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Abstract: Understanding the properties and flow characteristics of recycled polyolefins in rice hull
composite blends is of importance to facilitate process optimization whilst promoting sustainability.
The influence of milled rice hull particle size (<0.5 mm and <1 mm) on properties of recycled
polyolefins composites was studied with major focus on recycled high-density polyethylene (rHDPE)
and polypropylene (rPP) together with added maleated polymer coupling agents. Composites were
compounded/extruded using a twin-screw extruder and the thermal, mechanical, and physical
properties were analyzed as well as their melt flow, dynamic. and capillary rheology tests.
The incorporation of the <0.5 mm rice-hulls particles enhanced the composite properties of viscosity,
flexural strength, moduli, water absorption, and thermal stability for both polyolefins with rHDPE
composites showing more reliable properties as compared to rPP.

Keywords: polyolefins; rheology; rice hulls; recycled high-density polyethylene;
recycled polypropylene

1. Introduction

The growing awareness of the use of recycled solid waste has led to the invention of more
innovative research methods in composite production with the intent of saving cost, making wood-like
products with enhanced properties to promote a more sustainable environment [1,2]. A major fraction
of this solid waste are polyolefins, such as high-density polyethylene (HDPE) and polypropylene (PP),
which are used in industrial applications for a wide range of end consumer products [3,4]. The problem
of sorting and the presence of contaminants from labels, caps, plastic bags, etc., still poses an issue
during polyolefin recycling, causing a non-homogenous blend of components. Although the reuse of
these polyolefins has been widely acknowledged, their continuous reprocessing under high shear force
and temperature leads to a thermal degradation in structural and mechanical properties, and hence
require the use of fillers to improve their performance [5–7].

Rice hulls are a lignocellulosic, renewable low-cost plant residue (20% by weight) in rice producing
countries. In California alone, 4 × 105 tons of hulls are produced annually and half is used to
generate heat and electricity [8], leaving the remainder to be used for other applications. Rice hulls are
commonly used as fuel and to a lesser extent in natural fiber composites due to its unique composition,
weathering resistance, availability, biodegradability, no strength, and stability when compared to
wood composites [9–11]. The application of rice hull composites is increasingly seen in buildings for
paneling, frames, and automotive parts, but the issues of interfacial adhesion between hydrophilic
fiber and hydrophobic polyolefin matrices to create homogenous composites still poses a concern.
Numerous researchers have implemented the reinforcement of polyolefins with natural fibers whilst
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combatting the issues of interfacial compatibility. To improve a better matrix, the use of maleated
graft polymer binders, silane treatment, and acetylation amongst other processes are considered [12].
The most accepted use of maleated polymer binders, maleic anhydride polypropylene (MAPP) and
maleic anhydride polyethylene (MAPE), increases the polarity and adherence at the interface with
reduced environmental pollution and cost [2,13,14].

Natural fiber composites are mostly fabricated from extrusion and injection molding, and undergo
stress under deformation by applied force, hence the knowledgeable understanding of flow
characteristics of these composites help determine the best ratio of fiber to recycled polyolefin for high
product yield. To determine this, the process of rheology is applied. Rheology, which investigates the
viscoelastic flow of composites under applied force, has been shown to help interpret interfacial adhesion
performance and the degree of fiber homogeneity in composites for better product optimization [15,16].
Dynamic rheology has been employed preferably by researchers due to the low frequency applied,
which reduces composite breakage compared to capillary rheology [17,18]. Several studies cover the
rheology of recycled polyolefins with results showing a reduction in viscosity with multiple cycles of
extrusion, tensile strength, and modulus [19–22].

This presented study focuses on valorizing rice hull residues and waste/recycled plastics for use
in composite materials. Therefore, investigating the influence of rice hull fiber particle size on process
rheology, at low and high shear rates, whilst optimizing the mechanical and physical properties in
order to substitute for wood plastic composites (WPC). Rheology results were compared to melt flow
rates and mechanical properties to understand the influence of composite size variation.

