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Abstract: For an isotropic square plate subject to unidirectional compression in the postbuckling
state, components of transverse forces in bending, membrane transverse components and total
components of transverse forces were determined within the first-order shear deformation theory
(FSDT), the simple first-order shear deformation theory (S-FSDT), the classical plate theory (CPT)
and the finite element method (FEM). Special attention was drawn to membrane components of
transverse forces, which are expressed with the same formulas for the first three theories and do
not depend on membrane deformations. These components are nonlinearly dependent on the
plate deflection. The magnitudes of components of transverse forces for the four theories under
consideration were compared.

Keywords: nonlinear stability; square plate; shear forces; components of transverse forces in bending;
membrane components of transverse forces; 4 methods (CPT, FSDT, S-FSDT, FEM)

1. Introduction

In the mid-20th century, Reissner [1,2] presented a plate theory accounting for the transverse
shear deformation effect. This is a stress-based approach. Mindlin [3] offered a theory based on
a displacement approach, where transverse shear stress was assumed to be the same through the
plate thickness, and the shear correction factor k2 (the so-called Mindlin correction factor) appeared.
For transversely inextensible plates and k2 = 5/6, values of stresses are equal in the Reissner and Mindlin
plate theories [4]. The theories are characterised by an equivalent approximation degree known as the
Reissner–Mindlin plate theory. Their comparison is discussed in [5–8], etc. Theoretical considerations
can be found in [9–15] for higher-order shear deformation theories as well.

In [4,5], the equations of Reissner and Mindlin plates, including the parameter, which allows for an
interpretation of these theories for transversally inextensible plates, were derived. In [6], for Reissner,
Mindlin and Reddy plate models, a solution to the rectangular transverse plate sinusoidally loaded
and freely supported along all the edges is given. Vibrations in the plate–beam system, in which the
Reissner–Mindlin plate model related to the Timoshenko beam model was applied, were analysed in [7].
In [11,16], it is shown that when the plate thickness is around zero, the solution for the Reissner–Mindlin
plate becomes close to the solution within the Kirchhoff–Love plate theory (the so-called classical plate
theory (CPT)). In [17], formulations of the mixed finite element were given based on the mechanism of
the shear locking phenomenon and the general variation method for the Reissner theory, including the
Lagrange multiplier method. An extensive literature survey devoted to the two primary plate theories,
i.e., the Kirchhoff plate theory and the Reissner–Mindlin plate theory, is found in [18]. The main
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purpose of [18] was to present a history of refinement in the Reissner–Mindlin theory, showing the
up-to-date state of knowledge in this field of research.

Within the plate theories accounting for the shear deformation effect (FSDT), one can find
other approaches, established, for instance, on superposition of bending and shear deflections
(i.e., a two-variable refined plate theory [19–30] or a single-variable refined theory [31]).

Endo and Kimura [19] first suggested the simple first-order shear deformation theory (S-FSDT).
Employing Hamilton’s principle, an alternative formula in which a deflection in bending is the primary
variable instead of the angle of rotation in bending and, at the same time, some limitations on neglecting
the Reissner boundary effects are imposed, was given [2,32]. In the S-FSDT, three equations in the
original formulation are reduced to two and the boundary conditions are also subject to respective
modifications; however, the way the system is modelled remains unaltered (for a more detailed analysis,
see Appendix A). Moreover, in [26–28], when two independent variables ϕ and ws are considered,
two differential equations with boundary conditions are attained. In the static analysis, two differential
equations are uncoupled. The boundary conditions should be uncoupled as well, which is not possible
in general. By introducing a bending relationship between the quantities, differences between the
Reissner and Mindlin plate theories were investigated in [8]. In [24], the first two-variable shear
deformation theory (FSDT) considering in-plane rotation, which allows one to correctly predict the
response of plates for arbitrary boundary conditions in the analysis of buckling and vibrations of
isotropic plates, was presented.

Interesting critical remarks to the above-mentioned plate theories can be found in [32–36].
To consider the Reissner boundary effect, a rotary potential, which is a fast-varying solution to the
boundary layer, should be applied apart from the function ϕ. The boundary effect covers only some
boundary conditions (e.g., pure tension or contact problems). The author of [32] suggested to refer to
the presented version of the theory as a modern form of the CPT.

The finite element method employs the FSDT [9,18,33,37–41]. The effect of shear locking in finite
shell elements and a loss in accuracy was explained in terms of the occurrence of solutions to the
boundary layer. A shear locking problem occurs in the FEM, as shape functions cannot approximate
a fast-variable solution to the boundary layer. [33,39]. Shear locking does not cause membrane
deformations. In the majority of cases, the effect of shear deformation on displacements should be
considered only. Solutions to the boundary layer are neglected.

In composites widely applied nowadays, the behaviour of individual layers can be affected
considerably by transverse shear deformation [42]. These materials show low shear characteristics
beyond the plane, which should be accounted for in numerous analyses (e.g., [15,20,21,43]).

In the works devoted to the plate dynamics, the effect of transverse rigidity on shear deformation
and the influence of rotary inertia on frequencies and modes of plate vibrations were investigated
(e.g., [3,5,15,17,27,30,31]). In [44], for the plate jointly supported along the whole circumference and
subjected to free vibrations, it was shown that deflections in bending and shear deformation vibrated
in phase (i.e., the total deflection is equal to their sum) in the first branch, whereas in the second
branch, shear deformation and bending deflections vibrate in antiphase, where the deflection in
shear deformation is predominant, i.e., the total deflection is in phase along with the deflection in
shear deformation.

In the literature, apart from vibrations, the stability of individual rectangular plates is analysed
(e.g., [15,16]). In [22], a buckling analysis of isotropic and orthotropic plates employing a two-variable
refined plate theory is presented, whereas in [43], the S-FSDT for composite plates with four unknowns
is discussed. The authors do not know any works devoted to the nonlinear stability of plates accounting
for the transverse shear deformation effect.

All the works under discussion refer to the cases when there are no membrane forces in the plate
structure. These forces appear in thin-walled structures (where h/a < 0.05) for loads exceeding the
critical loads, that is to say, for postbuckling equilibrium paths. In the literature known to the authors
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of the present paper, there is a lack of works devoted to the nonlinear stability of thin-walled plates,
in which transverse shear deformation is considered.

