

Supplementary Materials

Core-shell Fe₃O₄@zeolite NaA as an Adsorbent for Cu²⁺

Jun Cao¹, Peng Wang², Jie Shen¹ and Qi Sun^{1,*}

- ¹ College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China; juncaowyy@163.com (J.C.); cywandsyx@163.com (J.S.)
- ² School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology 1037 Luoyu Road, Wuhan 430074, China; pengwang180907@163.com
- * Correspondence: qsun@gzu.edu.cn

Received: 7 October 2020; Accepted: 3 November 2020; Published: date

SI Supporting Materials and Methods

Batch Adsorption Experiments

S1.Preparation of Cu²⁺ Solutions

Prepared a standard Cu^{2+} stock solution (500 mg/L) by dissolving $Cu(SO_4)_25H_2O$ in a beaker. The solution was then diluted to the desired concentration using deionized water.

S2.Adsorption Study

All adsorption experiments were performed in a batch mode using a shaking table (MPS-1500, Ningbo, zhejiang province, China) at a controlled temperature. The pH of the solution was adjusted to the desired value by adding negligible volume of 0.1 M NaOH and 0.1 M HCl solution. The determination of pH value is measured by SMART PH818 PH meter. After the adsorption test, the sample was immediately filtered through a syringe filter (0.45 μ m syringe filter, PP filter medida, Yuecheng, China), and the remaining Cu²⁺ concentration in the supernatant was measured by inductively coupled plasma spectrometer (ICP- OES) analysis (8300, PerkinElmer, USA). The adsorption experiment was performed in a reciprocating water bath shaker at a shaking speed of 170rpm. The adsorption capacity (Qe, mg/g) and adsorption efficiency of the adsorbents were calculated using the following Equations (S1) and (S2) [1]:

$$Q_e = \frac{C_0 - C_e}{M} \times V$$
(S1)
$$R_{emoval\%} = \frac{C_0 - C_e}{C_0} \times 100$$
(S2)

Where Qe is the adsorption capacity (mg/g); C₀ is the initial Cu²⁺ concentration (mg/L); Ce is the final Cu²⁺ concentration (mg/L); M (g) is the weight of the adsorbent used and V (L) is the volume of the Cu²⁺ solution. Removal% is the removal rate of Cu²⁺ by the adsorbent; Each experiment was repeated three times to obtain average results.

(S2)

Adsorption Kinetics Study

The knowledge of adsorption kinetics is important information for designing batch adsorption systems. To examine the adsorption kinetics of the adsorbent for Cu²⁺, the Lagergren pseudo-first-order and pseudo-second-order kinetic models were examined [2].

(1) Lagergren pseudo-first-order kinetic model:

$$In(Q_e - Q_t) = InQ_e - K_1 t$$
 (S3)

(2) Lagergren pseudo-second-order kinetic model:

$$\frac{t}{Q_t} = \frac{1}{K_2 Q_e^2} + \frac{t}{Q_e}$$
(S4)

where Qe is the amounts of adsorption at equilibrium, mg/g; Qt is the amounts of adsorption at time t, mg/g; k1 is the first order rate constant, min^{-1} ; k2 is the second order rate constants, min^{-1} .

Adsorption Isotherm Study

The liner form of Langmuir adsorption isotherm is one of the most famous well-adopted models used to describe the solid phase adsorption systems [3].

$$\frac{C_{e}}{Q_{e}} = \frac{C_{e}}{Q_{\max}} + \frac{1}{K_{L}Q_{\max}}$$
(S5)
$$R_{L} = \frac{1}{1 + K_{L}C_{0}}$$
(S6)

Where Q_{max} is the Langmuir maximum adsorption capacity (mg/g), and K_L is the Langmuir binding constant. Where C₀ and K_L are the initial concentration of arsenic and Langmuir isotherm constant. If the value of O < R_L < 1, it represents favourable adsorption.

The Freundlich model indicates the heterogeneity of the adsorbent surface and considers multilayer adsorption. The linear form of Freundlich adsorption model is as follows [4]:

$$InQ_e = Ink_f + \frac{1}{n}InC_e$$
(S7)

Where K_f and 1/n are Freundlich constants, related to adsorption capacity and adsorption intensity (heterogeneity factor) respectively. The values of K_f and 1/n were obtained from the slope and intercept of the linear Freundlich plot of ln Q_e versus ln C_e .

The Temkin model is a modification equation of the Langmuir model. The adsorption enthalpy declined linearly with the increase of adsorption amounts. The Temkin model is described by equation S8:

$$Q_{\rm e} = B_1 InK_t + B_1 InC_e (S8)$$

where B_1 and K_t are constants related to adsorption enthalpy and capacity of the adsorbent.

Thermodynamic Study

Using the slope and intercept of the plot the lnk_d versus 1/T is presented in Equation 9, the enthalpy change (ΔH°) and entropy change (ΔS°) can be calculated. T(K) is the Kelvin temperature. R(8.314J/(mol·K)) is the universal gas constant. The Gibbs free-energy change of the sorption of Cu²⁺ ions using adsorbent is given using Equation 9:

$$K_d = \frac{Q_e}{C_e}$$

$$InK_{d} = \frac{\Delta S^{0}}{R} - \frac{\Delta H^{0}}{RT} (S9)$$

The standard enthalpy change (Δ H^o), and standard entropy change (Δ S^o) was calculated using following equation ^[5]:

$$\Delta G^0 = \Delta H^0 - T \Delta S^0 (\mathbf{S10})$$

Where (ΔH^0) is standard enthalpy change (KJ/mol) and (ΔS^0) is standard entropy change (KJ/mol K).

	Items	Content(w %)
-	Fe ₃ O ₄	47.003
	SiO ₂	51.663

Table S1. XRF analyze of Fe₃O₄@SiO₂ (w %).

Figure S1. TEM image of magnetic zeolite NaA.

Figure S2. Separation ability test of Fe₃O₄@zeolite NaA.

References

- 1. Choi J W, Kim H J, Ryu H, et al. Three-dimensional double-network hydrogels of graphene oxide, alginate, and polyacrylonitrile for copper removal from aqueous solution. Environmental Engineering Research 2019; 25(6): 923-928.
- 2. K K H Choy, G McKay, Sorption of cadmium, copper, and zinc ions onto bone char using Crank diffusion model. Chemosphere 2005; 60: 1141–1150.
- Abd El-Magied, M O Galhoum, A A Atia, A A Tolba, A A Vincent, T.; Guibal, E Maize M S. Cellulose and Chitosan Derivatives for Enhanced Sorption of Erbium(III). Colloids Surf. A: Physicochem. Eng. Aspects 2017; 529: 580-593.
- 4. Pillewan P, Mukherjee S, Roychowdhury T, Das S, Bansiwal A, Rayalu, S. Removal of As(III) and As(V) from water by copper oxide incorporated mesoporous alumina. Journal of Hazardous Material 2011; 186: 367-375.
- 5. Sekar M, Sakthi V, Rengaraj, S. Kinetics and equilibrium adsorption study of lead(II) onto activated carbon prepared from coconut shell. Journal of Colloid Interface Science 2004; 279: 307-313.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).