2. Materials and Methods

2.1. Materials

Commercial rice hulls (BREWCRAFT Briess, purchased at TriState Outfitters, Moscow, ID, USA)
were ground using a Thomas–Wiley mill to pass through either a 0.5 or 1 mm screens. Recycled/waste
rHDPE milk jugs and recycled polypropylene (rPP) (e.g., bottle caps, yoghurt and plastic containers)
were obtained from the Moscow Recycling Center (Moscow, ID, USA), rinsed with water, dried (80 ◦C
for 24 h) and then milled (<6 mm) using a plastic granulator (Sterling BP608, New Berlin, WI, USA.
Commercially sourced maleated polyethylene (MAPE) (Polybond 3029, SI Group, Schenectady, NY,
USA) and maleated polypropylene (MAPP) (AC950, Honeywell International Inc., Morris Plains, NJ,
USA) were used as coupling agents for the composites.

2.2. Composite Fabrication

Milled rice hulls were oven dried at 104 ◦C for 24 h prior to use. Batch sizes of 500 g were prepared
with rice hulls (50 wt%), and MAPE or MAPP (2 wt%) and recycled high-density polyethylene (rHDPE)
or rPP (48 wt%) were extruded into ribbons (4 mm (h) × 50 mm (w)) using a co-rotating twin screw
extruder (Leistritz ZSE18, Somerville, NJ, USA, LD ratio 40, 200 rpm) with a zone temperatures of
160 ◦C for rHDPE and 200 ◦C for rPP at 0.5 kg/h. The extruded ribbons were cut into 150 mm lengths
and then flattened by slowly hot-pressing (PHI 30 ton press, South El Monte, CA, USA, 300 by 300 mm2)
at 140 ◦C for rHDPE and 170 ◦C for rPP materials to a thickness of 3.2 mm.

2.3. Composite Characterization

2.3.1. Particle Size Measurement

Length and width of 200 rice hull particles for each screen size (<0.5 mm and <1 mm) were
determined via optical microscopy (Olympus BX51 microscope fitted with a DP70 digital camera,
San Diego, CA, USA) with 40×magnification, and images were analyzed using the Olympus Micro
Suite software (version 3.2) [23].
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2.3.2. Differential Scanning Calorimetry (DSC)

DSC analysis of the composite and polyolefin samples (4–6 mg) were performed in duplicate
on a Q200 DSC (TA instruments, New Caste, DE, USA) with refrigerated cooling and purged with
nitrogen (20 mL/min). Scanning was performed within a range of -50 ◦C to 220 ◦C. Samples were first
equilibrated at 40 ◦C (3 min) and then ramped to 180 ◦C (rHDPE) or 220 ◦C (rPP) (cycle 1) at 10 ◦C/min
(held for 3 min), cooled to −50 ◦C (cycle 2) at −10 ◦C /min and reheated to corresponding temperatures
(cycle 3). Data was analyzed using the TA analysis software and percent crystallinity was calculated
using the equation below:

Xc=
∆Hm

∆H0 ×Wf
× 100%

∆Hm is the calculated melting enthalpy from the area under peak, Wf is the weight fraction of
polyolefin in composites and ∆H0 is the theoretical enthalpy of fusion for polypropylene (207.1 J/g)
and polyethylene (293 J/g).

2.3.3. Melt Flow Rate

Melt flow rate (MFR) of composite samples (4 g) was measured in triplicate using a CEAST
Modular Melt Flow Indexer (Model 7024.000, Charlotte, NC, USA) at 190 ◦C according to ASTM
D1238-01e1 through a standard die (8 mm × 2.0955 mm Ø). A load of 2.16 kg was used for recycled
plastics and 15 kg for composites.

2.3.4. Thermogravimetric Analysis (TGA)

The thermal degradation and stability of the composite samples (4–5 mg) was performed on
a Perkin–Elmer TGA-7 instrument (Shelton, CT, USA) from 30 ◦C to 900 ◦C at 20 ◦C/min under nitrogen
(30 mL/min). Data was analyzed using the Pyris v13.3 software.

2.3.5. Thermomechanical Analysis (TMA)

Softening temperature (Ts) and melting temperature (Tm) of polyolefin and composite samples
(2 mm (l) × 1.5 mm (w) × 1 mm (h)) were determined using a PerkinElmer TMA-7 instrument (Shelton,
CT, USA) under nitrogen (20 mL/min) with refrigerated cooling, an applied force of 10 mN with
a penetration probe mode from −30 to 180 ◦C at a rate of 5 ◦C/min. Data was analyzed using the Pyris
v13.3 software.

