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Abstract: The studies about the effect of the graphene reinforcement ratio and machining parameters
to improve the machining performance of Ti6Al4V alloy are still rare and incomplete to meet the
Industry 4.0 manufacturing criteria. In this study, a hybrid adaptive neuro-fuzzy inference system
(ANFIS) with a multi-objective particle swarm optimization method is developed to obtain the optimal
combination of milling parameters and reinforcement ratio that lead to minimize the feed force,
depth force, and surface roughness. For achieving this, Ti6Al4V matrix nanocomposites reinforced
with 0 wt.%, 0.6 wt.%, and 1.2 wt.% graphene nanoplatelets (GNPs) are produced. Afterward, a full
factorial approach was used to design experiments to investigate the effect of cutting speed, feed rate,
and graphene nanoplatelets ratio on machining behaviour. After that, artificial intelligence based on
ANFIS is used to develop prediction models as the fitness function of the multi-objective particle swarm
optimization method. The experimental results showed that the developed models can obtain an
accurate estimation of depth force, feed force, and surface roughness with a mean absolute percentage
error of 3.87%, 8.56%, and 2.21%, respectively, as compared with experimentally measured outputs.
In addition, the developed artificial intelligence models showed 361.24%, 35.05%, and 276.47% less
errors for depth force, feed force, and surface roughness, respectively, as compared with the traditional
mathematical models. The multi-objective optimization results from the new approach indicated that
a cutting speed of 62 m/min, feed rate of 139 mm/min, and GNPs reinforcement ratio of 1.145 wt.%
lead to the improved machining characteristics of GNPs reinforced Ti6Al4V matrix nanocomposites.
Henceforth, the hybrid method as a novel artificial intelligent method can be used for optimizing the
machining processes with complex relationships between the output responses.

Keywords: Ti6Al4V matrix nanocomposite; graphene nanoplatelets; multi-objective particle swarm
optimization; artificial intelligence; industry 4.0

1. Introduction

In recent years, there is an increasing demand for using the nanoparticle reinforced metal matrix
nanocomposites (MMCs) in the aircraft and biomedical sectors [1]. This is due to their excellent
properties such as high corrosion resistance, high specific strength, and high elastic modulus over pure
metals [1–3]. In general, MMCs have lightweight metals such as titanium, titanium alloy, aluminum,
and the reinforcements are nanomaterials in the form of particle/fiber having higher-strength.
Since graphene was discovered, it has been widely used to form metals and ceramics-based
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nanocomposites. Graphene-based nanocomposites have been commonly reported to have higher
strength, higher toughness, high hardness, excellent tribology, and improved thermal and electrical
conductivity [4,5]. Besides, compared with other reinforcement materials, it was considered as easier
to disperse uniformly in metal/ceramic matrix composites [6].

Recently, graphene has become a more attractive nano-reinforcement material for improving
the performance of metal matrix nanocomposites. Graphene-reinforced titanium nanocomposites
are one of the metal matrix nanocomposites that have been considered as promising materials for
high-temperature applications. Graphene-reinforced titanium nanocomposites with different graphene
contents have been successfully fabricated by powder metallurgy and rapid consolidation techniques,
namely spark plasma sintering (SPS), hot isostatic pressing (HIP), hot pressing (HP), and high-frequency
induction heating (HFIH) techniques. Many studies have been focused on the preparation and
investigation of the mechanical properties of the consolidated graphene reinforced titanium matrix
nanocomposites [2,7–14]. Thereafter, the machinability analysis of these high-performance materials
becomes very necessary after their fabrication and that needs more investigation.

The machinability studies of the MMCs can be divided into investigating the machining parameters,
type of material, and reinforcement materials and ratio. Most of the machining related work regarding
the MMCs is focused on the machining parameters of the aluminum-based composites with different
reinforcement materials (SiC, TiC, MgO, B4C, TiB2, and TiAl3). For instances, Rai et al. [15] analyzed
the machinability of pure Al, Al-TiC, and Al-TiAl3 composites, and Al-Si alloy. They found that
the cutting force for Al-TiC composite was lower than Al-TiAl3 composite, Al-Si alloy, and pure Al.
Furthermore, the machined surfaces of Al-TiC composites exhibited a better surface finish compared to
Al-TiAl3 composites and Al-Si alloy. The good performance of Al-TiC composite was contributed to
the presence of TiC particles, which facilitate the formation of microcracks during the formation of the
chip resulting in lower cutting forces. Rajeswari and Amirthagadeswaran [16] conducted experiments
to study the effects of weight percentages of SiC, feed rate, depth of cut, and spindle speed on cutting
force, tool wear, and surface roughness of fabricated SiC/Al2O3/Al hybrid composites. Based on the
analysis of variance (ANOVA), feed rate, depth of cut, spindle speed, and weight percentages of
SiC were found to have a significant effect on the output responses. Jiang et al. [17] investigated the
machinability of TiB2 particles reinforced aluminum metal matrix composite. The effects of spindle
speed and feed rate on cutting force and surface roughness during the turning process were analyzed.
They found that the machining forces for TiB2/Al MMCs were slightly higher and the surface roughness
was lower than that for the non-reinforced alloy with increasing cutting speed mainly due to the
material flow. Pramanik et al. [3] studied the machinability of SiC/Al nanocomposite with 10% volume
fraction of SiC particles by face milling and investigated the effect of cutting speed and feed rate on
surface roughness, machining forces, and chip surface. They found that chip ratio, surface roughness,
and machining forces were affected by feed rate and cutting speed. Ekici and Gülesin [18] studied
the machinability of B4C/Al composite during milling with 5%, 10% and 15% ratio of B4C particles.
They found that the cutting forces during milling B4C/Al composite were increased with the increase
in cutting speed and B4C reinforcement ratio when carbide cutting tools were used. In the case of the
cubic boron nitride tools, the milling forces decreased when the cutting speed decreased, and the B4C
reinforcement ratio increased. Pul [19] analyzed the machinability of MgO/Al composite with ratios of
5%, 10%, and 15% of MgO particles by turning. They found that the most favourable results were
obtained with a MgO reinforcement ratio of 10 wt.% MgO and using carbide cutting tools.