In the classical theory of thin plates (CPT), total equivalent transverse Kirchhoff forces were
introduced only in [36,45] employing the variational method as far as the literature known to the
authors is concerned. In the CPT, a notion of equivalent Kirchhoff transverse forces is introduced to
satisfy a proper number of boundary conditions. In the variational approach to the CPT, there is no
need to introduce the notion of Kirchhoff forces. These forces “emerge themselves” from the theory in
such an approach. As shown in [46], it is necessary to introduce the notion of total equivalent Kirchhoff

transverse forces, which results from Stokes’ theorem concerning a change of the surface integral for
the equilibrium equations into a plate circumference-oriented integral, that is to say, for the boundary
conditions. In total Kirchhoff forces, two components of transverse forces appear; one of them is a
derivative of internal moments, and the second is a projection of membrane forces on the transverse
direction. The membrane forces also appear in other nonlinear problems, such as the deflection of
thin-walled transversely loaded plates.

In the present work, the authors have decided to deal with the influence of these additional
membrane components on the magnitudes of total Kirchhoff forces within the CPT for isotropic square
plates subject to compression in the postbuckling state. These limitations were taken to facilitate an
interpretation of the obtained results. For verification purposes, solutions to the Reissner theory (FSDT)
and the Mindlin theory within the S-FSDT approach, i.e., after the introduction of two independent
functions of displacements along the z-axis (i.e., the total lateral displacement w and the bending
deflection φ), are presented. In the FSDT and the S-FSDT, the Reissner boundary condition was
neglected. The governing equations within the three theories under consideration were derived with
variational methods, allowing one to indicate two different components of transverse forces resulting
from internal moments and membrane forces. For transversally inextensible plates, the membrane
shear forces are independent of membrane deformation. For these three theories, the results for
membrane forces and total forces were presented.

In composite materials, transverse shear deformation substantially affects the delamination of
composites. In the failure criteria of composites, the impact of transverse components of membrane
forces (i.e., in compression) is neglected. In the authors’ opinion, these components are predominant
in the postbuckling state and should be considered in composite failure criteria. The main aim of
the paper is to draw attention to the theoretical background for membrane components of transverse
forces in the expressions for transverse forces in the theory of thin plates, which are not accounted for
in FEM shell elements.

2. Formulation of the Problem

The nonlinear stability of a square isotropic plate freely supported along the whole circumference
and subject to compression along the x-axis (Figure 1) is analysed. The plate material is assumed to
obey Hooke’s law.

Figure 1. Square plate freely supported along all edges under compression.

In this study, for postbuckling equilibrium paths, transverse shear forces are analysed in detail
for the transversally inextensible plate. The analysis is conducted within three theories of thin plates,
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namely the classical plate theory CPT (i.e., the Kirchhoff plate theory), the simple first-order shear
deformation theory (S-FSDT) in a two-variable refined plate version and the Reissner plate theory
(FSDT).

The governing equations of the three theories under consideration are presented in Appendix A.
The equations were derived within a variational approach, which allows the equilibrium equations
and the boundary conditions to be expressed explicitly. The solutions to the nonlinear problem of
stability of the square plate for the three theories are presented in Appendix A. Instead of a system of
two equations of equilibrium in the central plate plane (i.e., after an introduction of the function of
Airy forces F, the system is satisfied identically), an equation of inseparability of deformations was
derived (Appendix A).

According to the considerations presented in the Appendix A, transverse shear forces have two
components (compare: the FSDT (A13), the S-FSDT (A24), the CPT (A33), respectively).

The first components depend on the derivatives of internal moments on the plate. Thus,
the components can be referred to as transverse shear forces in bending. These forces are expressed
with the following relationships: (A45) for the CPT and (A55) for the S-FSDT, correspondingly.
The forces have a very similar structure. A difference lies only in the reduction factor 1/(1 + η) in
(A55). Moreover, for the FSDT in (A64), a difference with respect to the S-FSDT occurs in the numerical
coefficient two instead of (3-ν) for the S-FSDT. A change in the numerical coefficient results from
different boundary conditions for the FSDT and the S-FSDT. A more detailed analysis can be found in
the Appendix A.

The second components depend on projections of membrane transverse forces on the direction
perpendicular to the central plate plane. These components can be referred to as transverse shear
forces in compression. For the three theories under consideration, these forces are expressed with
identical formulas (compare (A46) for the CPT, (A56) for the S-FSDT and (A65) for the FSDT in the
Appendix A). It is caused by the fact that the effect of shear deformation is not accounted for, as the
forces are determined on the basis of the displacement w and the function of Airy forces F.

3. Analysis of the Calculation Results

A detailed analysis was conducted for a steel square plate (Figure 1) of the following dimensions:
a = 100 mm, h = 1 mm and the material constants: E = 200, GPa, ν = 0.3.

The ideal plate is supported freely along all edges and subjected to uniform compression with
the stress p along the x-axis. The boundary conditions for the three theories under consideration
(i.e., the FSDT, the S-FSDT and the CPT) are given in detail in the Appendix. The analytical results
attained were verified with the commercial ANSYS software [47] employing the FEM (details to be
found in Appendix A).

In the detailed analysis, the postbuckling state (or the so-called postbuckling equilibrium path)
was dealt with, as only then plate deflections appear for the perfect plate. It is accompanied by the
appearance of two transverse components of shear forces, that is to say, in bending and compression
(the so-called membrane components).

The following index symbols are introduced in the study: C for the CPT, S for the S-FSDT, F for
the FSDT, and A for ANSYS (FEM), respectively.

Firstly, for the three theories, the corresponding bifurcation loads (or the so-called critical loads),
listed in detail in Table 1, were determined. According to the Appendix, values of the bifurcation
loads for the FSDT (A62) and the S-FSDT (A54) are identical and slightly lower by the factor 1/(1 + η)
than the CPT. For the data assumed in the analysis, according to (A63), we have η = 0.000564, which
corresponds to 1/(1 + η) = 0.9994. As can be seen, according to (A63), corrections for the S-FSDT and
the FSDT are very inconsiderable when compared to the CPT for the assumed ratio of (h/a = 0.01).
The results obtained within the three theories are in conformity with the FEM outcomes.
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Table 1. Values of critical stresses according to the classical plate theory (CPT), the simple first-order
shear deformation theory (S-FSDT), the first-order shear deformation theory (FSDT) and ANSYS.