2.3.6. Tensile Testing

Tensile tests were performed using an Instron 5500R-1132 universal testing machine (Norwood,
MA, USA, 5 kN load cell and cross head speed of 5 mm/min) coupled to an extensometer (model
3542, Epsilon Technology Corp, Jackson, WY, USA) on composite and polyolefin-machined dog bone
samples (nine replicates) according to the ASTM D638 standard. Data was collected and analyzed
using Bluehill v3 Instron software.

2.3.7. Rheology

Dynamic Rotational Rheology

Dynamic rheological measurements (tanδ, viscous modulus (G”), elastic modulus (G′) and
complex viscosity (η*)) on polyolefin and composite samples (2.5 mm (h) × 25 mm Ø) were acquired
on a Bohlin CVO 100 N rheometer (East Brunswick, NJ, USA) with 25 mm Ø serrated parallel plates.
Rheological measurements were determined with a plate gap of 2000 µm, 0.5% strain, frequency range
of 0.01 Hz to 100 Hz, and at 190 ◦C.
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Capillary Rheology

Shear viscosity was determined using a capillary rheometer (Instron Model 3213, Norwood, MA,
USA) at 190 ◦C connected to a Instron 5500R-1137 universal testing machine (5 kN load cell) and
operating at cross head speeds of 0.6, 2, 6, 20, 60, and 100 mm/min. The barrel diameter was 9.5504 mm
and two capillary dies were used (lengths of 14 mm and 27 mm with diameter of 1.4 mm Ø) to determine
the effect of shear rate on the viscosity of polyolefin and composite samples. Bagley correction was also
used since the L/D ratio was <200, in order to correct the influence of pressure drop on measurements.
Loaded samples (7 g) were thermally equilibrated for approximately 10 min with a heating temperature
variance of ±0.2 ◦C. Each sample was run in triplicate and data was analyzed using Bluehill v3 Instron
software in conformation to the ASTM D3835-02 standard. Extrudate swell diameters were measured
using a digital caliper (Mitutoyo).

2.3.8. Fourier-Transform Infrared Spectroscopy (FTIR)

Spectra (duplicate) of polyolefin and composite samples were obtained on a Nicolet-iS5
spectrometer (Thermo-Scientific, Madison, WI, USA) with an attenuated total reflectance accessory
(iD5, ZnSe). Spectra were averaged and baseline corrected using the Omnic v9.0 software.

2.3.9. Water Soak

Weight gain of circular polyolefin and composites samples (2.5 mm (h) by 25 mm Ø, 5 replicates)
were determined after continuous soaking in water for a maximum of 100 days at 22 ◦C. Diffusivity
was calculated using equation below:

Df= π(h/4Mf)
2(M/

√
t)

2

where Mf is the maximum moisture content at the end of the test, h is the sample thickness in meters,
M/
√

t is the initial slope from the plot MC vs
√

t.

2.4. Data Analysis

Statistical analysis (t-test, paired two sample for means) was performed using Excel
(Microsoft Office 2016).

3. Results

3.1. Properties of Rice-Hull Particles

The rice-hull particles were analyzed for size by optical microscopy (Figure 1). The micrographs
show a range of large and fine particles. The respective average lengths of the <1 mm and <0.5 mm
screened particles were 266 ± 332 µm and 174 ± 155 µm. The widths of the <1 mm and <0.5 mm
screened particles were 152 ± 170 µm and 109 ± 89 µm, respectively. The calculated aspect ratios for
the <1 mm and <0.5 mm screened particles were 1.8 and 1.6, respectively. The morphology shows
more mixed round-rectangular shaped-fibers compared to wood fibers, which point to a less complex
structure [24]. These aspect ratios are slightly higher than the reported average values of 1.2 by Raghu
et al. [25], and promote better properties of the fiber as a filler.
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Figure 1. Optical micrographs of screened (a) <1 mm and (b) <0.5 mm rice hull particles (40×, scale 
bar 1000 µm). 
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rHDPE - 978 (0.002)c 26.0 (0.5)b 1.1 (0.1)b 3.64 (0.4)c 
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Figure 1. Optical micrographs of screened (a) <1 mm and (b) <0.5 mm rice hull particles (40×, scale
bar 1000 µm).