It is worth mentioning that titanium and its alloys are considered very difficult to machine
materials [20,21]. This means that the machining of titanium metal matrix composites is also
very challenging. Regarding the machining of titanium metal matrix composite, limited work has
been reported in the previous studies. For example, Ding et al. [22] performed the grinding of the
TiCp/TiBw/Ti6Al4V composites, and pure Ti6Al4V alloy. They found that the grinding forces were
much higher for the composites than the pure Ti6Al4V alloy. This was due to the differences in elasticity
modulus of the machined materials. Aramesh et al. [23] investigated the tool wear mechanisms
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of the cubic boron nitride inserts during turning of 10–12 vol% TiC/Ti6Al4V matrix composite.
Niknam et al. [24] studied the machinability of TiC/Ti6Al4V matrix composites during turning process
under different depths of cut, cutting speed, and feed rate. They found that the cutting speed and feed
rate are the major machining parameters affecting the surface roughness and flank wear.

Regarding the machinability analysis, very limited work has been reported on the machining
analysis of the graphene-based metal matrix nanocomposites. Gao and Jia [1] developed a finite element
model to study the effect of the machining parameters and reinforcement ratio, namely cutting depth,
GNPs weight fraction, and GNPs average size on the average cutting force during micro-machining
of GNPs/Mg nanocomposite. They found that weight fraction, and GNPs average size affect the
output responses. Abdulgadir et al. [25] reported an experimental study on the drilling of the
Mg-nanocomposite reinforced by 10 wt.% SiC and 0.25 wt.% GNPs. They found that the presence of
the GNPs in Mg-nanocomposite reduces the friction between the cutting tool and nanocomposite due
to the lubricant effect of graphene resulting in decreasing cutting force. Na et al. [26] performed the
micromachining of the graphene nano-flakes (GNF) reinforced aluminum nanocomposite. The effect
of feed rate and GNF contents on milled surface morphology, force component, and chip formation
were investigated. The obtained results showed that all output responses were considerably affected
as the graphene contents increased compared with base aluminum.

It should be noted that the selection of the optimal cutting conditions for machining metal
matrix composites plays a critical role in green and sustainable manufacturing where efforts are
made to minimize tools and energy consumption [27,28]. In addition, in ascertaining the quality of
machined parts, minimizing machining cost and increasing productivity. Therefore, several researchers
used traditional methods for optimizing the cutting conditions such as Taguchi method [29] and
Response surface methodology (RSM) [30,31]. However, Taguchi and RSM methods obtain optimal
solutions dependent on the randomly chosen initial solutions, and the optimization falls into the local
solution [32,33]. On the other hand, metaheuristic algorithms are being proposed by researchers to
guarantee a globally optimal solution for machining characteristics. For example, [17] optimized
the cutting condition during turning of TiB2/Al for maximizing MRR and minimizing the surface
roughness using a genetic algorithm (GA). Gupta et al. [34] optimized the cutting condition during the
turning of Ti6Al4V for minimizing cutting forces, surface roughness, and tool wear using response
surface methodology and particle swarm optimization. Choudhary et al. [35] used hybrid particle
swarm optimization and genetic algorithm for optimizing submerged arc welding process parameters.
According to [32] GA method has some limitations, including higher computation time, too many
control parameters, and deliberate convergence. To overcome these limitations, a multi-objective
particle swarm optimization (MPSO) is adapted as an effective tool to optimize cutting parameters.
MPSO is faster compared to the GA method, and can simultaneously apply both global and local search,
whereas GA is mainly more effective for global search, as mentioned by [32,34,36–38]. The effectiveness
of the optimization methods depends on the prediction model as a fitness function. Extensive work has
been performed on using response surface methodology and factorial design to develop mathematical
models as fitness functions. However, these models may not be able to ensure reliable results because
the machining processes are very complex with nonlinear behaviours. Therefore, there is an increasing
interest in the development of models for machining processes to guarantee and obtain reliable
results. Artificial intelligence techniques are effective tools to develop models for complex nonlinear
systems [32,39]. Bustillo et al. [40] developed prediction models for flatness deviation of the milled
surface during face milling of AISI 1045 steel using the machine learning method. Abbas et al. [41]
developed prediction models for surface roughness, machining time, machining cost during the turning
of AA6061 alloy by using a neural network.

Artificial intelligence techniques based on adaptive neuro-fuzzy inference systems (ANFIS)
provides more realistic results as compared to neural network and mathematical models based on the
design of experiments [42–46]. Moreover, employing the integrating artificial intelligence methods as
fitness function during optimization presented accurate results compared with conventional method
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(Taguchi and RSM methods). Conde et al. [39] developed prediction models using an artificial neural
network and used these models as a fitness function for simulated annealing for optimizing the wire
electrical discharge machining. Gopan et al. [32] combined an artificial neural network with the particle
swarm optimization (PSO) method for optimizing the cutting parameters to minimize the surface
roughness and cutting forces during the grinding process and found accurate results during validation.
Abbas et al. [47] optimized the cutting condition during the face milling of high-strength steel grade-H
for minimizing surface roughness and machining time using an artificial neural network with the
Edgeworth-Pareto method.

On the other hand, many industries are using artificial intelligence techniques to enable smart
automated manufacturing. Complex nonlinear machining processes can greatly benefit if they shift
towards smart machining. This will require adjusting the machining parameters autonomously and
adapting to current conditions to achieve higher performance. Therefore, to satisfy the requirements of
smart machining in Industry 4.0, artificial intelligence and machine learning-based prediction models
of machining processes are a fundamental requirement.

