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Abstract: This paper presents results from numerical and experimental investigation on Charpy tests
in order to point out failure mechanisms and to evaluate new polymeric blends PP + PA6 + EPDM.
Charpy tests were done for initial velocity of the impactor of 0.96 m/s and its mass of 3.219 kg and
these data were also introduced in the finite element model. The proposed model takes into account
the system of four balls, including support and the ring of fixing the three balls and it has a finer
discretization of the impact area to highlight the mechanisms of failure and their development in
time. The constitutive models for four materials (polypropylene with 1% Kritilen, two blends PP
+ PA6 + EPDM and a blend PA6 + EPDM) were derived from tensile tests. Running simulations
for each constitutive model of material makes possible to differentiate the destruction mechanisms
according to the material introduced in the simulation, including the initiation and the development
of the crack(s), based on equivalent plastic strain at break (EPS) for each material. The validation
of the model and the simulation results were done qualitatively, analyzing the shape of broken
surfaces and comparing them to SEM images and quantitatively by comparing the impact duration,
energy absorbed by the sample, the value of maximum force during impact. The duration of the
destruction of the specimen is longer than the actual one, explainable by the fact that the material
model does not take into account the influence of the material deformation speed in Charpy test,
the model being designed with the help of tests done at 0.016 m/s (1000 mm/min) (maximum strain
rate for the tensile tests). Experimental results are encouraging for recommending the blends 20% PP
+ 42% PA6 + 28% EPDM and 60% PA6 + 40% EPDM as materials for impact protection at low velocity
(1 m/s). Simulation results are closer to the experimental ones for the more brittle tested materials
(with less content of PA6 and EPDM) and more distanced for the more ductile materials (with higher
content of PA6 and EPDM).
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1. Introduction

Charpy tests have been characterized materials for impact resistance till the XIX century [1–5],
but relevance had been initiated by Charpy [6] the test keeping his name till nowadays.

Reviewing the available literature on this type of tests [7–10] and on Charpy impact modeling [11–17]
pointed out the following aspects:

- models are using very different mesh web rougher or finer (especially near the notch) [18–20],
on a quarter or half of the sample, from 2D to 3D [21], but new achievement in hardware and
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dedicated software allows for using finer mesh, all the sample, investigation on strain and stress,
simulation in actual time etc.;

- first models did not take into account friction, but recent ones have included condition for friction,
usually with a constant friction coefficient;

- at the beginning, constitutive models were simpler, implying only a failure criterion, usually the
strength limit in tensile and there has been interest in performant materials like steel, titanium
and aluminum alloys [22,23]; for polymers and especially for blends fewer research reports
being [24–27]; and

- each model has simplifying hypotheses that could alter the sample behavior as compared to the
actual one.

Many engineers were interested in Charpy test for metallic materials [11,28–30], but nowadays
this test, in classical or modified configuration, becomes useful to be done for other materials, including
polymers, composites [31], and ceramics [32]. Simulation of such a test is useful for understanding
the material behavior under impact load, and when knowing mechanical characteristics at impact,
to assess the first step in designing structures with tested materials under such conditions.

Tanguy [11] proposed a simulation with a detailed description of the material viscoplastic behavior
over a wide temperature range. The Charpy test is simulated using a full 3D mesh and accounting
for adiabatic heating and contact between the specimen, the striker and the anvil. This research team
stipulated that 2D plane strain simulations instead of 3D ones offer a significant reduction of running
time, but an overestimation of load and, consequently, the crack advance. The model is well suited
to represent ductile tearing. Among material factors affecting the material model to be introduced
for simulating Charpy test are: The simplifying concept for the model (2D or 3D, recent works being
in the favor of the last, including the simulation here presented), accepting quarter or half of the
actual test system (imposing symmetrical planes that are not supported by the results of this work),
conditions for constraints among parts of the systems (no contact with anvils can be done by imposing
a fixed displacement on the opposite side of the notch and a zero displacement on the initial contact
line between the anvil and the specimen, but this approach develops higher stresses in the notch,
causing earlier ductile crack start), adiabatic heating and heat diffusion, the viscoplastic behavior of
the material (at higher impact velocities, ultimate strength is increased, which causes earlier failure).

Smith et al. [33] did a FE (finite element) analysis of Charpy specimen (both quasi-static and
dynamic loading), using a symmetrical quarter model and an original mesh. The notch was modeled
with a radius of 0.25 mm and internal angle of 45◦ and, at the tip of the notch, 30 concentric rings
of elements were defined. The model was validated by comparing the load vs. clip gauge opening
values from the simulation to experimental values. The plastic behavior of this material was modeled
using von Mises plasticity with isotropic hardening. The dynamic loading condition was achieved by
altering the maximum applied ∆DY value in conjunction with the simulating time to achieve an initial
velocity of 5.23 m/s, as in actual test. The anvil and its contact with the specimen were modeled to
incorporate its effect on global behavior of the system. Dynamic tensile properties were implemented
using the curve fitting procedures. Separate power law curves were used to include dynamic flow
properties over the strain rate range 10−5 <
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< 2000 s−1. Heat generation due to plastic deformation
was not taken into account as the temperature increase was found to be less than 20 ◦C, when cleavage
was initiated.

Banerjee et al. [14] included a model of Charpy test for characterizing the behavior of an armor
steel under high strains and strain rates, at elevated temperatures. In their work, model constants
of Johnson–Cook constitutive relation [34,35] and damage parameters have been determined
experimentally from four types of uniaxial tensile test and they were used a modified constitutive
model, introduced as user material sub-routine. There was used a half of the specimen and the impactor,
for reducing the computing time. The impactor was modeled as elastic body and the specimen as
being made of an elasto-plastic material. The nodes on the impactor were constrained to move only in
the vertical direction, impactor velocity being as the initial condition. Johnson–Cook failure criterion
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was applied only to a narrow region including the notch, along the specimen height. The constants
of constitutive and failure model were deduced from tensile tests. This simulation used explicit
time integration and was run for a total time of 2 × 10−3 s. The simulation results are validated by
experimental ones, those being in reasonable agreement.