3.2. Density and Tensile Properties

Tensile properties and density of polyolefins and composites were determined, and the results
are given in Table 1. The density for <1 mm and <0.5 mm rHDPE composites were 1157 kg/m3 and
1110 kg/m3, respectively, as compared to 1123 kg/m3 and 1109 kg/m3 for the respective rPP composites.
The presence of rice-hulls reinforcing fibers increased the density of the composite as compared to the
raw polyolefins. The lower density of the <0.5 mm composites were perhaps a result of differences in
packing during extrusion causing some interstitial spaces between fiber and polyolefins [26]. With the
addition of rice hull fibers, statistically significant differences were observed with an increase in
strength, density, and moduli, and a decrease in energy at break (EAB) for polyolefin composites at
a significant level of 0.05. There were no statistical differences in moduli between the composites made
with <0.5 mm and <1 mm fiber sizes for each polyolefin type.

Table 1. Density and tensile properties of the polyolefins and rice hull composites.

Polyolefin Composite
Particles

Density
kg/m3

Strength
(MPa)

Modulus
(GPa)

EAB
(J)

rHDPE - 978 (0.002) c 26.0 (0.5) b 1.1 (0.1) b 3.64 (0.4) c

<1 mm 1157.4 (3.1) a 25.1 (2.9) b 2.7 (0.1) a 0.65 (0.22) a

<0.5 mm 1109.9 (1.1) b 26.3 (2.0) a 3.1 (0.5) a 0.64 (0.16) b

rPP - 912 (0.001) b 14.3 (1.9) b 1.7 (0.2) b 0.16 (0.06) c

<1 mm 1122.6 (5.9) c 14.5 (0.3) a 2.9 (0.5) a 0.12 (0.02) b

<0.5 mm 1109.3 (1.7) a 16.7 (0.5) a 3.5 (0.2) a 0.19 (0.05) a

Note: Standard deviations are in parentheses. Each polyolefins’ sample with different superscript letters (a, b, c) are
statistically different (p < 0.05) via a one-tailed t-test.

Tensile strength and modulus properties of rHDPE were significantly higher than the values
recorded by Wang et al. [27] for HDPE (21.1 ± 0.4 MPa, 0.6 ± 0.0 GPa). The 23.8% and 83% increase in
tensile strength and modulus of the rHDPE were perhaps due to different plastic grades and processing
conditions, resulting in different properties. Tensile strength of the <1 mm and < 0.5 mm rHDPE
composites were respectively 25.1 ± 2.9 and 26.3 ± 2.0 MPa. The tensile moduli for the composites were
2.7 ± 0.1 GPa (<1 mm) and 3.1 ± 0.5 (<0.5 mm) GPa. Chen et al. [11] obtained a lower strength value
of 10.9 MPa and a modulus value of 1.446 GPa for 50 wt% rice-hull fiber with a mix of rHDPE and
recycled polyethylene terephthalate (rPET) matrix. The tensile strength for the rPP composites were,
14.5 ± 0.3 MPa (<1 mm) and 16.7 ± 0.9 (<0.5 mm) MPa. The tensile moduli for the rPP composites
were 2.9 ± 0.5 GPA (<1 mm) and 3.5 ± 0.2 GPa (<0.5 mm). These tensile strength for the rPP/rice hulls
composites were lower than the rHDPE/rice hull composites, possibly due to thermal degradation after
extrusion [28]. The EAB values for the rHDPE composites (0.64 J and 0.65 J) decreased significantly
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by 82% when compared to the rHDPE (3.64 J), showing a lower toughness (Table 1). The lower EAB
for rPP and its composites could be attributed to an increase in brittleness as compared to rHDPE
and composites. The <0.5 mm rPP composite exhibited a higher EAB showing a stronger matrix as
compared to the <1 mm composite due to improved interfacial bonding.