Critical Stresses in MPa

CPT S-FSDT FSDT ANSYS (FEM)

pC
cr pS

cr pF
cr pA

cr
72.30 72.26 72.26 72.30

The determined value of the critical stress (A43) for the CPT was introduced into the relationship
for the total equivalent Kirchhoff force Q̂C

x (A47a) and then the component Q̂C
x when p = pC

cr, is equal to

Q̂C
x

(
p = pC

cr

)
=

[
(3− ν)D

(
π
a

)3
W − pC

crhW π
a

]
cosπx

a sinπy
a

−
EhW3

8

(
π
a

)3
cosπx

a sinπy
a cos 2πy

a

= −(1 + ν)
(
π
a

)3
DWcosπx

a sinπy
a −

EhW3

8

(
π
a

)3
cosπx

a sinπy
a cos 2πy

a

(1)

As can be easily noticed, in (1) there is a minus sign at both terms of the right-hand side. However,
mutual relations depend on the relationships of products of trigonometric functions. The first term
Q̂C

x

(
p = pC

cr

)
in (1) attains extreme values for x = 0; a and y = a/2 and the second respectively minimum

for x = 0; a and y = a/2. Attention should be drawn to the fact that when x = 0 and y = a/2, the first term
has a minus sign, and the second term has a plus sign. The opposite situation takes place when x = a
and y = a/2, i.e., a plus sign is in the first term and a minus sign is in the second. The extreme values
Q̂C

x are attained inside the square plate.
A further analysis dealt with postbuckling states. According to (A39c), the force component Nxy

equals zero, and one of two membrane components of transverse forces (according to (A12), (A23) and
(A32)) vanishes as well.

Next, maximal absolute values of components of transverse forces in bending, membrane
components (or in compression) or total forces for the three theories, determined according to the
formulas given in Appendix A for five overload values of critical load, i.e., 1.2 ≤ pθ/pθcr ≤ 2.0 (where the
index θ = C, S, F), are listed in Table 2. In this table, values of the dimensionless deflection W/h and
1/(1 + η) are also presented.

For the CPT, the equivalent Kirchhoff forces QC
x , QC

y are equal according to (A45). On the other

hand, values of membrane components of the transverse forces Q
C
x , Q

C
y differ depending on the overload

pθ/pθcr. For the overload equal to 1.2, the ratio of maximal absolute components Q
C
x /Q

C
y equals almost

5, whereas for the overload equal to 2, the ratio of membrane components is 1.4. The membrane forces

Q
C
x , Q

C
y are independent of membrane deformation. It results from the fact that the membrane force QC

x

has a term linearly dependent on deflection and in the third power, which for QC
y is in the third power

only. A detailed analysis can be found in Appendix A. Components of the total equivalent Kirchhoff

force Q̂C
y are always higher for the range of loads under analysis than Q̂C

x . It follows from the term that
is linear with respect to W, dependent on the overload Q̂C

x .
In Figure 2, the maximal absolute values of components of transverse Kirchhoff forces for the CPT

versus pC/pC
cr, listed in Table 2, are presented.

For the S-FSDT, the maximal absolute values of components of the transverse forces
∣∣∣Q̂S

x

∣∣∣
max and∣∣∣Q̂S

y

∣∣∣
max

are the same in practice as for the CPT, which results from a very low value of the correction
η. For the FSDT, force components in bending are 1.35 times lower for the CPT and the S-FSDT
(cf. Formulas (A64) and (A45)). Similarly as for the S-FSDT, components of the total transverse force
Q̂F

y are always larger than Q̂F
x . When total transverse forces are accounted for in the CPT, the S-FSDT

and the FSDT, they yield higher values than the equivalent Kirchhoff force by approx. 1.5 times for
the component with respect to the x-axis (i.e., with a lower index x) and more than 2 times for the
component with respect to the y-axis.
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Table 2. Values of components of transverse forces for the CPT, the S-FSDT, the FSDT and ANSYS.

Theory Symbol Unit
pθ/pθcr (Where the Index θ=C,S,F,A)

1.2 1.4 1.6 1.8 2.0

CPT
(index C)

W/h - 0.7656 1.083 1.326 1.531 1.712
1/(1 + η) - 1.0∣∣∣QC

x

∣∣∣
max N/mm 1.17 1.66 2.03 2.34 2.62∣∣∣QC

y

∣∣∣
max N/mm 1.17 1.66 2.03 2.34 2.62∣∣∣∣QC

x

∣∣∣∣
max

N/mm 1.73 2.55 3.44 4.42 5.49∣∣∣∣QC
y

∣∣∣∣
max

N/mm 0.347 0.983 1.80 2.78 3.88∣∣∣Q̂C
x

∣∣∣
max N/mm 0.651 1.22 1.96 2.80 3.73∣∣∣Q̂C

y

∣∣∣
max N/mm 1.52 2.64 3.84 5.13 6.51

S-FSDT
(index S)

W/h - 0.7651 1.0823 1.325 1.530 1.711
1/(1 + η) - 0.9994∣∣∣Q̂S

x

∣∣∣
max N/mm 0.652 1.22 1.96 2.80 3.73∣∣∣Q̂S

y

∣∣∣
max N/mm 1.52 2.64 3.83 5.12 6.51

FSDT
(index F)

W/h - 0.7651 1.0823 1.325 1.530 1.711
1/(1 + η) - 0.9994∣∣∣Q̂F

x

∣∣∣
max N/mm 0.898 1.54 2.27 3.16 4.13∣∣∣Q̂F

y

∣∣∣
max N/mm 1.21 2.21 3.31 4.52 5.83

FEM
(index A)

W/h - 0.76 1.07 1.31 1.50 1.68∣∣∣QA
x

∣∣∣
max N/mm 1.00 1.52 1.98 2.41 2.83∣∣∣QA

y

∣∣∣
max N/mm 0.96 1.37 1.67 1.91 2.08

Figure 2. Maximal absolute values of components of the transverse forces
∣∣∣QC

x

∣∣∣
max,

∣∣∣QC
y

∣∣∣
max

,∣∣∣∣QC
x

∣∣∣∣
max

,
∣∣∣∣QC

y

∣∣∣∣
max

,
∣∣∣Q̂C

x

∣∣∣
max,

∣∣∣Q̂C
y

∣∣∣
max

in N/mm for the CPT.

For the FEM, the values of components of the transverse forces
∣∣∣QA

x

∣∣∣
max are higher than

∣∣∣QA
y

∣∣∣
max

.

At the overload equal to 1.2, the ratio
∣∣∣QA

x

∣∣∣
max/

∣∣∣QA
x

∣∣∣
max is 1.05, but for the overload of 2.0, it is equal to

1.36, respectively. The values
∣∣∣QA

x

∣∣∣
max and

∣∣∣QA
y

∣∣∣
max

are closest to the equivalent Kirchhoff force QC
x , QC

y .

Thus, the transverse forces
∣∣∣QA

x

∣∣∣
max,

∣∣∣QA
y

∣∣∣
max

determined within the FEM have a different character
than the total transverse forces for the CPT, the S-FSDT and the FSDT, determined on the basis of
components in bending and compression. It can originate from the fact that membrane components
were neglected in the FEM analysis.