Recent tests provided complex data on the behavior of polymeric materials, with increasingly
complex constitutive models, which take into account several factors: Temperature, deformation rate,
structure, and stress.

The importance of modeling the behavior of the material, regardless of its nature, is emphasized by
valuable works [23,34–36]. Recent studies, experimental and obtained by simulation, have emphasized
the importance of modeling the material at high deformation rate, [22,37–40]. However, most studies
refer to metal alloys, used in aero, space and military applications. Equipment for testing materials at
high deformation rates does not reproduce the conditions encountered in practice and the obtained
results, although realistic, cannot be extrapolated to actual applications without accepting a higher
degree of risk than in the case of low deformation rates. Hence, the usefulness of numerical simulations,
along with experiments, presents an alternative for studying of damage processes.

As the temperature increases, yielding may occur and its limits decreases with increasing
temperature. The deformation at break, increases with increasing temperature, the polymer becoming
a brittle material at low temperature, but a ductile material at higher temperature. The effect of the
loading rate on the stress–strain curve is opposite to that caused by temperature. At low loading
rates, the polymer may behave ductile, with a more pronounced hardening but at high loading rates,
the same polymer behaves as a more brittle material.

For polymeric materials, simulation of Charpy tests are few, but the interest in using them as
shock absorbers and protective materials makes this subject to be the treated in this study.

2. Materials and Constitutive Models

Samples were obtained by injection molding at Monofil Savinesti SA, Romania, the compositions
being given in Table 1 [41,42]. Details of the laboratory scale process for obtaining them are given
in [27].

Table 1. Recipes for the formulated polymer blends. Polyamide 6 (PA6), polypropylene (PP),
and ethylene propylene diene monomer rubber (EPDM).

Material PA6 PP EPDM Polybond 3200 Kritilen PP940

PPm - 99 - - 1

H 12 60 8 20 -

G 42 20 28 10 -

PA6m 60 - 40 - -

Based on the documentation [43–46], the authors modeled the four materials with the help of
multilinear elasto-plastic curves. The results reported in the literature show that polymers also have a
stress–strain curve dependent on the strain rate (if other test parameters are kept constant) [24,47].

The tested polymeric blends are based on polyamide 6 (PA6) (Radicci, Bedeschi, Italy),
polypropylene (PP) (Sabic, Riyadh, Saudi Arabia) and EPDM (ethylene propylene diene monomer
rubber) (Exxon Mobile Chemical, Houston, TX, USA) Polybond 3200 (SI Group, Schenectady, NY,
USA) and Kritilen PP940 (Romcolor 2000, Bucharest, Romania), the blend concentration being given in
Table 1.

The specimens were tested on the INSTRON 2736-004 tensile test machine (Instron®, Norwood,
OH, USA) (from Advanced Materials Laboratory, INCAS, Bucharest, Romania), with a test speed of
1000 mm/min. The specimens are of type 1A, in the shape of a dumbbell, according to SR EN ISO 527-2.
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The material model was based on experimental data obtained from traction, for a speed of
v = 1000 mm/min [27] because it was estimated that, for these materials, the influence on the shape of
the stress–strain curve of the test rate, except for very small test strain rate (v = 10 mm/min), is low
and the characteristic values obtained from the tensile tests are in a narrow range. For instance,
Musteat,ă [42] reported small differences in strain-stress curves, obtained from tensile tests for PA6 and
PP, under test rate of 250–1000 mm/min (approx. 35 × 10−3 s−1 to 150 × 10−3 s−1), but different shapes
and characteristic values for the test rate of 10 mm/min (approx. 10−3 s−1). Charpy test with 1 m/s
could have 10–25 s−1, taking into account the possible span between anvils.

3. The Model

For this model, the impactor and the anvils were considered as rigid bodies as the differences in
material properties between those and tested materials are more than one order of magnitude (around
60, considering the tensile strength limit). Analyzing the fracture in this model, for all materials,
one may notice that, even if, at crack initiation, a symmetry of the stress and strain fields is visible,
this is disturbed by the occurring of high stress and strain. To use the whole sample volume in the
simulation seems to be more reasonable for having a more realistic model.

The issue of the mesh network for the Charpy model is the big difference between the dimensions
of the specimen and the dimensions of the notch. Choosing a uniform mesh network would increase
the time required for the simulation, without bringing significant improvements in the results of
interest (stress and strain distributions, etc.). In [16,18–21], there are given several solutions of mesh
networks for modeling and simulating the Charpy test.

The model parts are presented in Figure 1a, including two supports, the notched specimen and the
impactor. The mesh network was selected to simulate the Charpy test as presented in Figure 1b. The size
of the sides of the elements is between 0.25 mm and 0.75 mm and the number of nodes and elements
for each part of the test system is given in Table 2. Growth ratio between elements 1.2, relatively lower
than in the discretization of other works [17]. In addition, the model was formed entirely, because in
the first simulations with a coarser mesh, it was observed that, although the application of the load and
the geometry of the model are symmetrical to a vertical plane, stress distributions and the tendency to
zigzag under the notch appeared, a fact also observed on the surfaces of broken specimens.

Figure 1. Mesh network of the model.
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Table 2. Bodies involved in the model and their nodes and elements.

Body Numbers of Nodes Numbers of Elements

Impactor 4259 20,738

Support 1 3996 3146

Support 2 4212 3354

Sample 20,811 106,591

Total model 33,278 133,829

From experimental results, the four materials have different characteristics, including values for
EPS (equivalent plastic strain) at break (Table 3).

Table 3. Characteristics of modeled materials.