3.3. Thermal Analysis

To determine the melting (Tm) and crystallization (Tc) temperatures, DSC was performed on
polyolefin and composite samples (Figure 2). Values for the melting and crystallization shift are
given in Table 2. The thermograms for rHDPE and rPP are shown in Figure 2a,b. The observed Tm

for rHDPE was 135.1 ◦C and a slightly lower value of 133 ◦C for <0.5 mm composites. Wang et al.
observed a similar melt temperature for pure HDPE at 131 ◦C [27]. The Tc for rHDPE and <0.5mm
composites were respectively 118.9 ◦C and 119.6 ◦C. The presence of small fibers could be attributed to
a slightly faster crystallization [28]. Enthalpy of crystallization also decreased with the addition of
the rice-hull fibers which restricted the movement of the polymer matrix. This contrasts the findings
of reduced crystallinity with increased wood fiber content by Cui et al. [29], and agrees with the
notion of a shift in crystallinity with increased temperature by Ndiayi et al. [30]. In the case of rPP,
two melting and crystallinity peaks were seen, signifying either a structure change or the presence of
a copolymer or impurities. The earlier (minor) Tm and Tc peaks for rPP were 125.1 ◦C and 112.3 ◦C,
respectively. The main (major) Tm and Tc peaks for rPP were respectively at 163.8 ◦C and 123.75 ◦C.
Also, the addition of <0.5 mm rice-hulls reduced the Tm and Tc of the composite and showed a slight
shift compared to rPP.

DSC scan peaks (Tm) fell within the range of the TMA softening temperature (Ts) values as shown
in Table 2 for both polyolefins and composites. The more responsive TMA analysis (Figure 2c,d) shows
a decrease in height and yielded Ts values of 130.1 ◦C and 156.4 ◦C, respectively, for rHDPE and
rPP, while the <0.5 mm composites remained more stable at <1mm before softening at 131.3 ◦C and
161.2 ◦C for their composites. Glass transition temperature (Tg) for rPP was seen at −2.2 ◦C by TMA.
Ts increased slightly for the composites compared to the raw polyolefins as a result of an increase in
reinforcement from the rice hull fibers.

The thermal degradation of composites was determined by TGA as shown in Figure 3a.
The differential thermogravimetric (DTG) thermograms are shown in Figure 3b. The thermal
degradation transition temperatures are given in Table 3. Significant total degradation occurred
in one step for rPP composites due to radical chain mechanics and rapid chain scission [31] as compared
to the four peaks for rHDPE composites. The complete decomposition of the polymer matrix of both
polyolefins can be seen in the peaks within the range of 454 ◦C to 540 ◦C for rHDPE composites and
430 ◦C to 506 ◦C for rPP composites. The rice hull composites made with <0.5 mm fibers degraded at
slightly higher temperatures, showing that they were more thermally stable. The small weight loss
at the beginning of the rPP plots could possibly represent the breakdown of rice-hulls components
from 345 ◦C to 420 ◦C. Raghu et al. [25] observed the breakdown of virgin polypropylene between
400 ◦C and 480 ◦C and increased degradation in the composite at about 500 ◦C. The weakening of
the cellulosic fibers of the rHDPE can be seen in the peak range between 317 ◦C to 423 ◦C with the
possible presence of volatile impurities at the small peak at 303 ◦C and 299 ◦C for <0.5 mm and <1
mm, respectively.



Materials 2020, 13, 667 7 of 15
Materials 2020, 13, x FOR PEER REVIEW 7 of 15 

 

 

 
Figure 2. Differential scanning calorimetry (DSC) thermograms of recycled polyolefin composites for 
(a) recycled high-density polyethylene (rHDPE), (b) recycled polypropylene (rPP), and 
thermomechanical analysis (TMA) thermograms for (c) rHDPE and composites (d) rPP and 
composites. 

The thermal degradation of composites was determined by TGA as shown in Figure 3a. The 
differential thermogravimetric (DTG) thermograms are shown in Figure 3b. The thermal degradation 
transition temperatures are given in Table 3. Significant total degradation occurred in one step for 
rPP composites due to radical chain mechanics and rapid chain scission [31] as compared to the four 
peaks for rHDPE composites. The complete decomposition of the polymer matrix of both polyolefins 
can be seen in the peaks within the range of 454 °C to 540 °C for rHDPE composites and 430 °C to 506 
°C for rPP composites. The rice hull composites made with <0.5 mm fibers degraded at slightly higher 
temperatures, showing that they were more thermally stable. The small weight loss at the beginning 
of the rPP plots could possibly represent the breakdown of rice-hulls components from 345 °C to 420 
°C. Raghu et al. [25] observed the breakdown of virgin polypropylene between 400 °C and 480 °C 
and increased degradation in the composite at about 500 °C. The weakening of the cellulosic fibers of 
the rHDPE can be seen in the peak range between 317 °C to 423 °C with the possible presence of 
volatile impurities at the small peak at 303 °C and 299 °C for <0.5 mm and <1 mm, respectively.  
 