It is evident from the literature review that the graphene nano-reinforcement materials enhance
the functionality and machinability of metal matrix nanocomposites. It was also found that no study
has been conducted to optimize the cutting parameters by integrated ANFIS with a multi-objective
particle swarm optimization (MOPSO) method for any machining process to fulfill the industry 4.0
smart manufacturing requirements [48,49]. It should be noted that no previous work has been
reported on optimizing the machining parameters for machining GNPs-Ti64 nanocomposites.
Only recently a study has been reported [50], where the machinability of the GNPs reinforced
Ti6Al4V nanocomposites was presented. This study explored the effect of the GNPs and milling
parameters on the machining performance. They found that despite improved mechanical properties
(high hardness), GNPs reinforced Ti6Al4V nanocomposites showed better machining performance.
However, their work did not consider the optimization of the GNPs reinforcement ratio and milling
parameters for better machining performance. The objective of this study is to develop a novel
method based on ANFIS and MOPSO to optimize milling parameters and GNPs reinforcement ratio
for machining GNPs-Ti64 nanocomposites. To achieve this objective, firstly, high-density hybrid
GNPs-Ti64 nanocomposites are fabricated with different graphene contents by using the high-frequency
induction heating (HFIH) technique. Secondly, the milling experiments are conducted based on full
factorial design to study the effect of cutting speed, feed rate, and GNP reinforcement ratio on the
depth force, feed force, and surface roughness. Thirdly, ANFIS models are developed based on the
training and testing data, and then compared with the quadratic model to ensure the realistic results
of the developed ANFIS model. Finally, multi-objective optimization was performed using hybrid
ANFIS with the MOPSO method to select the optimal machining parameters and GNPs reinforcement
ratio for enhancing the machining of the hybrid GNPs-Ti64 nanocomposites.

2. Experimental Methods

2.1. Production

For developing the GNPs-Ti64 nanocomposites, commercial Ti6Al4V (Ti64) alloy powder (~71 µm,
ARCAM AB, Mölndal, Sweden) was used as the matrix material. The chemical composition of the
received Ti64 powder is given in Table 1. Graphene nanoplatelets (GNPs) from XG Sciences, Inc.,
Lansing, MI, USA were used as the reinforcement material. The characteristics of GNPs are listed in
Table 2.

Table 1. Composition of Ti64 powder.

Elements Al V C Fe O Ti

Percentage (%) 6 4 0.03 0.1 0.15 Balanced
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Table 2. Characteristics of GNPs.

Power Thickness Average Diameter Surface Area Density

GNPs 5–8 nm less than 2 µm 750 m2/g 2.21 g/cm3

GNPs-Ti64 nanocomposites were fabricated by using different weight percentages of reinforcement
such as 0 wt.%, 0.6 wt.%, and 1.2 wt.% GNPs. All GNPs powders were mixed into Ti64 through a
Pulverisette ball mill machine (FRITSCH GmbH, Idar-Oberstein, Germany). The milling process was
performed at 100 rpm for 4 h under a ball-to-powder weight of 10 [51]. The obtained ball-milled powder
was loaded into a graphite die with an internal diameter of 20 mm and then consolidated by HFIH
furnace (HFActive Sinter System, ELTEK, Dongan-gu, South Korea) The consolidation was performed
at a temperature of 1000 ◦C, a heating rate of 200 ◦C/min, and a uniaxial pressure of 50 MPa [52].
Process flow diagram of the fabrication process of GNPs-Ti64 nanocomposites is illustrated in Figure 1a.
After fabrication, all specimens were ground using SiC papers with P200, P200, P400, P600, P800, P1000,
P1500, and P2000 grit size, followed by polishing with Al2O3 suspension, and etched for 10 s by Kroll’s
solution. Then, a scanning electron microscope (SEM) from Jeol, Tokyo, Japan (Model JCM 6000Plus)
was used to examine the dispersion of GNPs in the Ti64 matrix.

Figure 1. Experimental set-up and measuring devices (a) Preparation process for rapid fabrication of
GNPs-Ti64 nanocomposite specimens (b) milling and measurements setups.

2.2. Machining Setup and Measurements

Machining tests of the GNPs-Ti64 nanocomposites were carried out after the fabrications were
completed successfully. Milling experiments were performed on the DMC 635 V three axes CNC vertical
milling machine (DMG Mori, Oelde, Germany) with the maximum tool rotational speed of 8000 rpm and
feed rate of 24 m/min. The experimental setup consists of a CNC vertical milling machine equipped with
a dynamometer, as shown in Figure 1b. Kistler dynamometer (Kistler Corp, Winterthur, Switzerland)
type 9257B with charge amplifier (type 5070A), acquisition system (type 5697A1), and DynoWare’
software type 2825D-02 (DynoWare, version 2.4.3.2, Kistler Corp, Winterthur, Switzerland) were
used to measure the forces. Solid carbide end-mill cutting tools with 8 mm diameter, four flutes
(helix angle 35◦), axial rake angle 5.5◦, and radial rake angle of 9◦ was used for milling, as shown in
Figure 2. Each experiment was repeated two times and the average of the measured forces during two
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experiments was used later. A 3D optical profilometer (Contour GT-K, Bruker, Berlin, Germany) was
used to measure the roughness of the milled surfaces. The roughness of the machined surface was
measured in terms of surface area (Sa). The roughness measurement was repeated seven times for
each milling experiment, and later the average value was used. Durascan 10HV (Struers A/S, Ballerup,
Austria) was used to measure the Vickers hardness of the fabricated samples by using a load of 0.5 kg
for a dwell time of 10 s. For each sample, the hardness measurement was repeated five times and later
the average value was used.

2.3. Experimental Design

A full factorial design was applied to identify the experimental conditions and investigate the effect
of machining parameters on the output responses. Three cutting parameters, namely cutting speed
(V), feed rate (f), and reinforcement ratio (R) were selected as the machining factors. Depth force (Fd),
feed force (Ff), and surface roughness (SR) were used as output responses to evaluate the machining
characteristics of the fabricated GNPs-Ti64 nanocomposites. The purpose of this study is to reduce the
cutting force components and roughness of the milled surface. The range of the selected parameters
for the milling GNPs-Ti64 nanocomposites was selected from the previous study [50,53]. The selected
cutting parameters and their ranges are presented in Table 3.