In Figure 3, the maximal absolute values of transverse resultant forces for the CPT, the S-FSDT
and the FSDT (of which the values are listed in Table 2) versus overload are collected. The results for
ANSYS are shown as well.
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Figure 3. Maximal absolute values of the total transverse forces,
∣∣∣QS

x

∣∣∣
max,

∣∣∣QS
y

∣∣∣
max

,
∣∣∣QF

x

∣∣∣
max,∣∣∣QF

y

∣∣∣
max

,
∣∣∣QA

x

∣∣∣
max,

∣∣∣QA
y

∣∣∣
max

in N/mm for the CPT, the S-FSDT, the FSDT and the finite element
method (FEM).

The present study was primarily aimed at drawing attention to a necessity to consider the effect
of membrane components on total transverse forces for 1.2 ≤ pθ/pθcr ≤ 2.0.

To illustrate the effect of components of transverse Kirchhoff forces for the CPT, their distributions
are presented in subsequent figures (Figures 4–9). The components are shown in the contour drawings
(denoted as a) and plane drawings (denoted as b) for the whole square plate and the overload pC/pC

cr = 2

in the following sequence: QC
x (Figure 4), Q

C
x (Figure 5), Q̂C

x (Figure 6), QC
y (Figure 7), Q

C
y (Figure 8) and

Q̂C
y (Figure 9).

Figure 4. Contour-surface chart of QC
x

Figure 5. Contour-surface chart of Q
C
x
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Figure 6. Contour-surface chart of Q̂C
x

Figure 7. Contour-surface chart of QC
y

Figure 8. Contour-surface chart of Q
C
y

Figure 9. Contour-surface chart of Q̂C
y
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The distributions of QC
x and QC

y presented in Figures 4 and 7 are the same according to (A45).

When the distributions of membrane forces are compared, the distribution for Q
C
x (Figure 5) is

more complex than Q
C
y (Figure 8). However, in the authors’ opinion, the total transverse forces Q̂C

x

(Figure 6) and Q̂C
y (Figure 9), which should be employed in failure criteria, are the most important.

The components Q̂C
y are larger than Q̂C

x , opposite to what happens in the FEM (Table 2).
It should be underlined once again that for the square plate under analysis, one of two membrane

force components, which is dependent nonlinearly on the deflection W, equals zero (i.e., for Nxy = 0).

4. Conclusions

The effect of membrane components of transverse forces on total transverse forces within the
three theories: the CPT, the S-FSDT and the FSDT, was discussed. When membrane components
are taken into consideration, an increase can be observed in transverse forces equal to 1.5 times,
at least for the square plate, freely supported along the whole circumference under consideration.
It results from the fact that membrane components of transverse forces depend nonlinearly on the plate
deflection. The results were compared to the FEM. The membrane transverse forces are independent
of membrane deformation.

In composite materials, a failure of the structure resulting from delamination exerts a considerable
effect on its integrity and load-carrying capacity. Transverse shear effects significantly influence the
behaviour of composites. In the composite failure criteria, the impact of transverse force components in
compression is neglected. From the authors’ viewpoint, these components prevail in the postbuckling
state, which was proven in this study and should be considered in the failure criteria of composites,
for instance, the Hashin failure criterion for 3D, LaRC04(3D), Matrix Failure under the additional
condition that σ33 = 0.
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Appendix A

Appendix A.1. Governing Equations in the FSDT, the S-FSDT and the CPT

In this Appendix A, governing equations for three theories, namely the first-order shear
deformation plate theory (FSDT), the simple first-order shear deformation theory (S-FSDT) and
the classical plate theory (CPT), are presented. The equilibrium equations and the boundary conditions
are attained within a variational approach.

The following geometrical relationships for the plate component are assumed [36,44,46]

εx = u,x +
1
2

w2
,x (A1a)

εy = v,y +
1
2

w2
,y (A1b)

2εxy = γxy = u,y + v,x + w,xw,y (A1c)

And
κx = −ψx,x κy = −ψy,y κxy = −

(
ψx,y +ψy,x

)
(A2)

where u, v are components of the plate displacement vector along the axis x, y, correspondingly, w is
the total displacement vector along the z-axis and ψx, ψy are the rotation angles of a transverse normal
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due to bending of the axes x, y, respectively, whereas the plane x− y overlaps the central plane before
its buckling.

In this approach to the plate theory when transverse shear is accounted for, it is assumed that the
total rotation angles of the normal to the central plane in two planes are, respectively [19,44]

w,x = ψx + βx w,y = ψy + βy (A3)

where βx, βy are the transverse shear angles.
Internal cross-sectional forces can be expressed in the form [19,44]

Nx =
Eh

1− ν2

(
εx + νεy

)
(A4a)

Ny =
Eh

1− ν2

(
εy + νεx

)
(A4b)

Nxy =
Eh

1− ν2
1− ν

2
γxy (A4c)

Mx = −D
(
ψx,x + νψy,y

)
(A5a)

My = −D
(
ψy,y + νψx,x

)
(A5b)

Mxy = −D
1− ν

2

(
ψx,y +ψy,x

)
(A5c)

Qx = k2Gh(w,x −ψx) (A6a)

Qy = k2Gh
(
w,y −ψy

)
(A6b)

The coefficient k2 occurring in Formulas (A6) is known as the Mindlin correction factor.
The total potential energy Π of a thin rectangular plate of the following dimensions: ` × b× h can

be written as [36]

Π = U −W = 1
2

∫ `
0

∫ b
0

(
Nxεx + Nyεy + Nxyγxy

)
dxdy

−
1
2

∫ `
0

∫ b
0

[
Mxψx,x + Myψy,y + Mxy

(
ψx,y +ψy,x

)]
dxdy

+ 1
2

∫ `
0

∫ b
0 [Qx(w,x −ψx) + Qy

(
w,y −ψy

)
]dxdy−

∫ b
0 hp0(y)u

∣∣∣x=`x=0 dy

(A7)

where U is the elastic strain internal energy, W is the work of external forces and p0(y) is the plate
prebuckling external load in the central plane along the x-axis.