40 90 140

Ex
ot

he
rm

ic

Temperature (°C)

rHDPE
<0.5mm

(a)

40 90 140 190

Ex
ot

he
rm

ic

Temperature (°C)

rPP
<0.5mm

(b)

50

60

70

80

90

100

-20 30 80 130

He
ig

ht
 (%

)

Temperature (°C)

rHDPE
<1mm
<0.5mm

(c)

50

60

70

80

90

100

-20 30 80 130 180

H
ei

gh
t (

%
)

Temperature (°C)

rPP
<1mm
<0.5mm

(d)

Figure 2. Differential scanning calorimetry (DSC) thermograms of recycled polyolefin composites for (a)
recycled high-density polyethylene (rHDPE), (b) recycled polypropylene (rPP), and thermomechanical
analysis (TMA) thermograms for (c) rHDPE and composites (d) rPP and composites.

Table 2. Thermogram Peak data for polyolefins and corresponding rice hull composites.

DSC TMA

Polyolefin Composite
Particles

Tm
(◦C)

Tc
(◦C)

Xc
(%)

∆Hc
(J/g)

Tm or Ts
(◦C)

rHDPE - 135.1 (0.14) 118.9 (0.16) 143.7 (2.09) 203.2 (2.65) 130.1
<1 mm 134.0 (0.09) 119.3 (0.04) 71.6 (0.89) 99.2 (2.76) 130.2

<0.5 mm 133.0 (0.73) 119.6 (0.21) 61.9 (0.82) 85.4 (1.42) 131.3
rPP - 125.1 (0.08) a 112.3 (0.04) a - - -

163.8 (0.06) b 123.8 (0.06) b 65.5 (0.26) 67.0 (0.41) 156.4
<1 mm 125.3 (0.05) a 113.6 (0.02) a - - -

162.9 (0.04) b 123.2 (0.05) b 33.3 (0.29) 33.7 (0.39) 157.7
<0.5 mm 125.4 (0.11) a 113.9 (0.03) a - - -

163.2 (0.09) b 123.4 (0.09) b 32.2 (0.27) 32.1 (0.72) 161.2

Note: Standard deviations are in parentheses. a minor peaks and b major peaks.
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Figure 3. (a) Thermogravimetric analysis (TGA) and (b) differential thermogravimetric (DTG) curves
for rice hull polyolefin composites.

Table 3. Thermal degradation behavior of polyolefin composites.

Polyolefin Composite
Particles

Onset
(◦C)

1st Peak
(◦C)

2nd Peak
(◦C)

3rd Peak
(◦C)

Final Decomposition
(◦C)

rHDPE <1 mm 278 299 380 502 512
<0.5 mm 276 303 383 493 525

rPP <1 mm 322 - - - 472
<0.5 mm 320 - - - 493

3.4. FTIR Analysis

The FTIR spectra of the rice husk fiber are shown in Figure 4. The spectrum shows the presence
of the hydroxyl group (-OH) in cellulosic fibers with a stretched medium intensity broad band at
3334 cm−1, C–H stretching bands at 2921 cm−1 and 2851 cm−1 associated with lignin and lipids, and two
bands at 1603 cm−1 and 1513 cm−1 assigned to aromatic skeletal vibrations of lignin [11]. A high
intensity band at 1048 cm−1 is assigned to the C–O stretching of cellulose and hemicellulose [32].
The rice hull (<0.5mm) /rHDPE composite spectra (Figure 5) shows bands at a lower intensity than the
pure rice hulls due to dilution.
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Figure 4. Fourier-transform infrared spectroscopy (FTIR) spectrum of rice hulls.
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Major bands for rPP (Figure 6) were between 2866 and 2949 cm−1 assigned to C–H stretching
vibrations. In addition, bands for –CH2 and –CH3 groups were observed at 1454 cm−1 and 1375 cm−1

respectively and are characteristic for the propylene unit. The band at 803 cm−1 was assigned to a C=C
bond that could be due to some thermal degradation [33]. This band could help explain the presence
of the minor peak found in the DSC analysis for rPP. After extrusion and compounding of the rice
hulls with rPP, the C=C band was shown to decrease (Figure 6).
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3.5. Melt Flow and Rheological Properties