Characteristic PPm H G PA6m

Density, kg/m3 915 915 915 915

Young modulus, E, MPa 1466 1582 1625 1595

Poisson’s ratio, ν 0.4 0.4 0.4 0.4

Bulk modulus, MPa 2443.3 2636.7 2708.3 2658.3

Shear modulus, MPa 523.57 565 580.36 569.6

EPS at break 0.09 0.036 0.156 0.308

Equivalent plastic strain at break (EPS) for each material was calculated as shown in Figure 2,
on the curve of each material, by extracting the elastic strain corresponding to the proportionality line
of the curve from the total strain at break. The experimental curve for the constitutive model of each
material was selected by the authors from those in Figure 3, right column, considered as typical.

Figure 2. Equivalent plastic strain (EPS at break), on true stress–true strain curve [48].

Figure 3 presents the results from tensile tests (first column of plots), the selected curve for
introducing as constitutive model (second column) and the ten-point true stress–true strain curve used
as constitutive model for each material. The test results in the first column are expressed using tensile
stress (engineering), σeng, and tensile strain (engineering), εeng, calculated by means of the relations:

σeng = F/A0 (1)

εeng = ∆L/L0 (2)

where F is force applied at time t, A0—initial cross area of the specimen, L0—initial length of specimen
between marks, ∆L—the change in length between marks, at moment t.
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If the engineering values, σeng and εeng, are known, the relations used to calculate the true strain,
εtrue, and true stress, σtrue, are:

εtrue = ln
(
1 + εeng

)
(3)

σtrue = σeng(1 + εtrue) εeng. (4)

Figure 3. Tensile tests and models for the materials.

The assumptions considered in this model are as follows.

- The supports and the impactor are considered rigid, given the difference in properties; impactor and rigid
supports were also considered in the works [16,18,19,49], but in the work of Sainte Catherine et al. [21]
the impactor and the supports were considered perfectly elastic, given the specimens.

- The initial velocity (just before impact) is v0 = 0.96 m/s (impact velocity, with which the actual
tests were performed).

- Boundary conditions: Friction between specimen and supports, friction between specimen
and impactor (COF = 0.3) for all analyzed cases; Poussard et al. [19], Haušild [17], and Sainte
Catherine [21] did not consider friction, but the friction between impactor and sample and
supports was taken into account in the models from [42].

- Failure criterion was selected for equivalent plastic strain at break (EPS): When the critical value
of EPS at break is reached in the model, the crack is initiated.
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From the experimental results, it was found that the four materials for which the impact behavior
was simulated with an impactor having linear trajectory, have different values for EPS at break,
as calculated from the diagram true stress–true strain (see Table 3).

4. Experimental Results of Charpy Tests

In this paper, the tests were performed on the CEAST 9340 impact test machine (Instron®,
Norwood, MA, USA) within the materials strength laboratory at “Politehnica” University of Bucharest.
The tests were performed with a hemispherical impactor, with a speed of 0.96 m/s and the mass of the
impactor 3.219 kg. The specimen has the drawing shown in Figures 4 and 5 shows the geometry of
the impactor.

Figure 4. Specimen dimensions (dimensions in mm, angles in degrees).

Figure 5. Impactor geometry (dimensions in mm, angles in degrees).

According to the SR ISO 179 standard, ten tests were chosen for each material, considered to be
typical for the respective material.

Figures 6–9 present two characteristics: The force and the absorbed energy as functions of time.
The very short time to failure shows the more fragile nature of both PP and PPm (Figure 6).

The addition of Kritilen PP940 in PP does not introduce noticeable changes in the shape of force–time
and energy–time curves. For the material PPm, the force–time curves have large oscillations especially
in the first part of the destruction process, the oscillations being of 30–60 N, which means a mixed
structure of amorphous and crystalline volumes.

The breaking time for most of the specimens wqs up to 1 × 10−3 s except for test eleven, for which
the specimen broke at t = 0.9 × 10−3 s. On absorbed energy–time zones, two zones can be distinguished.
The first zone is up to 0.07 J, having a very large curvature, followed by an almost linear zone. Except for
test 11, the results fall in a very narrow band of 0.025 J. In the case of PPm, several specimens were
broken at higher time values, considered for F = 0. It is noticed that PPm has slightly higher values than
those obtained for PP, both for Fmax and energy absorbed in impact (Table 4). The time to failure (F = 0)
is approximately the same for PP and PPm (0.85–1.4 m/s). The addition of this agent Kritilen PP940 has
improved the behavior of PP on impact, even if its concentration is only 1% and it also improved the
shape quality of the samples when they were extracted from the mold. One may compare the curves
for the neat polypropylene to those for PP + 1% Kritilen PP940, coded PPm.
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Figure 6. Curves for force and absorbed energy in time, for materials PP and PPm.

Figure 7. Curves for force and absorbed energy in time, for material H.

Figure 8. Curves for force and absorbed energy in time, for material G.

Table 4. Characteristics obtained from Charpy tests, for the second family of blends.

Characteristic PPm H G PA6m PA6

Absorbed energy at break [J] 0.068 0.061 0.277 0.334 0.256

Maximum force [N] 98.54 94.05 170.70 182.52 200.96

Impact resistance [kJ/m2]
average 2.26 2.017 9.23 11.47 8.52
range 1.7–2.8 1.5–2.73 5.76–12.73 10.16–12.96 7.0–9.3
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Figure 9. Curves for force and absorbed energy in time, for the tested materials.

The behavior of material H is similar to that of the material PPm (Figure 7) and the time to failure
(considered at F = 0) is close, from 0.9 × 10−3 s to 1.29 × 10−3 s. The oscillations of the force–time
curve show the presence of two polymeric structures, one more tenacious and the other weaker.
The oscillations of the force–time curve show that in the breaking section the material is composed of
an alternating succession of more resistant micro-volumes and weaker materials from a mechanical
point of view, but also amorphous and crystalline micro-volumes of the two constituent polymers
(PP and PA6).