Appendix A.1.1. FSDT

To determine a variation of the total energy Π (A7), the following relations were substituted:
(A1), (A2) and (A4)–(A6). Having grouped the terms including the same variations and summed each
group of the terms to zero (due to mutual independence of the variations), the following equations
are obtained

• Equations of equilibrium: ∫ `

0

∫ b

0

[
Nx,x + Nxy,y

]
δudxdy = 0 (A8a)

∫ `

0

∫ b

0

[
Nxy,x + Ny,y

]
δvdxdy = 0 (A8b)

∫ `

0

∫ b

0
[Qx,x + Qy,y + (Nxw,x + Nxyw,y),x +

(
Nxyw,x + Nyw,y),y

]
δwdxdy = 0 (A8c)
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∫ `

0

∫ b

0

[
Mx,x + Mxy,y −Qx

]
δψxdxdy = 0 (A8d)

∫ `

0

∫ b

0

[
Mxy,x + My,y −Qy

]
δψydxdy = 0 (A8e)

• Boundary conditions for x = const∫ b

0
[Nx − hp0(y)]δudy|x = const = 0 (A9a)

∫ b

0
Nxyδvdy|x = const = 0 (A9b)

∫ b

0

[
Nxyw,y + Nxw,x + Qx

]
δwdy|x = const = 0 (A9c)

∫ b

0
[Mx]δψxdy|x = const = 0 (A9d)

∫ b

0

[
Mxy

]
δψydy|x = const = 0 (A9e)

for y = const ∫ `

0
Nyδvdx

∣∣∣y = const = 0 (A10a)

∫ `

0
Nxyδudx

∣∣∣y = const = 0 (A10b)

∫ `

0

[
Nxyw,x + Nyw,y + Qy

]
δwdx

∣∣∣y = const = 0 (A10c)

∫ `

0

[
Mxy

]
δψxdx

∣∣∣y = const = 0 (A10d)

∫ `

0

[
My

]
δψydx

∣∣∣y = const = 0 (A10e)

Equation (A8) is a system of equilibrium equations and relationships, and (A9) and (A10) are
boundary conditions for x = const and y = const, respectively. Equations (A8)–(A10) hold for the
FSDT. The above equations were determined from variational methods for which, according to Stokes’
theorem, the surface integral can be transformed into a circumference-oriented integral. The form the
equations are presented follows from it.

According to (A6) and (A8d,e), transverse forces are expressed with the relations

QF
x = Mx,x + Mxy,y (A11a)

QF
y = My,y + Mxy,x (A11b)

where the upper index F was introduced for the FSDT. These are components of transverse forces
dependent on derivatives of internal moments.
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In Conditions (A9c) and (A10c) for the components of transverse forces, forces of the same
characters are added, i.e., additional components of transverse forces that depend on projections of
membrane forces, that is to say [36,45]

Q
F
x = Nxw,x + Nxyw,y (A12a)

Q
F
y = Nyw,y + Nxyw,x (A12b)

These forces do not affect membrane deformations.
When (A11) and (A12) are considered, according to (A9c) and (A10c), the total transverse forces

Q̂F
x and Q̂F

y are introduced

Q̂F
x = QF

x + Q
F
x = Mx,x + Mxy,y + Nxw,x + Nxyw,y (A13a)

Q̂F
y = QF

y + Q
F
y = My,y + Mxy,x + Nyw,y + Nxyw,x (A13b)

Appendix A.1.2. S-FSDT

Next, the independent functions ψx, ψy (A2) were substituted with a potential function
φ(x, y) [19,32–34,44] such that

φ,x = ψx φ,y = ψy (A14)

This approach consists of the fact that the functionφ is treated as deflections in bending. Because the
function φ is introduced, the Reissner boundary conditions [32], not considered in the present study,
are ignored.

If βx = ws,x, βy = ws,y hold for (A3), the shear deflection is obtained from the relationship
ws = w−φ. From (A3) and (A14), it follows that

w,x = φ,x + βx = φ,x + ws,x w,y = φ,y + βy = φ,y + ws,y (A15)

When (A15) is accounted for, the internal forces (A5) and (A6) are written as

Mx = −D (φx,x + vφy,y
)

(A16a)

My = −D
(
φy,y + vφx,x) (A16b)

Mx,y = −D (1 − v) φx,y (A16c)

Qx = k2Gh(w,x −φ,x) (A17a)

Qy = k2Gh
(
w,y −φ,y

)
(A17b)

From the variation of the total energy Π (A7) with respect to the displacement variable components
u, v, w, φ, we obtain

• Equations of equilibrium ∫ `

0

∫ b

0

[
Nx,x + Nxy,y

]
δudxdy = 0 (A18a)

∫ `

0

∫ b

0

[
Nxy,x + Ny,y

]
δvdxdy = 0 (A18b)

∫ `

0

∫ b

0
[Qx,x + Qy,y + (Nxw,x + Nxyw,y),x +

(
Nxyw,x + Nyw,y),y

]
δwdxdy = 0 (A18c)
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∫ `

0

∫ b

0

[
Mx,xx + 2Mxy,xy + My,yy −Qx,x −Qy,y

]
δφdxdy = 0 (A18d)

• Boundary conditions for x = const∫ b

0
[Nx − hp0(y)]δudy|x = const = 0 (A19a)

∫ b

0
Nxyδvdy|x = const = 0 (A19b)

∫ `

0

[
Nxyw,y + Nxw,x + Qx

]
δwdy|x = const = 0 (A19c)

∫ b

0

[
2Mxy,y + Mx,x −Qx

]
δφdy|x = const = 0 (A19d)

∫ b

0
[Mx]δφ,xdy|x = const = 0 (A19e)

for y = const ∫ `

0
Nyδvdx

∣∣∣y = const = 0 (A20a)

∫ `

0
Nxyδudx

∣∣∣y = const = 0 (A20b)

∫ `

0

[
Nxyw,x + Nyw,y + Qy

]
δwdx

∣∣∣y = const = 0 (A20c)

∫ `

0

[
2Mxy,x + My,y −Qy

]
δφdx

∣∣∣y = const = 0 (A20d)

∫ `

0

[
My

]
δφ,ydx

∣∣∣y = const = 0 (A20e)

for the plate corner, i.e., for x = const and y = const

2Mxyδφ|x = const
∣∣∣y = const = 0 (A21)

Equations (A18)–(A21) correspond to the S-FSDT, i.e., to a two-variable refined plate theory.
According to (A6), (A19d) and (A20d), the transverse forces dependent on the variable φ are

expressed as
QS

x = Mx,x + 2Mxy,y (A22a)

QS
y = My,y + 2Mxy,x (A22b)

where the upper index S was introduced for the S-FSDT.
The membrane components of the transverse forces dependent on the variable w, according to

(A19c) and (A20c), take the form

Q
S
x = Nxw,x + Nxyw,y (A23a)

Q
S
y = Nyw,y + Nxyw,x (A23b)
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Analogously to (A13), the total transverse forces Q̂S
x and Q̂S

y for the S-FSDT are as follows

Q̂S
x = QS

x + Q
S
x = Mx,x + 2Mxy,y + Nxw,x + Nxyw,y (A24a)

Q̂S
y = QS

y + Q
S
y = My,y + 2Mxy,x + Nyw,y + Nxyw,x (A24b)

Comparing the formulas for transverse forces in pairs of (A11) and (A22), as well as (A13) and
(A24), it can be easily noticed that in the case of the S-FSDT, we have a coefficient two at a derivative of
the torque Mxy, which for the FSDT is equal to one.