Due to the reprocessing of the polyolefins, a minimal temperature of 190 ◦C was used to reduce
the thermal degradation bracket and chain breaking as studied by Oblak et al. [19]. The melt flow
rate (MFR), which is an industrial test, was determined and compared to rheology results (Table 4).
Under the applied temperature, load conditions of 2.15 kg and 15 kg for polyolefins and composites
were determined, respectively. The MFR for rHDPE composites were 4.6 and 3.9 g/10 min with
corresponding viscosities of 15.9 and 18.6 kPa.s for <1 mm and <0.5 mm particles, respectively.
The MFR of rHDPE <0.5 mm particle size is comparable with the MFR of corn cob composites as
reported by Adefisan and McDonald [34]. In the presence of natural fiber fillers, there is the resistance
to flow and sliding between the intermolecular layers, causing an increase in melt viscosity [17]. rPP
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composites MFR were significantly higher, with values of 125 and 109 g/10 min and concomitant lower
viscosities of 0.35 and 0.41 kPa.s for <1 mm and <0.5 mm particles, respectively. rPP experienced a
high displacement during the MFR process due to the reduction in entanglements and molar mass [19].

Table 4. Melt flow and Rheology results for polyolefins and rice hull composites.

Dynamic Capillary

Polyolefin Composite
Particles

MFR
(g/10 min)

Apparent Viscosity
(kPa.s)

η* at 1.06 Hz
(kPa.s)

Apparent Viscosity
at 30 s−1 (Pa.s)

True Viscosity at 30
s−1 (Pa.s)

rHDPE - 0.961 (0.023) c 10.91 (0.260) c 3.17 (1.32) c 2387 1621
<1 mm 4.592 (0.021) b 15.91 (0.073) a 8.95 (0.816) b 7091 1580

<0.5 mm 3.919 (0.010) a 18.65 (0.039) b 13.34 (1.56) a 6148 3548
rPP - 25.0 (2.318) c 0.38 (0.032) b 0.39 (0.014) c 376 263

<1 mm 124.9 (1.278) a 0.35 (0.004) b 2.09 (0.300) a 850 557
<0.5 mm 109.4 (0.062) b 0.41 (0.006) a 2.48 (0.240) b 808 1544

Note: Standard deviation in parentheses. Each polyolefins’ sample with different letters (a, b, c) are statistically
different (p < 0.05) via a one-tailed t-test

Dynamic rheology tests were performed to study the influence of shear rate on the melt (Figure 7).
An increase in viscous modulus (G”) for polyolefins and composites with frequency was observed,
indicating good viscoelastic liquid behaviors of the polyolefins in the blend and strong-structured
matrices. The probability of energy storage in the composites is observed via the elastic modulus
(G’) [18]. The addition of the rice hulls also caused an increase in the G’ and G”, and reduced the
spacing for rPP at lower frequency. Differences in G’ are also observed with each composite due to the
varying particle sizes and polymer matrices. rPP composites exhibited the lowest G’–G” curves in
comparison to the rHDPE composites.
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Figure 7. Dynamic rheological measurements (G’ and G”) of polyolefins and rice hull composites.