Figure 2. Architecture of ANFIS model [54].

Table 3. Machining parameters and their selected values.

Input Parameters Values

Feed Rate, F (mm/min) 90 150 210 -
Cutting Speed, V (m/min) 25 50 75 -

Reinforcement Ratio, R (wt.%) 0 0.6 1.2 -
Depth of Cut, d (mm) 0.5 - - -

Radial depth, dR (mm) 3.8 - - -

Statistical analysis based on analysis of variance (ANOVA) was used to estimate the effects of
selected parameters and their interaction on the output responses. The statistical analysis software
Minitab 17 was used to systematically analyze the effects of cutting speed, feed rate, and graphene
content on the cutting force components, and surface roughness. The coefficient of determination (R2)
and correlation coefficient (R) were used to evaluate the accuracy of the models.
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2.4. Hybrid ANFIS-MOPSO Approach

2.4.1. Adaptive Neuro-Fuzzy Inference System Model

ANFIS is an effective method to develop prediction models for solving very complex and
nonlinear processes. ANFIS combines fuzzy inference system (FIS) and artificial neural network (ANN).
FIS consists of five networks and each layer is described by several node functions. Figure 2 shows
the ANFIS model structure with two membership functions (MFs) for each input and one output, as
explained in ref [54]. The ANFIS was implemented via MATLAB 2016a (MATLAB, 16b, MathWorks
Inc., Natick, MA, USA).

The meaning of each layer in fuzzy inference system is described as follows [54];
Layer 1: Fuzzification layer, in this layer a membership value is computed by using the

following equation.

µAi(x) =
1

1 + [
( x−ci

ai

)2
]
bi

(1)

where µ Ai(x) represents the membership function, ai, bi, and ci form a parameter set that changes the
forms of the fuzzy membership with a value between 0 and 1.

Layer 2: Product layer, in this layer the incoming signals are multiplied and sent out

i = µAi(x) × µBi(y), i = 1, 2 (2)

where µ Bi(x) represent the membership function
Layer 3: Normalizing layer, in this layer, the normalized firing strength is calculated using the

following equation:

wi =
wi∑
i wi

, i = 1, 2 (3)

where, wi denotes the output of each layer.
Layer 4: This layer is called defuzzification layer where every ith node in this layer is expressed

with the following equation:
wi. fi = wi.(pi.x + qi.y + ri.z + si) (4)

where wi is the normalized firing strength and pi, qi, and ri are the consequent parameters, which are
determined using a training algorithm.

Layer 5: this is output layer and the system output is computed as follows.

Output =
∑

i
wi. fi =

∑
i wi. fi∑

i wi
, i = 1, 2 (5)

In this work, ANFIS prediction models were used to establish a non-linear relationship between
the inputs (cutting speed, feed rate, and reinforcement ratio) and the output responses (cutting force
components and surface roughness). These developed models were used to estimate the machining
performance, and also as the fitness function for MOPSO to carry out the optimization procedure

2.4.2. Multi-Objective Particle Swarm Optimization

Coello and Lechuga [55] extended the metaheuristic developed by [56] called “particle swarm
optimization” (PSO), to optimize multi-objective problems. The extended algorithm is a multi-objective
version of PSO, which is called the Multi-Objective Particle Swarm Optimization (MOPSO).
The proposed MOPSO uses the Pareto Dominance principle to evaluate the particle travel trajectory
and preserves previously defined non-dominated vectors in a global repository that are later used by
other particles to control their own path [55]. To handle the optimization process of the multi-objective
problems, MOPSO incorporates a global repository and a geographically based system, which is
inspired by the external file used with the Pareto Archived Evolution Strategy (PAES).
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Similar to PSO, particles in MOPSO exchange knowledge and continuously shift towards both
memories, the global best particles and their local best. Nevertheless, unlike PSO, there is more than
one objective to optimize (i.e., find and determine the global or local best). The non-dominated particles
in the swarm are collected into a sub-swarm called Repository, and each particle selects its global best
target among the members of this Repository. Domination and probabilistic based rules are utilized to
determine the particle’s local (or personal) best.

As the effectiveness of the MOPSO in achieving reliable results is associated with the proper
formulation of fitness functions [55]. Thus, the fitness function should precisely map the input values
and output responses. Considering that conventional mathematical models often tend to fail when
mapping certain complex processes, an ANFIS based on artificial intelligence will be the best alternative
as a fitness function for MOPSO algorithm. The overall structure of the hybrid method is illustrated in
Figure 3. Details of the hybrid approach shown at the following steps:

Figure 3. Structure of a hybrid novel ANFIS-MPOSO approach.
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Step 1: Identify the prediction models for Fd, Ff, and SR responses which are used as fitness
functions of MOPSO. In ANFIS training, experimental results and input information of ANFIS are
used to identify the training parameters that achieve high accuracy predictive models for selected
outputs responses. The training parameter will be updated until obtaining the minimum MAPE. More
details of the input learning information are provided in Section 3.3.

Step 2: In ANFIS testing, experimental results were used to evaluating the ANFIS based on MAPE.
The MAPE will be checked for all testing data to achieve minimum errors or updated the ANFIS
training to obtain the best setting parameters for ANFIS learning.

Step 3: Define the fitness functions and the constraints for Fd, Ff, and SR responses according to
the developed ANFIS model in the previous steps. First, the initializing MOPSO parameters are setup
to execute the optimization steps. Then, the objective functions were evaluated using Pareto solution
set and MOPSO parameters were updated until obtaining good convergence characteristics of MOPSO.
In addition, the ANFIS parameters are updated to get better convergence of MOPSO results.

Step 4: Evaluating the obtained Pareto solution set to select the optimum parameters set which
satisfy the purpose of this study.