Appendix A.1.3. CPT

In the classical theory of plates (CPT), transverse forces are neglected (A6) and, moreover,
in (A2) and (A3), it should be [36]

w,x = ψx w,y = ψy (A25)

Taking into consideration (A25) in (A5), we have [46]

Mx = −D
(
w,xx + νw,yy

)
(A26a)

My = −D
(
w,yy + νw,xx

)
(A26b)

Mxy = −D(1− ν)w,xy (A26c)

When the above-mentioned relations are accounted for and it is assumed that Qx = Qy = 0
in (A7), the following equations are obtained [46]

• Equations of equilibrium ∫ `

0

∫ b

0

[
Nx,x + Nxy,y

]
δudxdy = 0 (A27a)

∫ `

0

∫ b

0

[
Nxy,x + Ny,y

]
δvdxdy = 0 (A27b)

• Boundary conditions for x = const∫ b

0
[Nx − hp0(y)]δudy|x = const = 0 (A28a)

∫ b

0
Nxyδvdy|x = const = 0 (A28b)

∫ `

0

[
Mx,x + 2Mxy,y + Nxyw,y + Nxw,x

]
δwdy|x = const = 0 (A28c)

∫ b

0
Mxδw,xdy|x = const = 0 (A28d)

for y = const ∫ `

0
Nyδvdx

∣∣∣y = const = 0 (A29a)

∫ `

0
Nxyδudx

∣∣∣y = const = 0 (A29b)

∫ `

0

[
My,y + 2Mxy,x + Nxyw,x + Nyw,y

]
δwdx

∣∣∣y = const = 0 (A29c)
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∫ `

0

[
My

]
δw,ydx

∣∣∣y = const = 0 (A29d)

for the plate corner, i.e., for x = const and y = const

2Mxyδw|x = const
∣∣∣y = const = 0 (A30)

In the history of the CPT, for the first two components in (A28c) and (A29c), a term of equivalent
Kirchhoff transverse forces, was introduced and defined as

QC
x = Mx,x + 2Mxy,y (A31a)

QC
y = My,y + 2Mxy,x (A31b)

where the upper index C was used for the CPT.
By analogy to the FSDT and the S-FSDT, according to (A28c) and (A29c), the following components

were assumed
Q

C
x = Nxw,x + Nxyw,y (A32a)

Q
C
y = Nyw,y + Nxyw,x (A32b)

The above-mentioned components of transverse forces result from the projection of membrane
forces. Thus, they can be referred to as equivalent Kirchhoff membrane forces.

Taking into account the two above-mentioned systems, the total equivalent Kirchhoff transverse
forces Q̂C

x and Q̂C
y for the CPT were written as [36,45,46]

Q̂C
x = QC

x + Q
C
x = Mx,x + 2Mxy,y + Nxw,x + Nxyw,y (A33a)

Q̂C
y = QC

y + Q
C
y = My,y + 2Mxy,x + Nyw,y + Nxyw,x (A33b)

Formulas (A24) and (A33) have the same structure. It should be remembered that for the S-FDST,
these equations are for the two variables w,φ, whereas for the CPT, only for the variable w.

Appendix A.1.4. Shear Forces

When we compare relationships (A13) for the FSDT, (A24) for the S-FDST and (A32) for the CPT,
we can see that the expressions for total transverse forces are identical in practice. In the FSDT, at the
derivative of the torque Mxy there is a coefficient equal to one and not two, as it takes place for the
S-FSDT and the CPT. It is caused by additional boundary conditions (A9c) and (A10c) for the FSDT.

For postbuckling states, there are membrane forces in the central plane that yield simultaneously
projections for additional components of transverse forces (A12), (A23) and (A32) for the FSDT,
the S-FSDT and the CPT, correspondingly. In the case of postbuckling equilibrium paths, these additional
components are larger than the components of transverse forces (A11), (A22) and (A31).

Appendix A.2. Solution to Governing Equations within the FSDT, the S-FSDT and the CPT

A square isotropic plate freely supported along all edges, compressed along the x-axis (Figure 1),
was analysed. The plate of the dimensions a and the thickness h was assumed to have the following
material constants: Young’s modulus E and Poisson’s ratio ν. The considerations were limited to an
elastic range.
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Appendix A.2.1. Continuity Equation of Deformations (the So-Called Inseparability Equation
of Deformations)

On the assumption that relations (A1) and (A4) hold for the three theories under consideration
(i.e., the FSDT, the S-FSDT and the CPT), two first equations of equilibrium for each theory are the
same (cf. (A8a,b), (A18a,b) and (A27a,b)). To solve them, a function of Airy forces F was introduced.
It is defined as follows [36,45]

Nx = σxh = F,yy (A34a)

Ny = σyh = F,xx (A34b)

Nxy = τxyh = −F,xy (A34c)

Taking into consideration (A34) in (A8a,b), (A18a,b) and (A26a,b), it was found that both the
equations were identically zero. That system of equations was substituted by one equation referred to
as a continuity equation of deformations or an inseparability equation of deformations.

For this purpose, a system of Equations (A1) was rewritten as

εx,yy + εy,xx − γxy,xy = w2
,xy −w,xxw,xy (A35)

When we take account of relations (A1), (A4), (A34) in the above-mentioned system, we obtain a
continuity equation of deformations in the form [36,45]

∇∇F ≡ F,xxxx + 2F,xxyy + F,yyyy = E
(
w2

,xy −w,xxw,xy
)

(A36)

The equation is linear with respect to F and nonlinear with respect to w.
The deflection of a square plate freely supported is approximated in the following way [36]

w = Wsin
πx
a

sin
πy
a

(A37)

which satisfies the following boundary conditions

w(x = 0) = w(x = a) = w(y = 0) = w(y = a) = 0 (A38)

When (A37) is substituted into (A36), a function of the membrane forces F is determined, and then
components of the membrane forces are defined as [36]

Nx = F,yy = −
EhW2

8

(
π
a

)2
cos

2πy
a
− ph (A39a)

Ny = F,xx = −
EhW2

8

(
π
a

)2
cos

2πx
a

(A39b)

Nxy = −F,xy = 0 (A39c)

where p is the stress along the x-axis (Figure 1).
The functions of forces (A39) fulfil the following boundary conditions [36,46]

u(x = 0) = u(x = a) = const Nxy(x = 0) = Nxy(x = a) = 0 (A40a)

v(y = 0) = v(y = a) = const Nxy(y = 0) = Nxy(y = a) = 0 (A40b)

Appendix A.2.2. Solution to the Nonlinear Problem of Stability for the CPT

Within the CPT, a solution to the nonlinear problem after an introduction of the force function (A34)
is composed of two nonlinear Equations (A36) and (A27c) with respect to F and w, correspondingly.
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One of the solutions is Relationship (A39). The second solution is the equation of Equilibrium (A27c)
with respect to w, which was solved with the Galerkin–Bubnov method [36].