Complex viscosity (η*) also decreased (Figure 8) from low to high frequency for all samples as
a result of shear thinning [35]. rPP and its composites had a lower η* than rHDPE, which had a better
cross-linked structure in composite melts [36]. With multiple extrusion and processing cycles for PP,
a rapid decrease in η* was experienced [20]. The highest η* of the <0.5 mm for each case of composite
was due to the high surface area and better interactivity in the composites. This increase in η* for the
<0.5mm composites also corresponded with the results from the MFR. With the heat applied to the
materials, the higher η* of the composites occurred because of lower heat transfer in the insulating-like
rice hulls as compared to the polyolefins [13]. Melt flow rate, apparent and complex viscosity also
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conform statistically to measured results showing a significant difference with the addition of different
sized fibers as seen in Table 4.
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In contrast to dynamic rheology, which runs at lower frequencies, capillary rheology was used to
study the flow behavior and the response of polymer matrices to higher shear rates [37]. Shear rates
applied were in the range of 2.9 s−1 to 580 s−1 for both polyolefins and composites. A gradual decrease
in shear viscosity was observed with increased shear rates due to shear thinning behavior which
also seen in the dynamic rheology results. Data was Bagley and Rabinowitch corrected, according to
ASTMD3835-02, for both dies used to reduce the effects of shear thinning and to improve viscosity
results. This yielded corresponding results of true viscosity for both dies. True shear viscosity vs. shear
rate plots are shown in Figure 9 for polyolefins and composites. Shear viscosity values were within
102–104 Pa.s for rHDPE and composites and 102–103 Pa.s for rPP composites. A lower range of results
(101–103 Pa.s) were attained by Mazzanti et al. [38]. Rice hulls (<0.5 mm)/rHDPE composite registered
the highest viscosity when compared to other composites and polyolefins due to density effects,
surface area and thermal stability. At low crosshead speeds, rPP composites experienced breaking,
which accounted for the non-linear results attained. A brittle effect from cooled extrudate of rPP
composites was observed, which could have been caused by the continuous degradation from multiple
extrusion cycles [39]. The shear viscosity from capillary rheology in both cases were significantly
higher than that from dynamic rheology when both were compared. A similar trend is also seen in the
study done by Mazzanti et al. [38]. Extrudate swells were also measured, and the 27 mm die extrudates
were smaller in diameter for all composites and polyolefins in comparison to the 14 mm die. There was
a minimal increase in swell ratio of the polypropylene composites at increased crosshead speed.
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Figure 9. Flow curves of true shear viscosity versus true shear rate by capillary rheology of polyolefins
and rice hull composites.

3.6. Water Absorption

The relationship of water uptake with time for the composites was analyzed based on Fick’s
diffusion behavior [40] and, an initial increase in water absorption was observed for both composites as
seen in Figure 10 with corresponding diffusivities. The respective WA for rice hulls <1 mm and <0.5 mm
composites were 9.9% and 7.8% for rHDPE and 13.2% and 11.7% for rPP (Table 5). The presence of the
large <1mm particle size created a larger exposed hydrophilic surface with the potential for more voids
which would absorb more moisture over time [41]. The Df for the <1 mm and <0.5 mm composites
were 3.2 × 10−11 m2/s and 3.5 × 10−11 m2/s for rHDPE and 6.1 × 10−11 m2/s and 7.0 × 10−11 m2/s for rPP,
respectively. Since a higher diffusivity signifies a shorter time to approach equilibrium absorption [42],
<0.5 mm composites for polypropylene will absorb less water over more time. The relationship between
water absorption and fiber size for both composites were significantly different.
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Table 5. Water soak properties of polyolefin composites.

WA (%) Diffusion Coefficient

Polyolefin Composite Particles 2 Days 100 Days m2/s (10−11)

rHDPE <1 mm 1.3 (0.3) a 9.9 (5.5) b 3.2
<0.5 mm 1.1 (0.3) a 7.8 (0.9) a 3.5

rPP <1 mm 2.6 (1.1) a 13.2 (0.6) a 6.1
<0.5 mm 1.2 (1.1) a 11.7 (1.3) b 7.0

Note: Standard deviation in parentheses. Each polyolefins’ sample with different superscript letters (a, b, c) are
statistically different (p < 0.05) via a one-tailed t-test.

4. Conclusions

Rice-hulls natural fiber of <1 mm and <0.5 mm particle sizes were successfully compounded
with recycled polyolefins, rHDPE and rPP, using a twin-screw extruder to form extruded profiles.
Rheology, mechanical, and thermal characterization were used to analyze the composites, and were
shown to have a performance comparable to WPC, and hence could be a direct substitute. Rheology was
performed via dynamic and capillary methods with a minimum temperature of 190 ◦C to reduce the
adverse effect of thermal degradation. Although the densities of the smaller particle-sized composites
were low, stability results were not negatively affected. The <0.5 mm composites of rHDPE possessed
better thermal stability and tensile properties when compared to rPP composites and raw recycled
polyolefins, due to the size and incorporation of rice-hull fibers. This study affirms the importance of
upcycling plastic waste and natural fiber residues into sustainable composite products for industrial
and residential applications.
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