Material G (Figure 8) has much smaller amplitude of force oscillations. The oscillations start with
values between 30–60 N, after which their amplitude does not exceed ~20 N. The maximum values of
the force are concentrated between 150–180 N, which reflects that the specimens are more similar in
terms of response to impact, that is the quality of the injection process is more controllable for this
material. The energy–time curves are very close and very similar. The scattering band of the curves
is narrower, up to 0.5 J (up to 1 ms in time) and then on the linear area it is slightly more scattered.
The value of the moment of complete failure (F = 0) is in the range of t = 2.16 × 10−3 s to t = 3.77 × 10−3 s.
If material G is compared to the other materials (see Table 4), it is observed that the maximum value of
time to failure has the value of t = 3.77 × 10−3 s, the highest of all materials. If the materials are ordered
in descending order, from the greatest value of time to failure (F = 0), this is G, PA6m, PA6, PP and
very close to each other, PPm and H. For Fmax, the highest value is for PA6, followed by PA6m.

A designer will be interested in values for absorbed energy at break and, the blend PA6 + EPDM
(material with the code PA6m) has values higher than all tested materials, including PA6, a polymer
that is used in applications for its impact resistance (Figure 9). Force–time curves for both materials are
similar but the time till break is longer for PA6m. The energy at break plot for PA6m is characterized
by two zones: A curved line in which the energy increases after a curve up to 0.15 J, after which the
evolution of the energy stored in the test tube is linear.

The SEM images (Figure 10) shows that the introduction of PA6 in higher concentration changed
the morphology of the blend. Material H (Figure 10a) has a PP matrix with PA6 droplets and pores of
the order of a few microns. The matrix has a brittle fracture. The droplets located on the breaking zone
are very deformed, elongated, and the matrix breaks as a more brittle polymer, with linear micro-flows,
probably as a result of a lower crystallinity of PP. Material G (Figure 10b) has the inverted phases, as it
resulted from the EDX analysis. The PP droplets are larger and do not have cohesion on the whole
surface with the matrix.
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Figure 10. Fracture morphology, obtained for Charpy test.

Analyzing both SEM images for material PA6m (Figure 10c,d), this blend of PA6 and EPDM seems
to be a homogeneous one: (a) A low magnification of the arrested crack and (b) a detail that point out
that the blend is homogenous and extensively deformed.

The addition of EPDM in PA6 produces a force–time diagram similar to that of simple polyamide,
but the failure occurs after a longer time interval. At t = 2.59 × 10−3 s, for PA6, all the specimens were
already broken, whereas for PA6m the damage of the specimens (with incomplete failure), is achieved
between t = 3.34 × 10−3 s and t = 3.59 × 10−3 s. In other words, the addition of EPDM increases the
time to failure (even partially, in the case of PA6m material). The evolution over time of the destructive
energy has similar forms only that most of the PA6m specimens break partially after storing an energy
between 0.305 J and 0.389 J, while PA6 reaches only 0.279 J at the complete failure of the specimens.

Comparing the four materials (PPm, H, G and PA6m), the value of the maximum force was
obtained for PA6m (Figure 11). The material for which the following maximum force value was
obtained is G, with 170.7 N, only 6.46% lower than the PA6m material. PPm has the maximum force
about half of that for G, and the lowest value was obtained for material H, in other words, this is the
weakest material in terms of the maximum force required for damage.

Figure 11. Average values of the maximum force.
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Regarding the energy at break (also named absorbed energy till break) (Figure 12), it is noticed
that the best results were obtained for PA6m, both for the average value of the energy at break (0.344 J)
and for the spreading interval, which is below 0.084 J. PPm and H materials have about five times less
energy at break than PA6m material. It is clear that in applications with shock resistance materials,
PPm and H are not recommended, instead the PA6m (PA6 + EPDM) coat gave better results than for
PA6. Material G should not be removed from the recommendations for shock applications with speeds
up to 1 m/s, but the scattering of the results is higher and the average value of the energy at break
is very close to that of the simple polymer PA6. The choice between these two materials, G and PA6
is made by analyzing other criteria necessary for the design, such as water absorption, dimensional
stability, process ability and price.

Figure 12. Average values of the absorbed energy.

Aspects of impact-breaking mechanisms at this low speed (0.97 m/s) are shown in SEM images
(Figure 13). PPm and H materials have a brittle fracture appearance, while G and PA6m materials
have fracture surfaces typical of ductile fracture. All tested PA6m samples showed the same form of
failure while maintaining a link between the test fragments (without complete failure) (Figure 13d).
Studying these images, it is not possible to specify whether the failure advanced only from the notch or
occurred in the impact area of the impactor, also. The aspects of breaking material H are similar to PPm.
Material G has a different appearance from the materials discussed above: The breaking surface is
much rougher and it is likely that the tear was initiated first near the notch but then under the impactor.
The very uneven area is very likely to have yielded more abruptly than the material under the notch
and under the impactor, some dispersed droplets are partially detached from the matrix, but others,
usually smaller, are trapped in the matrix. The most interesting SEM images were obtained for PA6m
(Figure 13d). An area parallel to the breaking surface of the crack is observed in which the material has
a pronounced plastic yield at an angle of approximately 45◦ to the breaking surface. The thickness
of this layer is about 200 microns and was not observed in the other materials that contained EPDM
(H and G). Stopping the crack progress is also observed in simulation for material PA6m. The addition
of EPDM to PA6 led to the propagation of a failure without fibrillation but with strong local flows on a
band near the failure surface.