2.5. Desirability Approach

The desirability approach is a statistical technique for solving multi-objective problems. It evaluates
how well a combination of input parameters meets the desired goal set for the output responses. This is
done by converting each predicted output response into a desirability number varying from 0 to 1.
The desirability value approaching 0 shows that the goal has not been achieved whereas the value
approaching 1 indicates that the best outcome has been achieved for the given combination of the
input parameters. It should be noted that when more than one output response is optimized together
for a single set of input parameters the calculated overall desirability is called composite desirability
(D). A commercially available software (Minitab) offers the desirability approach for optimizing the
input parameters. The results of the desirability approach were compared with the newly developed
Hybrid ANFIS-MOPSO approach.

3. Results and Discussions

3.1. Microstructure and Hardness of the Produced Nanocomposites

Figure 4a–c shows optical microscopy and Figure 4d,e shows SEM backscattered images of the
produced GNPs-Ti64 nanocomposites with different graphene reinforcement ratio. It can be seen
from Figure 4a that the microstructure of pure Ti6Al4V is characterized by α + β lamellar structure.
For the fabrication of the GNPs-Ti64 nano-composites, it was necessary that the GNPs reinforcement
must be uniformly dispersed in the Ti64 matrix. Figure 4b,c show the GNPs reinforcements are
uniformly distributed between the Ti6Al4V matrix particles. In addition, the nanocomposite with
0.6 wt.% GNPs were characterized by coarse equiaxed α structure with refined lamellar α + β structure.
Similarly, the nano-composite with 1.2 wt.% GNPs was characterized by equiaxed α. Nasr et al. [50]
presented in details how these differences in microstructure were developed after adding the GNPs
reinforcements to Ti64. Moreover, the SEM backscattered images on the selected area were taken to
show the formed TiC and graphene agglomerates during sintering at high temperature, as shown in
Figure 4d–f. More details on the effect of GNPs reinforcement on microstructure were discussed in the
previous study [50].
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Figure 4. Microstructure images of the fabricated samples (a,d) Pure-Ti64; (b,e) 0.6 wt.% GNPs, (c,f)
1.2 wt.% GNPs.

The hardness of the fabricated specimens is shown in Table 4.

Table 4. Hardness of the fabricated specimens.

GNP Reinforcement Ratio Hardness (HV 0.5)

0 356 ± 6.686
0.6 503 ± 11.854
1.2 411 ± 4.828

It can be concluded that the highest hardness was obtained at 0.6 wt.% GNPs reinforcements
due to the developed hard phases (coarse equiaxed microstructure and TiC hard particles).
Afterwards, with increasing the GNPs reinforcements to 1.2 wt.% GNPs, the hardness was decreased
due to the agglomeration of the graphene around the Ti64 matrix particles.

3.2. Statistical Analysis

Table 5 presents the experimental results of the machining GNPs-Ti64 nanocomposites specimens
under milling parameters and GNPs contents. In order to analyze the results of the experiments to
estimate the effect of machining parameters and GNPs reinforcement ratio on all the output responses,
an ANOVA was performed with a confidence interval of 95%. p-value was used to check the statistical
significance of the parameters. The terms with p-value less than 0.05 have a significant effect on the
outputs [57]. Furthermore, mathematical models based on the response surface were developed to
establish the relationship between inputs and outputs, which were used for evaluating the effectiveness
of ANFIS models.

Table 6 presents the results of the ANOVA for depth force, feed force, and surface roughness.
For the depth force, it can be found that cutting speed (V), feed rate (F), and the second-order term
of reinforcement ratio (R), cutting speed (V), and the interactions of V and F were significant terms.
Regarding, the feed force (Ff), the results indicated that the terms of the cutting speed (V), feed rate
(F), and the second-order term of reinforcement ratio (R), and feed rate (f) were significant terms,
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as shown in Table 6. In addition, the interaction between V and f has a significant effect on feed force.
Similarly, the ANOVA results for the surface roughness indicated that speed (V) and feed rate (F),
GNPs reinforcement ratio (R), and the interactions between V and R were significant terms, as shown
in Table 6. The second-order term of reinforcement F has a significant effect on surface roughness.

Table 5. Experimental design and corresponding results.

V (m/min) F (mm/min) R (wt.%) Fd (N) Ff (N) SR (µm)

1 75 210 0.6 123.122 97.818 0.337 ± 0.0076
2 75 90 0.6 86.668 65.506 0.164 ± 0.0046
3 75 150 0 88.553 74.622 0.258 ± 0.0152
4 75 150 1.2 54.123 72.147 0.231 ± 0.0096
5 75 210 1.2 73.124 71.142 0.281 ± 0.0014
6 75 210 0 93.1259 81.124 0.397 ± 0.0035
7 50 90 0 103.467 81.402 0.336 ± 0.0139
8 50 150 1.2 60.623 92.243 0.272 ± 0.0069
9 50 90 1.2 55.328 51.715 0.343 ± 0.0066
10 25 90 0.6 183.270 130.857 0.364 ± 0.0132
11 25 210 1.2 203.250 141.282 0.406 ± 0.0095
12 50 90 0.6 146.101 82.809 0.189 ± 0.0112
13 50 210 0.6 175.141 108.220 0.417 ± 0.0033
14 75 150 0.6 82.275 71.981 0.265 ± 0.0029
15 75 90 1.2 33.093 36.491 0.279 ± 0.0091
16 50 210 1.2 78.211 99.835 0.321 ± 0.0256
17 25 90 1.2 68.289 66.082 0.292 ± 0.0062
18 25 210 0 225.828 162.197 0.54 ± 0.0140
19 50 150 0.6 108.715 136.168 0.283 ± 0.0010
20 25 150 0.6 275.408 138.010 0.374 ± 0.0070
21 25 210 0.6 255.722 192.410 0.471 ± 0.0081
22 25 150 0 189.967 128.962 0.411 ± 0.0052
23 25 150 1.2 177.208 104.014 0.348 ± 0.0039
24 50 150 0 97.101 99.241 0.374 ± 0.003
25 25 90 0 95.369 95.593 0.375 ± 0.012
26 75 90 0 65.854 74.780 0.269 ± 0.0150
27 50 210 0 131.129 114.121 0.462 ± 0.0068

Table 6. Results of the ANOVA for all selected output responses.