The assumed function of deflection in (A37), according to (A26), fulfils the boundary conditions
of free support

Mx(x = 0) = Mx(x = a) = My(y = 0) = My(y = a) = 0 (A41)

To solve the problem, Relationships (A37) and (A39) are introduced into Equation (A27c). Finally,
we obtain an equation that describes the postbuckling equilibrium path for the CPT

pC = pC
cr +

Eπ2

8a2 W2 (A42)

where

pC
cr =

4Dπ2

ha2 (A43)

Relationship (A42) can also be expressed as [36](
1−

pC

pC
cr

)
+ 0.34125

(W
h

)2
= 0 (A44)

Transverse forces in the CPT are referred to as equivalent Kirchhoff transverse forces (A31) and,
according to (A37), expressed with the following relations

QC
x = Mx,x + 2Mxy,y = (3− ν)D

(
π
a

)3
Wcos

πx
a

sin
πy
a

(A45a)

QC
y = My,y + 2Mxy,x = (3− ν)D

(
π
a

)3
Wsin

πx
a

cos
πy
a

(A45b)

From (A32), for equivalent Kirchhoff forces in compression, taking account of (A3) and (A39),
we have

Q
C
x = Nxw,x + Nxyw,y = −

EhW3

8

(
π
a

)3
cos
πx
a

sin
πy
a

cos
2πy

a
− phW

π
a

cos
πx
a

sin
πy
a

(A46a)

Q
C
y = Nyw,y + Nxyw,x = −

EhW3

8

(
π
a

)3
sin
πx
a

cos
πy
a

cos
2πx

a
(A46b)

For transversally inextensible membrane plates, the shear forces are independent of
membrane deformation.

The relations for total equivalent Kirchhoff transverse forces result from the two above-mentioned
systems of equations and (A33)

Q̂C
x = (3− ν)D

(
π
a

)3
Wcos

πx
a

sin
πy
a
− phW

π
a

cos
πx
a

sin
πy
a
−

EhW3

8

(
π
a

)3
cos
πx
a

sin
πy
a

cos
2πy

a
(A47a)

Q̂C
y = (3− ν)D

(
π
a

)3
Wsin

πx
a

cos
πy
a
−

EhW3

8

(
π
a

)3
sin
πx
a

cos
πy
a

cos
2πx

a
(A47b)

As one can easily notice, the first terms on right-hand sides in (A47) are positive, whereas the
remaining terms are negative. The two first terms in (A47a) and the first term in (A47b) are a linear
function of W, whereas the remaining terms are nonlinear with respect to W. To solve the problem,
the deflection W should be determined from Equation (A44) for the given load p, and next the values
of transverse forces (A45)–(A47).

The first component Q̂C
x in (A47) depends formally on the value of the compressive load p, whereas

the second Q̂C
y does not. However, it should be remembered that for the given load p > pC

cr, we have
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the deflection W, and thus, indirectly, the equivalent Kirchhoff transverse forces Q̂C
x and Q̂C

y depend on
p and W.

Appendix A.2.3. Solution to the Nonlinear Problem of Stability for the S-FSDT

A solution to the nonlinear stability problem for the S-FSDT consists of three equations:
(A36) and (A18c,d). The solutions to (A36) are relationships (A39). The solution to the remaining two
equations, when we take into account (A37), is predicted in the form

φ = Φsin
πx
a

sin
πy
a

(A48)

which, according to (A16) fulfils, the boundary conditions of free support

Mx(x = 0) = Mx(x = a) = My(y = 0) = My(y = a) = 0 (A49)

Having substituted (A37) and (A48) into (A18d), a linear relation between amplitudes of the
functions W and Φ was determined as

W = Φ(1 + η) (A50)

where

η =
2D

k2Gh

(
π
a

)2
(A51)

Nonlinear Equation (A18c) was solved within the Galerkin–Bubnov method, as for the CPT.
For this purpose, Relations (A16), (A17), (A39) and (A50) were introduced into the above-mentioned
equation, and after some transformations, an equation describing the postbuckling equilibrium path
was obtained

pS = pS
cr +

EW2

8

(
π
a

)2
(A52a)

where

pS
cr =

4Dπ2

ha2
1

1 + η
(A52b)

Relation (A52) can be expressed in an analogous way to (A44) as(
1−

ps

pS
cr

)
+ 0.34125(1 + η)

(W
h

)2
= 0 (A53)

From the formal point of view, Relationships (A42) and (A52) have an identical structure due load
and the deflection W, and a difference lies in critical forces only. From a comparison of (A43) and (A53),
we have

pS
cr =

4Dπ2

ha2
1

1 + η
= pC

cr
1

1 + η
(A54)

The transverse components of forces in the S-FSDT, according to (A16), (A22) and (A50), are in
the form

QS
x = (3− ν)D

(
π
a

)3 W
1 + η

cos
πx
a

sin
πy
a

(A55a)

QS
y = (3− ν)D

(
π
a

)3 W
1 + η

sin
πx
a

cos
πy
a

(A55b)

and, according to (A23), (A37), (A39) and (A48), we have

Q
S
x = −

EhW3

8

(
π
a

)3
cos
πx
a

sin
πy
a

cos
2πy

a
− phW

π
a

cos
πx
a

sin
πy
a

(A56a)
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Q
S
y = −

EhW3

8

(
π
a

)3
sin
πx
a

cos
πy
a

cos
2πx

a
(A56b)

Systems of equations (A46) and (A56) have an identical structure.
From the above two systems of equations and (A24), we obtain

Q̂S
x = (3− ν)D

(
π
a

)3 W
1+ηcosπx

a sinπy
a − phW π

a cosπx
a sinπy

a

−
EhW3

8

(
π
a

)3
cosπx

a sinπy
a cos 2πy

a

(A57a)

Q
S
y = (3− ν)D

(
π
a

)3 W
1 + η

sin
πx
a

cos
πy
a
−

EhW3

8

(
π
a

)3
sin
πx
a

cos
πy
a

cos
2πx

a
(A57b)

Comparing relations (A47) for the CPT and (A57) for the S-FSDT, it can be easily seen that the
formulas differ only by the factor 1/(1 + η) in the first term of right-hand sides of expressions in (A57).
Moreover, the first two components of the right-hand side of (A57a) and the first term in (A57b) depend
linearly on W, whereas the remaining ones are in the third power for W.