Figure 13. Typical aspects of the surfaces obtained after sample breaking.
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For materials G and PA6m, the results are very good, PA6m and G exceeding PA6 when taking
into account the absorbed energy till break. The difference in behavior of more ductile materials
(PA6m, G and PA6) and the brittle ones (PPm and H) may be noticed on Figure 14 when force–time
curves are overlapped. For material G, EPDM and PA6 formed a matrix more ductile that that in
material H and the droplets of PP are better fixed in this matrix. The material PA6m being a blend of
PA6 + EPDM, has homogenous aspect and the detail in Figure 10d evidences extensive deformation,
but not completely break. Table 4 presents average values of several characteristics of the tested
materials, the best values for impact characteristics (absorbed energy at break and impact resistance)
being for material PA6m.

Figure 14. Typical curves force–time for the tested materials.

The impact strength of the specimen was calculated with the formula

Rimpact =
∆E
A0

[
J/m2

]
(5)

where ∆E is the energy absorbed up to F = 0 and A0 = b(hspecimen − hnotch) is the transversal minimum
section area (at the tip of the notch), b being the width of the specimen and hspecimen being the specimen
height and hnotch being the depth of the notch.

5. Simulation Analysis for Tested Materials

Some images were obtained by considering a half of the transparent specimen (at time t = 0 s)
(the specimen is not divided into two entities, and the section is right in the plane of symmetry of
the notch). This virtual sectioning facilitates the observation of the development of the failure and
the change of the distribution of equivalent stresses. A qualitative and quantitative analysis of stress
concentrators and how they evolve at any given time as the failure propagates, can be performed.

Material PPm. At the closest moment to the impact (t = 5.0 × 10−4 s), two stress concentrators are
observed on the specimen, one under the impactor, the other at the tip of the notch, both presenting a
“butterfly” distribution. The higher values of equivalent stress are recorded under the impactor. In the
middle of the notch tip, this is below half the stress at break, σech max = 13.59 MPa.

In the following moments, the two stress zones increase in area and value. Thus, at time
t = 1.0 × 10−3 s, σech = 18.2 MPa. At moment t = 1.5 × 10−3 s, the crack has not yet been created,
but the equivalent stress has increased to σech = 23.9 MPa, under the impactor. At t = 2.0 × 10−3 s,
the equivalent stress increased to 29.6 MPa under the impactor and it was 23.03 MPa at the tip of the
notch. The specimen is increasingly stressed at time t = 2.5 × 10−3 s (Figure 15a) and the initiation of
the crack may be seen in the middle of the tip width of the notch, the crack being already developed
on a length of less than 1 mm, the equivalent stress reaching 31.8 MPa. From simulation, until the
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moment t = 2.5 × 10−3 s, the critical value of EPS was not reached, EPS(PPm)critical = 0.09, and therefore,
the crack was not initiated.

Figure 15. Selection of important moments in simulation for material PPm.

At time t = 3.0 × 10−3 s (Figure 15b), the crack is already initiated and it propagates on the
height of the specimen, causing an uneven band of maximum stresses of 33 MPa. The opening of
the crack and the continuation of the impact caused a band of equivalent stress almost as big, on the
opposite surface, which still does not yet cause the cracking because the impactor causes compression
(Figure 15c,d). The middle volume of the specimen between this first crack and the compressed side is
almost non-tensioned (in blue and dark blue colors), with values of 3–7 MPa.

At t = 3.5 × 10−3 s (Figure 15c), the crack is already propagated over almost half the distance
between the notch tip and the impacted surface. The highest equivalent stress is observed under the
impactor σech = 38 MPa. At time t = 4.0 × 10−3 s, the propagation of the second crack is observed
from the impacted part of the specimen to its center. The maximum equivalent stress is visible only at
the tip of one of the cracks, at that one initiated from the notch tip. On the specimen height, the still
undetached area appears to be 2 mm. At this moment, the material left between the two cracks has
only a small area, with low stresses of 7 MPa.

Stress concentrators are created at the edges of the theoretical impact line due to the fact that
large deformations appear as an edge effect at the ends of the impact line (Figure 16). This virtual
cross section allows for pointing out that the crack is initiated at t = 2.5 × 10−3 s, in the middle of
the notch width (Figure 16a). Figure 16b,c show how the crack initiated from the notch tip advances.
At time t = 4.5 × 10−3 s (Figure 16d), the specimen has two broken areas, the one propagated from the
notch and a smaller one under the impactor. A maximum equivalent stress of 32 MPa is noticed, in a
narrow ribbon remained between the tips of the two cracks. Although at the beginning, the impact had
symmetrical characteristics as compared to the initial plane passing through the notch tip, it is observed
that, later, the stress distribution within the material becomes slightly asymmetric. This phenomenon
can occur due to the automatic discretization of the model, although a fine mesh was used and also to
the elasto-plastic behavior of the material.
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Figure 16. Successive moments from the impact of the test specimen made of PPm material.

At time t = 5.0 × 10−3 s, the still unbroken material has a size of less 1 mm, this decreasing at
time t = 5.5 × 10−3 s, leading to the growth of the two cracks, the crack starting from the notch tip
being longer than that started from the impacted surface. Linkages (small bridges) between the two
fragments of the specimen, distributed unevenly across the width of the specimen can be observed.
At moment t = 6.0 × 10−3 s, the specimen fragments are already separated. If high equivalent stresses
occur at later times, they are due to the pushing of the fragments into each other until the impactor
separates them. The maximum equivalent stress moved to the tip of the crack started under the
impactor and has a value of 33 MPa. The moment t = 6.5 × 10−3 s is characterized by σech max lower
than the previous one, meaning that the failure process alternates with a process of material relaxation
(σech decreases), which is specific to plastics. At t = 7.0 × 10−3 s, σech = 33.29 MPa and that may be
seen in the virtual cross section of the specimen, which means that there are still small areas unbroken
(unseparated), local bridges between the two already detached fragments of the specimen. At time
t = 7.5 × 10−3 s, only the crack under the impactor may be stressed due to compression, due to the
opening of the specimen. Starting from t = 7.5 × 10−3 s till t = 1.0 × 10−2 s, the equivalent stress drops
to 20 MPa. These stress values, without reaching the stress value at break, are due to the collision of
the two fragments of the specimen.