Output Source Degree of Freedom Sum of Squares Mean Squares p-Value

Depth force

Model 6 91,361 15,226.8 0.000
V 1 47,913 47,912.9 0.000
F 1 15,648 15,648.5 0.000
R 1 2988 2988.4 0.059

Square 2 20,244 10,121.8 0.000
V × V 1 4433 4433.4 0.024
R × R 1 15,810 15,810.2 0.000

2-Way Interaction 1 4567 4567.4 0.022
V × F 1 4567 4567.4 0.022
Error 20 14,876 743.8
Total 26 106,237

Feed force

Model 6 27,006 4501 0.000
V 1 13,573.6 13,573.6 0.000
F 1 8145.7 8145.7 0.000
R 1 991.1 991.1 0.058

Square 2 2886.1 1443 0.01
F × f 1 525.4 525.4 0.158
R × R 1 2360.6 2360.6 0.006

2-Way Interaction 1 1409.4 1409.4 0.026
V × F 1 1409.4 1409.4 0.026
Error 20 4885.4 244.3

Surface roughness

Total 26 31,891.4
Model 6 0.168119 0.02802 0.000

V 1 0.067149 0.067149 0.000
F 1 0.057834 0.057834 0.000
R 1 0.023429 0.023429 0.000

Square 2 0.010943 0.005471 0.033
F × F 1 0.006911 0.006911 0.034
R × R 1 0.004032 0.004032 0.098

2-Way Interaction 1 0.008764 0.008764 0.019
F × R 1 0.008764 0.008764 0.019
Error 20 0.026809 0.00134
Total 26 0.194928
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The coefficient of determination (R2) for each RSM model was calculated as 86.40%, 88.27%,
and 90.73% for depth force, feed force, and surface roughness models, respectively. It can be inferred
that the model has a high significance of 86.40%, 88.27%, and 90.73%.

In addition, the main effect plots were obtained for each output response, as shown in Figure 5.
Figure 5a,b shows that the depth force and feed force was affected by cutting parameters and GNPs
reinforcement ratio. With the increasing cutting speed, the depth and feed forces decreased. This is
attributed to thermal softening due to an increase in the cutting speed [58]. With an increase in the
feed rate, the depth and feed force increased. This is attributed to an increase in friction between
the cutting tool and workpiece [58,59]. Similarly, an increase in the reinforcement ratio to 0.6 wt.%,
the feed and depth force increased due to the presence of the equiaxed grains in the Ti64 matrix,
and developed TiC hard particles. When the GNPs reinforcement ratio increased to 1.2 wt.%, the feed
and depth force decreases. This happens because of the lubricant effect of graphene which led to a
reduction in the fraction between tool and workpiece. In the case of the surface roughness, as shown
in Figure 5c, the roughness of the milled surface increased with the increasing cutting speed and
feed rate, as previously reported [58,59]. In addition, the roughness of GNPs-Ti64 nanocomposite
are affected by the GNPs reinforcement ratio, and decreases with increasing the GNPs ratio from
0.6 wt.% to 1.2 wt.%. This happened because of the development of the GNPs agglomerates and TiC
particles surrounding the Ti64 matrix particles, both of which ease the propagation of micro-cracks [15].
In addition, the GNPs-Ti64 nanocomposites with 0.6 wt.% GNPs presented higher cutting force because
of higher hardness compared with other samples. The roughness decreases with the rise in the GNPs
wt.% because the proportion of both GNPs agglomerates and TiC particles increases with the increase
in the GNPs wt.%.

Figure 5. Effects of the milling parameters and GNPs reinforcement ratio on the (a) depth force
(b) feed force and (c) surface roughness.
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The mathematical model has been developed based on the design of experiments for depth force,
feed force, and surface roughness. The fit mathematical equations for all the selected responses (Fd, Ff,
and SR) are presented in the following equations:

Fd = 143.7 − 4.46 V + 1.142 f + 149.6 R + 0.0435 V × V − 142.6 R × R − 0.01301 V × F (6)

Ff = −3.4 − 0.015 V + 1.496 F + 53.8 R − 0.00260 F × F − 55.1 R × R − 0.00722 V × f (7)

SR = 0.4827 − 0.002443 V − 0.00143 F − 0.0339 R + 0.000009 F × F + 0.0720 R × R − 0.000751 F × R (8)

3.3. Development of Predictive Model Using ANFIS

The ANFIS models were developed for the selected milling responses (Fd, Ff, and SR) for
GNPs-Ti64 nanocomposites. The training data was used for establishing the ANFIS models, and the
testing data was used for measuring the effectiveness of the developed models. Experimental results
were divided as the data was used for the training and the remaining data for the testing. To design the
ANFIS model, the initial parameters were chosen for training ANFIS algorithm, as shown in Table 7.

Table 7. Initial parameters for designing ANFIS models.

Responses Fd Ff SR

Training Method Hybrid Hybrid Hybrid
Membership Function Trimf Trimf Trimf

Number of Membership Function 3 3 3 3 3 3 3 3 3
Number of Epochs 50 50 50
Output Function Linear Linear Linear

After the training algorithm was completed, the testing data was used to validate the performance
of the predictive ANFIS models. The mean absolute percentage error (MAPE) was used to validate the
ANFIS performance and is obtained using the equations:

MAPE =
1
n

∑n

t=1

∣∣∣∣∣(Expt − Prt
)
/Expt

∣∣∣∣∣ (9)

During the training ANFIS algorithm, different fuzzy inference parameters were repeated until
the MAPE was minimized. Table 8 presents the selected fuzzy inference parameters which achieved
the lowest MAPE.

Table 8. Selected parameters for designing ANFIS models.

