical properties, the compression tests were performed and the obtained
stress–strain curves were compared. A layer-by-layer collapse could be observed from the compression
process due to the structural characteristic of TMPS. Under the same porosity gradient, the graded
structures with programmable pore sizes did not significantly affect the mechanical performance
compared to FGS with constant cell sizes. The sheet-based FGS showed superior mechanical properties,
not only in Young’s modulus and yield strength but also with less stress fluctuation during the
compression process.

TPMS structures with programmable pore sizes have the potential to create an FGS for applications
where pore size has the highest priority and can accompany other grading requirements on morphology
and mechanical properties. Besides bone scaffolds, the proposed structures can also be adopted in
designing and optimizing lattice structures with high load-bearing and energy absorption capacities.
The gradients in pore size are widely found in actual bone tissues and can be effectively generated using
the proposed strategy to further investigate their effects on bone regeneration. In addition, the fatigue
properties of additively fabricated porous structures are essential for long-term use [22], so the fatigue
behavior of the proposed structures and their underlying fatigue mechanism should be further studied
by combining high-cycle compression–compression fatigue testing and FEA (finite element analysis).
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