The smooth surfaces that appear from the moment t = 7.5 × 10−3 s, indicate the areas where the
upper crack is closed due to the rapid movement of the fragmented gates of the specimen.

The conclusion drawn from the above comment is that the impact does not generate high stress in
all the volume of the impacted specimen, but determines local volumes of stress concentrators where
the crack starts.

Figure 17 presents a selection of moments during the impact simulation for material H, von Mises
stress distribution being better observed in lateral view, the appearance and development of the crack at
the notch tip and then of the crack under the impactor. Due to colored scales, the areas with maximum
von Mises stress values (red on each image) are well highlighted. The end of the simulation for material
H is at the moment t = 5.0 × 10−3 s.

Figure 17. Selection of important moments in simulation for material H (equivalent stresses, MPa).
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In the details in Figure 18, particularities of the breaking process may be noticed: (a) Crack initiated
at t = 2.0 × 10−3 s, (b) at time t = 2.5 × 10−3 s, the two cracks advances, less of 1/3 of the specimen height
being unbroken and (c) this virtual cross section reveals the asymmetric stress distribution at the cracks’
tips. The failure propagates from the notch (first) and then from under the impactor. There is an area
destroyed by crushing (compression), just below the impactor, as seen in SEM images. The distribution
of equivalent stresses at the tip of the cracks is typical of visco-plastic materials. The perfectly smooth
surface visible in Figure 14a is virtually resulted by sectioning with the imaginary plane. It is observed
how the crack advances from one moment to another and the area where the last strip of material is
lasting (t = 3.25 × 10−3 s) before the total fragmentation of the specimen.

Figure 18. Failure details, for material H.

If a qualitative comparison is made with SEM images of the H material, they are close enough in
appearance. In Figure 18, one may notice that the material H has a fragile failure and the initiation
of the crack is made first from the notch tip, but there is a second crack, initiated from under the
impactor, which joins the first at almost 1/4 of the height of the specimen. The actual appearance of
the broken surface (Figure 19) resembles the aspect of the failure at the end of the simulation, but the
crack under the impactor is less developed on actual specimen and a superficial crushing destruction
is observed, which could not be highlighted by modeling. The cracking occurred on a shorter length
from the impactor.

Figure 19. The failure surface of a Charpy specimen, made of material H.

From experimental data, material G is the second material, in a ranking based on energy at break
(see Figure 12). For this reason, the simulation of impact failure is important when compared to the
material with the best results, PA6m. Figure 20 shows the evolution of the crack generated from the
notch tip.
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Figure 20. Evolution of the crack generated from the notch tip, for material G.

Figure 20a presents the initiation of the crack at the notch tip, the zig-zag development of the crack
from the notch tip (Figure 16b–d), the generation of the second crack under the impactor, starting from
both edges of the specimen (Figure 16e) and a moment when a small material bridge is remained
between the two fragments (Figure 16f), until the complete separation of the fragments of the specimen
(see moments in Figure 21). Comparing the images in the simulation from one moment to the next one
allows for establishing the start points of the cracks and how they develop.

Figure 21. Crack evolution under the impactor, until the separation of the broken fragments, for
material G.

For material G, in Figure 20 there are given several moments during the impact: (a) The impactor
has created on the impact surface an equivalent stress field of high values, close to the stress at break
and deformed the specimen in order to force the development of the crack from the notch tip, (b) and
(c) present the same moment but from different angles, the first pointing out the high stress field under
the impactor, the second making visible the zig-zag aspect of the crack, (d) crack is developing and
the specimen is bending under the impactor motion, (e) the initiation of lateral two cracks on the
specimen width under the impactor, (e) this crack having a slower propagation speed, in the middle of
the specimen maintaining a high stress field. Lateral views of the samples in Figure 21 presents the
crack just before complete separation of the fragments. The impactor pushes the specimen, making the
fragments to change their positions from horizontal to oblique ones and it is observed that the union of
the two cracks suddenly diminished the stress field in the area, strong stress concentrators being in
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the material ribbon (bridge) left unbroken (a and b) and at t = 1.5 × 10−2 s, the resulted fragments are
completely separated (c).

Simultaneous development of stress concentrators is noticed, one around the notch tip and the
other under the impactor, but the failure criterion (EPS = 0.156) is reached for the first time at the tip of
the notch, at time t = 3.75 × 10−3 s, the zone of high von Mises stress (with red color) remaining at the
tip of the crack, advancing as it grows, but there is also an area of the same values under the impactor,
as the impactor pushes the specimen.

The opening of the crack and the change of the angle between the still undetached fragments of
the specimen concentrate more the area with high stress.

Figure 22 presents important moments during simulation of impact on material G, in a virtual
cross section of the specimen: (a) At the beginning of the impact (t = 7.5 × 10−4 s), it is observed
the formation of two zones of stress concentration on the width of the specimen, along the notch tip
and under the impactor, but the crack is not yet initiated, (b) the failure occurs between moments
t = 3 × 10−3 s and t = 3.75 × 10−3 s, and the crack begins and develops in the middle of the notch tip
width (c) at time t = 4.5 × 10−3 s, the crack is propagated over the entire width of the specimen and
has already advanced by almost 1.5 mm, (d) the crack advances towards the opposite surface of the
specimen and the von Mises stress distribution has high values on the impacted surface. At time
t = 6 × 10−3 s, the specimen is not yet completely broken, leaving a band of ~2 mm still uncracked.
Another step in the crack development is shown in Figure 16f, showing a moment of crack converging
for material G.