Responses Fd Ff SR

Training Method Hybrid Hybrid Hybrid
Membership Function Trapmf Dsigmf Pimf

Number of Membership Function 2 2 2 2 3 2 2 3 2
Number of Epochs 200 100 100

Therefore, the training processes were applied based on the selected training parameters, as shown
in Table 8. Experimental testing data was used to validate the correctness of the developed ANFIS
models. Figures 6 and 7 show a comparison between the experimental results and ANFIS outputs for
Fd, Ff, and SR for the training and testing data, respectively. It can be observed that the measured and
predicted values by ANFIS models are very close to each other, which indicates the ANFIS models
have good robustness and can obtain an accurate fitness function for MOPSO. Moreover, it implies the
correctness of the developed ANFIS models.
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Figure 6. Comparison between the training data and the ANFIS outputs (a) depth force; (b) feed force;
(c) surface roughness.

Figure 7. Comparison between the testing data and ANFIS outputs: (a) depth force; (b) feed force;
(c) surface roughness.
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3.4. Comparison of the ANFIS Models with Mathematical Models

To evaluate the potential of the predictive ANFIS models relative to that of the quadratic models,
Table 9 presents a comparison of the performance between the developed ANFIS model and quadratic
model based on MAPE. It should be noted that the MAPE shown in Table 9 is the average for all the
27 experiments.

Table 9. Comparison of the developed models.

Output Responses
ANFIS Model Mathematical Model (RSM)

MAPE MAPE

Fd 3.87 17.85
Ff 8.56 11.56
SR 2.21 8.32

In addition, the predicted outputs values using ANFIS models are compared with the mathematical
model developed by Minitab software. The comparison is represented by the residual plot in Figure 8.
The efficiency is assessed by using the correlation coefficient (R) value of each model. It can be
concluded that the ANFIS models for surface roughness and cutting forces presented a higher R-value
compared with the mathematical model which means a good fit for predictive machining behavior.

Figure 8. Predicted value of experimental vs. ANFIS vs. mathematical models on output responses;
(a) depth force; (b) feed force; (c) surface roughness.

Based on the comparison between ANFIS, and mathematical model, it can be concluded that ANFIS
models performed better for all responses. Therefore, it can be concluded that the established models
by ANFIS can be used efficaciously to predict the cutting force component and surface roughness
during milling GNPs-Ti64 nanocomposites.
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3.5. Multi-Objective Optimization with Hybrid ANFIS-MOPSO Approach

Minimizing the surface roughness, depth force and feed force can produce lower tool wear and
better surface quality during milling GNPs-Ti64 nanocomposites. Therefore, there is a need for a single
set of milling parameters (V, F) and GNPs reinforcement ratio (R) as an optimal solution for all the
output responses collectively. To achieve this, multi-response optimization is required. The fitness
functions for the output responses established through ANFIS technique were then employed as the
objective functions for MOPSO method to find the optimal V, F, and R. Table 10 presents the MOPSO
parameters and machining constrains for executing the optimization.

Table 10. Parameters of MOPSO and machining constrains.

Parameters Values

Population Size 30

Number of Iterations 30

Inertia Weight (w) 0.5

Learning Rate 0.7

Personal Learning Coefficient (C1) 1

Global Learning Coefficient (C2) 2

Machining Constraints
25 ≤ V ≤ 75 m/min

90 ≤ F ≤ 210 mm/min
0 ≤ R ≤ 1.2 wt.%

After executing the running hybrid optimization algorithm, Pareto optimal front is plotted in
Figure 9. Figure 9a shows the potential solutions which could simultaneously minimize all the output
responses. In Figure 9b, five representative selected solutions (A–E) for milling parameters and GNPs
reinforcement ratio of GNPs-Ti64 nanocomposites. The best solutions are plotted with a blue circle and
the non-dominated ones are marked with a star circle.

Solutions at point A to E are the optimal solutions in terms of depth force, feed force, and surface
roughness, respectively, as presented in Table 11. Solutions at points A to E are different trade-offs
between the values of the objective. The solution at point A is the best values of depth force and
feed force and the worst for the surface roughness. The solution at point B, causes an increase in
the feed force and depth force as compared to the solution at point A, while this solution leads to a
reduction in the surface roughness. Looking at solutions at points D and E, it can be noted that there
is a large increase in the value of depth force, while there is no change in the solution values of feed
force. Regarding the surface roughness at the same points (D and E), the solution values of surface
roughness is slightly improved. Therefore, the obtained solutions obtained at points B and C appear to
be a better compromise between depth force, feed force, and surface roughness.

These results are because of the following reasons; (i) the cutting force fluctuate due to two
phases (GNPs and TiC particles) present in the GNPs-Ti64 nanocomposites, (ii) the presence of
the GNPs agglomerates in GNPs-Ti64 nanocomposites led to reduce the friction between tool and
workpiece due to the lubricity of the graphene (see solution point C–E in Table 10). In contrast,
at low graphene reinforcement ratio, the effective lubrication becomes weak due to the scarcity
of graphene sheets compared with high graphene contents (see solution points C–E in Table 11).
(iii) Regarding the surface roughness, there was slight increase in the roughness at high graphene
reinforcement ratio. This is because at a higher percentage of the GNPs, a thick layer of TiC particles
is produced surrounding the Ti64 matrix particles. This results in encapsulation of the heat in the
Ti64 particles during machining, which leads to thermal softening of the matrix material and a rise
in the surface roughness. Moreover, it can be concluded that the hardness affected the machining of
the nanocomposites. The nanocomposite with reinforcement ratio in range 0.6 wt.% GNPs presented
higher cutting forces in all cases due to higher hardness.
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Figure 9. Optimal solution (a) 3D Pareto front solution set for objective functions (Fd, Ff, and SR);
(b) 2D Pareto front graph for objective functions (Fd and SR).

Table 11. Optimal milling parameter and reinforcement ratio settings.