Appendix A.2.4. Solution to the Nonlinear Problem of Stability for the FSDT

For the FSDT, a solution to the nonlinear stability problem consists of a function of Airy forces F
(A39) and a system of equilibrium equations (A8c–e). The solutions to these equations are the function
w (A37) and the functions ψx,ψy, which were assumed in the form

ψx = Ψxcos
πx
a

sin
πy
a

(A58a)

ψy = Ψysin
πx
a

cos
πy
a

(A58b)

The function w (A37) fulfils the boundary conditions (A38), whereas the functions ψx,ψy satisfy
the conditions of free support

ψx(y = 0) = ψx(y = a) = 0 (A59a)

ψy(x = 0) = ψy(x = a) = 0 (A59b)

Mx(x = 0) = Mx(x = a) = 0 (A59c)

My(y = 0) = My(y = a) = 0 (A59d)

After the substitution of (A58) into two equations (A8d,e), the following linear dependencies
between the functions W, Ψx, Ψy are attained

Ψx = Ψy =
W

1 + η

(
π
a

)
(A60)

where relation (A51) holds.
A further step was a solution to the nonlinear Equation (A51), which describes the postbuckling

equilibrium path. This solution was obtained employing, similarly as for the CPT and the S-FSDT,
the Galerkin–Bubnov method. The postbuckling equation of equilibrium has the form

pF = pF
cr +

EW2

8

(
π
a

)2
(A61a)

or (
1−

pF

pF
cr

)
+ 0.34125(1 + η)

(W
h

)2
= 0 (A61b)
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where

pF
cr =

4Dπ2

ha2
1

1 + η
= pS

cr = pC
cr

1
1 + η

(A62)

As can be easily seen in (A62), the values of critical loads for the S-FSDT and the FSDT are identical.
The postbuckling equilibrium paths for the S-FSDT (A52), (A52a) and the FSDT (A61), (A61a) are the
same, and, additionally, they differ from the CPT only by the factor 1/(1 + η).

In a comparison of the Kirchhoff theory (i.e., CPT) with the Mindlin (the S-FSDT version) and
Reissner (FSDT) theories, the reduction factor η plays a very important role (A51).

For the CPT, the factor η, according to [3,46], can be written for the case when G→∞ , which leads
to the relation η = 0.

The reduction factor η (A51) can be transformed to

η =
2D

k2Gh

(
π
a

)2
=

π2

3k2(1− ν)

(
h
a

)2

(A63)

For k2 = 5/6, ν = 0.3 from (A63), we obtain η = 5.64(h/a)2. When h/a = 0.1, η = 0.0564;
whereas when h/a = 0.04, η = 0.009. That means that for the plate of medium thickness
(when h/a = 0.1), the correction for the S-FSDT and the FSDT when compared to the CPT is lower
than 6%. When h/a = 0.04, it is less than 1%. For thin plates (i.e., when h/a<0.05), the reduction factor
η < 0.014.

In the last stage, the determined components of transverse forces in the FSDT, according to (A60),
(A37) and (A8), were written as

QF
x = 2D

(
π
a

)3 W
1+ηcosπx

a sinπy
a

QF
y = 2D

(
π
a

)3 W
1+η sinπx

a cosπy
a

(A64)

and additionally, according to (A9), (A10), (A39) and (A58), we have

Q
F
x = −EhW3

8

(
π
a

)3
cosπx

a sinπy
a cos 2πy

a − phW π
a cosπx

a sinπy
a

Q
F
y = −EhW3

8

(
π
a

)3
sinπx

a cosπy
a cos 2πx

a

(A65)

Dependencies (A46), (A56) and (A65) have the same structure for the CPT, the S-FSDT and the
FSDT. These are transverse force components dependent on membrane forces.

From the system of the above two equations and (A24), we obtain

Q̂F
x = 2D

(
π
a

)3 W
1+ηcosπx

a sinπy
a − phW π

a cosπx
a sinπy

a

−
EhW3

8

(
π
a

)3
cosπx

a sinπy
a cos 2πy

a

(A66a)

Q
F
y = 2D

(
π
a

)3 W
1 + η

sin
πx
a

cos
πy
a
−

EhW3

8

(
π
a

)3
sin
πx
a

cos
πy
a

cos
2πx

a
(A66b)

When Relations (A47) for the CPT and (A57) for the S-FSDT are compared, one can easily see that
they differ in the factor 1/(1 + η) only in the first term of right-hand sides of expressions (A57).

Like for the CPT and the S-FSDT, the first two terms of the right-hand side (A66a) and the first
term in (A66b) depend linearly on W, whereas the remaining terms are in the third power for W.

Appendix A.2.5. Solution to the Nonlinear Problem of Stability in the FEM (ANSYS)

In the given system of coordinates (Figure A1), a square plate jointly supported was investigated.
The support was achieved taking the degrees of freedom away along the following directions: x for
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x = 0 (displacement u= 0), y for y = 0 (displacement v= 0), z for z= 0 (displacement w= 0, perpendicular
to the central plane of the plate).

Figure A1. FEM model of the plate.

Numerical calculations were performed with the commercial ANSYS® software [47] based on
the FEM. In Figure A1, a compression force along the x-direction, applied to the node, is indicated.
The displacements u and v for x = a and y = a (a-plate length/width), respectively, were assumed to be
constant, using the Couple Dof’s function, which allows for controlling a group of nodes (the so-called
Slaves) with one main node (the so-called Master). In the numerical model, a Shell181 finite element
with six degrees of freedom was used. The FEM model had 2500 elements, 15,606 degrees of freedom,
and the element size was 2 mm. In the nonlinear problem, an option of Update geom, i.e., a possibility to
impose an initial shape imperfection, which is a solution to the plate postbuckling state, was involved.
In the computations, the imperfection amplitude equal to w0 = 0.0001 h was assumed. The problem
was solved within the Newton–Raphson method for the system of equilibrium equations, which is a
system of algebraic equations, for 1000 load steps within the range 1.001 ≤ P/Pcr ≤ 2.000.

In the Shell181 element description [46], the transverse forces are denoted as Q13 and Q23.
For uniform notations in the presented study, it is assumed that

QA
x ≡ Q13 QA

y ≡ Q23 (A67)

where the index A refers to ANSYS® [47] based on the FEM.
In FEM procedures, the manufacturer issues certain supplements and corrections with respect to

the traditional version of the assumed theory, for instance, for the FSDT.
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