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Abstract: A general formulation is considered for the free vibration of curved laminated composite
beams (CLCBs) with alterable curvatures and diverse boundary restraints. In accordance with
higher-order shear deformation theory (HSDT), an improved variational approach is introduced for the
numerical modeling. Besides, the multi-segment partitioning strategy is exploited for the derivation
of motion equations, where the CLCBs are separated into several segments. Penalty parameters
are considered to handle the arbitrary boundary conditions. The admissible functions of each
separated beam segment are expanded in terms of Jacobi polynomials. The solutions are achieved
through the variational approach. The proposed methodology can deal with arbitrary boundary
restraints in a unified way by conveniently changing correlated parameters without interfering with
the solution procedure.

Keywords: modified variational approach; curved laminated composite beams; Jacobi polynomials;
alterable curvatures; multi-segment partitioning strategy

1. Introduction

The moderately tall curved laminated composite beams (CLCBs) are widely applied in engineering
fields. Besides, the laminated composite material has excellent mechanical properties including high
compression-resistance capacity, high strength-to-weight and stiffness-to-weight ratios, preeminent
corrosion-resistance, and powerful customizable capacity [1,2]. In practical use, the CLCBs may
commonly undergo various kinds of complicated dynamic loads and other complex work environments,
which lead to excessive vibration and fatigue damage of the structure. Dynamic modelling is the
precondition for understanding the vibration characteristics of CLCBs. Thus, this paper aims to
evaluate the vibration features of CLCBs with alterable curvatures by a modified variational approach
in the framework of higher-order shear deformation theory (HSDT).

Numerous works have been carried out on the vibration problems of CLCBs. A group of
equations were constructed by Qatu [3] for vibration analysis of simply supported CLCBs, which
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are thin or moderately tall. The influences of rotary inertia, shear deformation, thickness ratio,
material orthotropy, and curvature on the vibration frequencies were investigated. Utilizing the
Ritz method, Qatu [4,5] implemented dynamic analysis of CLCBs with shallow and deep curvatures.
The in-plane vibration characteristics were investigated. By the dynamic stiffness approach in
conjunction with series solutions, vibration analysis of curved laminate beams was conducted by
Tseng et al. [6]. The impacts of rotary inertia, as well as shear deformation, were taken into account
for the numerical model. A novel layer-wise displacement model was put forward by Carpentieri et
al. [7] to capture the dynamic behaviors of CLCBs subjected to classic restraints. In the framework
of shallow shell theory assumptions, a modal method was proposed by Khdeir and Reddy [8] to
unearth the dynamic features of a shallow laminated composite arch subjected to various boundary
restraints. Surana and Nguyen [9] proposed a two-dimensional (2D) element formulation for the
dynamic analysis of a curved beam by utilizing HSDT. Exploiting first-order shear deformation theory
(FSDT), the dynamic behavior of simply supported CLCBs with deep curvatures was studied by
Hajianmaleki and Qatu [10]. The general differential quadrature method (DQM) was adopted for
the formulation. The vibration features of curved delaminated composite beams were studied by
Jafari et al. [11] via a finite element approach and analytical solution. The influences of rotary inertia,
material coupling, shear deformation, and the deepness term were taken into consideration. On
the foundation of 2D elasticity theory, the vibration features of CLCBs were investigated by Chen
et al. [12], where the state space approach and DQM method were employed. A one-dimensional
(1D) mechanical model was considered by Ascione and Fraternali [13] for dynamic analysis of CLCBs.
The model was constructed based on the stationary potential energy theory, and penalty terms were
employed to impose the restraint conditions. Only classic boundary conditions were taken into account.
The vibration features of deep CLCBs subjected to various boundary conditions were analyzed by
Ye et al. [14] through the Ritz method, where the improved Fourier series was used for the admissible
displacement functions. Based on NURBS (Non-Uniform Rational B-Splines), isogeometric analysis
was implemented by Luu et al. [15] for understanding the dynamic behaviors of Timoshenko-type deep
curved laminated beams with various curvatures. The instantaneous responses of curved composite
laminated beams were studied by Shao et al. [16], where the reverberation ray matrix approach
was introduced. The curved beams were subjected to arbitrary boundary restraints and diverse
lamination schemes were considered. A general and unified formulation was proposed by Qu et al. [17]
for vibration analysis of CLCBs subjected to diverse boundary restraints. The modified variational
principle was used for the derivation of the formulation, and a multi-segment partitioning strategy
was employed. The vibration characteristics of glass fiber-reinforced polymer (GFRP) composites
reinforced with nylon nano-fibers were experimentally and numerically studied by Garcia et al. [18,19].
Recently, the spectral-Tchebychev technique, which utilizes Tchebychev polynomials for the spatial
discretization, has been proposed by several researchers [20–22]. The method incorporates different
boundary conditions by projection matrices, where solutions for various linear and nonlinear vibration
problems with different boundary conditions can be easily obtained.