Solution Cutting Speed (m/min) Feed Rate (mm/min) Reinforcement Ratio (wt.%) Fd (N) Ff (N) SR (µm)

A 75 90 1.167 35.894 36.495 0.2789
B 62 139 1.145 65.7313 91.976 0.215
C 75 90 0.678 79.8356 64.157 0.1542
D 67 90 0.678 99.534 63.772 0.1493
E 75 90 0.6328 108.9526 74.363 0.1317

3.6. Comparison with Commercially Available Desirability Approach Optimization

By using the developed RSM models of the depth force, feed force, and surface roughness,
multi-objective optimization of milling parameters and GNPs reinforcement ratio is performed within
the current range of the experimental parameters. The optimization is performed by employing the
desirability function-based approach via commercially available Minitab software with aim/goal of
achieving the minimum value for each output response, and to show its comparison with the newly
developed hybrid ANFIS-MOPSO approach.
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The optimum values of machining parameters and reinforcement ratio leading to minimum depth
force, feed force, and surface roughness by using the desirability approach are listed in Table 12.

Table 12. Optimal milling parameters and GNPs reinforcement ratio obtained by desirability approach.

Cutting Speed (m/min) Feed Rate (mm/min) Reinforcement Ratio (w.t%) Fd (N) Ff (N) SR (µm) Desirability

75 90 1.2 34.238 41.17 0.2287 0.9281

It can be found that the composite desirability of 0.9281 is achieved for multi-objective optimization,
which indicates that the best outcome (i.e., minimum Fd, Ff, and SR) are achieved for the given
combination of the machining parameters and graphene reinforcement ratio.

To further verify the reliability and accuracy of the developed ANFIS-MOPSO and desirability
approach for depth force, feed force, and surface roughness, additional experiments were performed at
the optimized conditions. For the ANFIS-MOPSO approach, the predicted results from the combination
D were selected as it provides a combination of almost lowest roughness and intermediate cutting
forces. From the comparison results in Table 13, it can be concluded that the results obtained by the
hybrid ANFIS-MOPSO approach always show lower MAPE, which indicates the superior performance
of this new approach as compared to the commercially available optimization desirability approach.

Table 13. Comparison of validation experiments for multi-objective optimization.

Parameters Cutting Speed (m/min) Feedrate (mm/min) Reinforcement Ratio (w.t%) Fd (N) Ff (N) SR (µm)

ANFIS-MOPSO 67 90 0.678 99.534 63.772 0.1493
Experimental 67 90 ~0.6 91.54 68.17 0.163

- - MAPE 8.7% 6.4% 8.4%
Desirability
Approach 75 90 1.2 34.80 41.17 0.2287

Experimental 75 90 1.2 29.093 36.491 0.279
- - MAPE 19.6 % 12.8% 18%

4. Conclusions

In this study, a novel hybrid ANFIS-MOPSO method for multi-objective optimization of machining
parameters and GNPs reinforcement ratio was developed for milling GNPs-Ti64 matrix nanocomposites.
First, GNPs-Ti64 matrix nanocomposites consist of 0 wt.%, 0.6 wt.% and 1.2 wt.% GNPs were successfully
fabricated by the HFIH technique. Secondly, ANOVA-based response surface methodology was
employed to examine the effects of the cutting speed, feed rate, and GNPs reinforcement ratio on
the output responses including the depth force, feed force, and surface roughness. Third, artificial
intelligence models based on ANFIS were developed and used as fitness functions for MOPSO.
Finally, multi-objective optimization was performed using the ANFIS-MOPSO approach. The following
main conclusions can be drawn.

• Optical microscopy images of the nanocomposites with 0.6 wt.%, and 1.2 wt.% GNPs show that
GNPs are distributed uniformly and embedded in the Ti6Al4V matrix suppressing the grain
growth during sintering. Moreover, the SEM backscattered images show the formation of the TiC
particles between the GNPs and Ti6Al4V matrix particles.

• According to ANOVA results based on second-order quadratic models for each output response
(Fd, Ff, and SR), it was found that cutting speed, feed rate, and GNPs reinforcement ratio are the
significant factors.

• ANFIS is implemented successfully to predict and monitor the cutting force components (Fd, Ff)
and surface roughness (SR) of the milled GNPs-Ti64 nanocomposites. The results showed that
ANFIS model can obtain an accurate estimation of the depth force, feed force, and surface
roughness with MAPE 3.87%, 8.56, and 2.21%, respectively. ANFIS models performed better
estimation for all output responses compared with mathematical models.
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• The ANFIS-MOPSO approach was combined for multi-objective optimization of Fd, Ff, and SR for
the milled GNPs-Ti64 nanocomposites. The best single set of the optimal combination of milling
parameters and GNPs reinforcement ratio could be obtained as cutting speed of 62 m/min, feed
rate of 139 mm/min, and GNPs reinforcement ratio of 1.145 wt.% generating a depth force of
65.7313 N, feed force of 91.976 N and surface roughness of 0.215 µm. The ANFIS-MOPSO approach
shows superior prediction performance as compared to the desirability approach available in
Minitab. The predicted optimal sets of the machining parameters and reinforcement ratio can be
used to achieve a higher quality of the machined surface, and minimum cutting forces, which lead
to reduce energy consumption and a clean environment. At the same time, the current approach
satisfies the Industry 4.0 manufacturing requirements by providing accurate prediction models to
monitor and optimize the cutting conditions.

The developed hybrid ANFIS-MOPSO method can be extended for monitoring the tool wear
during the milling process. Furthermore, the current approach can also be implemented for complex
non-conventional machining processes, including laser and ultrasonic machining.
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Abbreviations

ANOVA Analysis of variance
Al-TiC Aluminium-titanium carbide
ANFIS An adaptive neuro-fuzzy inference system
Fd Depth force
Dsigmf Difference of two fuzzy sigmoid membership functions
F Feed rate
Ff Feed force
FIS Fuzzy inference system
GNPs Graphene nanoplatelets
HFIH High-frequency induction heating system
MMCs Metal matrix nanocomposites
MAPE Mean absolute percentage error
MOPSO Multi-Objective particle swarm optimization
MFs Membership functions
Ra Surface roughness
R Reinforcement ratio
Trimf Triangular membership functions
Ti64 Ti6Al4V
V Cutting speed
wt.% Weight percentage
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