Figure 22. Evolution of the crack generated from the notch tip, before the crack initiation under the
impactor, for material G (von Mises stress distributions in MPa).

Comparing the image in Figure 22d with SEM image (Figure 13c), one may notice that:

- The aspect of failure is rough, both in the model and on the actual specimen, the actual uneven
aspect of the specimen surface being probably caused by the inhomogeneity of the material; and

- a very thin compressed strip is observed on the specimen side the impactor stroke.

A virtual cross section of the specimen made of material G reveals how the cracks are generated
and the shape change of the specimen: (a) and (b) the crack initiates between t = 6.25–7.5 × 10−3 s,
being located in the middle of the notch tip, (c) at t = 1.125 × 10−2 s, this advances quickly with larger
stress concentration zones in front of the crack tip and on the impacted side and the second crack,
under the impactor is initiated, (d) the cracks advance intermittently (one is developing faster, the other
is waiting to act and then the roles are changed).

The breaking process is continued and the maximum values of von Mises stresses remain between
47.8 MPa and 43.74 MPa, which means that at any time between t = 1.375 × 10−2 s and t = 2.5 × 10−2 s,
the material is still breaking.

In Figure 23, several successive images were chosen to show how the crack advances in the most
ductile material (PA6m): (a) high values of von Mises stress are visible in a butterfly band around the
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notch tip and under impactor, (b) the crack was started from the tip of the notch, in the middle of its
width at t = 8.75 × 10−3 s, (c) second crack is visible, under the impactor, (d) first crack advances more
quickly and the volume between cracks are highly stressed, (e) the remaining band of material between
the cracks is very stressed and the surfaces of the second crack are pushed one against the other due to
the movement of the impactor and the orientation as a letter V of the specimen, and (f) at the end of
the simulation only a stressed spot is seen and there is obvious that the two fragments of specimen are
not completely separated.

Figure 23. Lateral view of specimen made of PA6m, during impact, with von Mises stress distributions
in MPa.

From the sequence of moments in failure process in Figure 23, it can be seen that:

- the specimen did not detach completely (both experimentally and in simulation),
- the running time is the longest for this material, as compared to the other modeled materials, and
- for PA6m material, the EPS at break has the biggest value.

The area under the impactor was strongly deformed, observing the developing trapezoidal shape,
with the larger side under the impactor (Figure 24).

Analyzing the actual aspect after specimens had been tested (Figure 25), it was observed that:
(a) material PPm had a brittle fracture and (b) material PA6m is more prone to local deformation,
having a very narrow band of material that did not break, as noticed in the simulation.

Especially after crack(s) initiation, the aspect of stress distribution is not perfectly symmetric,
the explanation being the more viscous-plastic character (larger plastic deformations and low slope
in the plastic field). The propagation of the crack under the impactor, along the entire width of the
specimen, relaxes this area, the stress concentrator arching between the two cracks.

Qualitative validation of the crack propagation mode in the PA6m material may be argued by
comparing the actual shape of the cracks (Figure 25b) with the simulated shape (Figure 23f).
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Figure 24. Moments during impact for material PA6m.

Figure 25. Breaking of specimens following Charpy tests.

6. Conclusions from Comparing Simulation and Experimental Results

The review of available and recent impact modeling documentation for Charpy test highlighted
mesh pattern too coarse or too fine, disregard for friction in the majority of works, simplified modeling
of specimen material, with only a quarter or a half of the test system (specimen, impactor and supports)
and simplifying hypotheses that may alter the virtual behavior of the specimen.

Moments when the crack initiation is visible on the simulation are presented in Figure 26.
For material H, the crack appears at time t = 2 × 10−3 s, for PPm, this appeared at time t = 2.5 × 10−3 s.
Material G has the crack initiated at time t = 4.5 × 10−3 s. The longest time was recorded on the
simulation for PA6m, t = 2.5 × 10−2 s. From these images, it may be noticed that materials PPm and
H are less deformable, the deformation of the notch shape being almost imperceptible. For more
ductile materials, the V of the notch opens visibly and even the crack shape differs for G and PA6m.
For material G, the crack propagates of brittle type, it develops towards the impactor. For material
PA6m, a strong deformation of the material without the crack advancing so rapidly, this is also visible
on SEM images from the same angle (see Figure 13d).

The fracture of the model is uniform on the sample width and it advances uniformly in the section.
The actual fracture of G and (even PPm somehow) has o core with brittle aspect and ductile aspect
around. This could be explained by the fact that material model does not take into account the influence
of strain rate and non-homogeneity of amorphous and crystalline micro-volumes.

FE simulation of Charpy tests for different polymeric materials with a material constitutive model
deduced from tensile tests has produced results matching experimental data, validating the model
constants for low impact velocity (1 m/s).
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 Figure 26. Aspects of crack initiation, for each material and von Mises stress distribution, in MPa.

Table 5 points out the important moment in the failure process but also the moments they occurred.
Differences point out the more ductile character of the materials G and PA6m and that more fragile for
materials PPm and H.

Table 5. Analysis of important moments during impact.

Material Moment of Impact
Moment of

Initiation of the
First Crack [s]

Moment of
Initiation of the
Second Crack [s]

Moment of Total
Detachment of
Fragments [s]

Total Running
Time [s]

PPm 0 2.5 × 10−3 3.5–4.0 × 10−3 7.0 × 10−3 1.0 × 10−2

H 0 1.75 × 10−3 2.0 × 10−3 4.0 × 10−3 5.0 × 10−3

G 0 3.75 × 10−3 6.0 × 10−3 9–9.75 × 10−3 1.5 × 10−2

PA6m 0 7.5 × 10−3 1.125 × 10−2 not fully detach 2.5 × 10−2

Figure 27 presents the evolution of three parameters during the impact simulation: (a) The
maximum values of the von Mises stress for the four material models, (b) the evolution of the impactor
velocity during the impact, and (c) the evolution of deceleration of the impactor.

Figure 27. Evolution of several characteristics in time, for each material.

In general, the maximum values of von Mises stresses indicate the initiation of a crack and/or its
continuation after a very short moment of relaxation of the stresses. The last maximum value can also
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indicate a strong, very punctual compression of the specimen fragments, if they collide. Analyzing the
images, it is likely that the last maximum of material G is due to this compression contact. PPm and
H materials have graphs of the maximum values of von Mises stresses with distinct peaks (three for
PPm and two for H), indicating cracks (one starting from the notch and the other initiated under the
impactor) and/or hits of the fragments with strong local compression. For G and PA6m materials,
these curves reflect a much more ductile behavior. Analyzing the plots for maximum value of von
Mises stress, during a time interval at 3 × 10−2 s, the materials could be in two behavioral groups:

- materials with brittle fracture (H and PPm),
- materials with ductile fracture (G and PA6m).

If it is analyzed the time until the breaking of the Charpy specimen, it is observed that this time
increases from material H, PPm, G, to PA6m, for which the breaking is not with the total detachment of
specimen fragments (Table 5). In reality, the time till failure of Charpy specimens is ranked in the same
way as in simulations (see Figures 6–9).

The values of residual velocity, vres, (considered the impactor velocity at the end of simulation) are
in the same order as the EPS values. This value of residual velocity was used to calculate the absorbed
energy for the simulation, ∆Emodel, for each material:

∆Emodel = mimpactor

v2
0

2
−

v2
res
2

 [J] (6)

where mimpactor is the mass of the impactor, v0 is the initial velocity of the impactor.
The maximum value of deceleration, amax, was used to calculate the maximum value of the force

striking the specimen, Fmax, during the simulation, in order to compare it with that experimentally
obtained for the same material:

Fmax = mimpactor × amax [N] (7)

where mimpactor is the mass of the impactor, v0 is the initial velocity of the impactor.
For the material constitutive models introduced in the simulation, the lowest value of EPS

produced the smallest reduction of the impactor velocity; as the residual velocity enters the formula
of the energy absorbed by the test specimen, it results that the material with the highest EPS (PA6m)
absorbed the greatest energy. The conclusion would be that the residual speed is proportional to the
EPS value (Table 6).

Table 6. Impact characteristics.

The Parameter PPm H G PA6m

Equivalent plastic strain (EPS) at break [-] 0.09 0.036 0.156 0.308

Maximum von Mises stress during impact [MPa] 41.1 37.2 48.4 48.9

Small differences in energy at break and residual velocity were obtained between the model and
actual material parameters for materials PPm, H and G (Figure 28c). The best concordance for these
two parameters was obtained for material H, followed by G and PPm.

Comparing the time till break for true and simulated tests (Figure 28a), the FE model exhibits
greater values than the experimental ones. PPm and PA6m have larger gaps for this parameter, but for
materials H and G, this is lower. True time till break is taken as the greater time value for F = 0 on
force–time curves, for each material. When comparing maximum force (Figure 28b), real and model
values are close for material PA6m, for the other materials, the difference being constant, but with
same trend. The residual velocity and the absorbed energy are parameters with close evolution of
the values for model and real data for materials PPm, H and G, the bigger difference being obtained
for material PA6m, meaning that the strain rate and the temperature influence more the behavior of
ductile polymer blends.
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Figure 28. Comparison between simulation and experimental data: (a) comparison between test time as
time till break in actual tests and the time till break in the simulation; (b) comparison between maximum
values of recorded force during the test and the force calculated for the simulation; (c) comparison
between values obtained by tests and those from simulation, for absorbed energy (delta E real and
delta E model, respectively) and residual velocity (vres real and vres model, respectively).

The biggest difference between the model and the actual test, taking into account these parameters,
was obtained for PA6m, the material with better impact characteristics. From this analysis, it results
that the constitutive model of multilinear material introduced in the simulation of the Charpy test gave
results closer to reality for the more fragile materials. For the most ductile material (PA6m), with a high
yield value, the model had a much higher impact energy absorption than the actual one, which would
mean that the introduction of the multilinear model obtained at a test rate of 1000 mm/min (0.016 m/s)
from tensile tests, does not satisfactorily simulate its behavior, at impact with speed v = 0.96 m/s,
being known that even in the field of low impact velocities (1–10 m/s), polymers are sensitive to the
rate of stress and implicitly of deformation rate, usually in the sense of increasing the stress at break
and decreasing the strain at break. Also, differences could be explained by the isothermal characteristic
of the model during simulation, the actual impact generating local heating as results of transforming a
part of the absorbed energy into heat.

The originality of the proposed model consists in:

- Finer discretization of the impact area to highlight the mechanisms of failure and their development
in time;

- this made it possible to differentiate the destruction mechanisms according to the material
introduced in the simulation;

- in the simulations were introduced simplified curves (in 10 points) of the most representative
curves real stress-real deformation for the materials of the mixture family;

- depending on the base polymer (PA6 or PP), the initiation and development of failure for the
4 materials were highlighted;

- the author used a less widely used destruction criterion, EPS;
- the validation of the model and the simulation results was done;
- qualitative: the shape of the broken surfaces by comparing to SEM images; and
- quantitatively by comparing the impact duration: The duration of the destruction of the specimen

is longer than the real one, explainable by the fact that the material model does not take into
account the influence of the material deformation speed in the Charpy test, the model being
introduced with a 0.016 m/s (1000 mm/min) (maximum strain rate for tensile tests). It is very
likely that the appearance of the stress–strain curve will change for 1 m/s in the sense of increasing
the yield limit and decreasing the EPS. The higher the value of EPS and the higher the yield point,
the wider the distribution of high stresses in a larger volume.
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