The development of calculating methods of high precision has become an important subject,
and multitudinous beam theories and calculation methods have been developed on the foundation
of diverse assumptions and approximations. From a literature review, it has been found that most
previous investigations about the free vibration of CLCBs have been confined to classical boundary
restraints. For accurate beam theories, three major categories are adopted, commonly including
classical, first-order, and higher-order beam theories. The classical beam theory (CBT) is suitable for
slender beams. As the influence of the transverse shear deformation is ignored by CBT, the deflection
is underestimated and the natural frequency is overestimated for tall beams. To make up for this
deficiency, the first-order beam theory (FBT) was developed. For FBT, a shear correction factor is
introduced to express the transverse shear force, the values of which are affected by a lot of parameters
(e.g., layer sequences, material properties, etc.) and which will significantly affect the accuracy of the
results. To further improve and perfect the beam theory, the HSDT was developed. Compared to
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CBT and FBT, HSDT can express the kinematics of the CLCB better and can produce more precise
interlaminar stress distributions. Besides, the shear deformation effects are considered for HSDT,
which includes the correct cross-sectional warping without the requirement of a shear correction factor.
However, HSDT involves higher-order stress resultants and, thus, needs a higher computational cost,
which is one limitation of the present approach.

In addition, the majority of studies have been conducted on the vibration features of circular
CLCBs, while those of others are rare. The reason for this is that when the curvature radius is changed,
the more complex description of the geometry will make the solution become very difficult [23]. On the
whole, investigations of the free vibration of CLCBs subjected to arbitrary boundary restraints and with
alternate curvatures are limited. This paper proposes a general and unified formulation for vibration
analysis of CLCBs with various curvatures. The novelties of the present paper are as follows: (1) First,
most of the previous studies concerned curved circular composite laminated beams (Qu et al. [17]),
while studies of CLCBs with various curvatures are rare; (2) a variational method in conjunction with
a multi-segment partitioning strategy and HSDT for CLCBs is presented, which has the following
advantages: (a) Allowing flexible choices of admissible functions, (b) fast and stable convergence
characteristics, and (c) high accuracy, especially for higher modes; (3) the penalty and boundary
parameters are incorporated for the convenient change of boundary conditions including classic and
elastic ones. On the whole, this approach should be valuable in both theoretical and engineering
aspects. The outline of the paper is divided into three parts: (1) Theoretical formulations; (2) results
and discussions; and (3) conclusions.

2. Theoretical Formulations

2.1. Description of the CLCB Model

The schematic plot and geometric parameters of a CLCB are presented in Figure 1. The curved
beam has curvature radius Rϕ, thickness h, and width b. The orthogonal coordinates (ϕ, y, z) are
located at the middle surface of the CLCB. The ϕ-, y-, and z- coordinates are along the central line
(indicated as red line), width, and thickness orientations, respectively. The curved beam comprises
several orthotropic layers, where Zk represents the distance from the top surface of the k’th layer to the
middle surface. The fiber orientation angle of the k’th lamina with respect to the ϕ-axis of the CLCBs is
defined as αk

f iber, and the case of αk
f iber = 0 is presented for a better understanding. Vibration of the

CLCB occurs in the ϕ–z plane and can be characterized by the central line. In engineering applications,
different types of CLCBs with diverse curvatures may be encountered, e.g., hyperbolic, parabolic,
elliptic, and circular ones. For each type, their radii of curvatures Rϕ(ϕ) can be described in terms of
different geometric parameters. Different types of CLCBs are shown in Figure 2; note that the x-axis,
which is perpendicular to the z-axis in the ϕ–z plane, is added for a better description.

For an elliptic curved beam (Figure 2a), Rϕ(ϕ) is defined in terms of semimajor axis length ae and
semiminor axis length be:

Rϕ(ϕ) =
a2

e b2
e√(

a2
e sin2 ϕ+ b2

e cos2 ϕ
)3

. (1)

For a parabolic curved beam (Figure 2b), Rϕ(ϕ) can be expressed as

Rϕ(ϕ) =
k

2 cos3 ϕ
, k =

R2
1 −R2

0

L
, ϕ0 = arctan

(2R0

k

)
, ϕ1 = arctan

(2R1

k

)
, (2)

where R0 and R1 indicate the horizontal radius.
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Figure 2. Different types of curved laminated composite beams (CLCBs): (a) Elliptic curved beam; (b)
parabolic curved beam; (c) hyperbolic curved beam; (d) circular curved beam.
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The hyperbolic CLCB (Figure 2c) is represented by the following equations:

Rϕ(ϕ) =
−a2

hb2
h√(

a2
h sin2 ϕ− b2

h cos2 ϕ
)3

, (3a)

bh = L0ah/
√(

R2
0 − a2

h

)
= L1ah/

√(
R2

1 − a2
h

)
, (3b)

ϕ0 = arctan

 (R0 −Rs)bh

ah

√
(R0 −Rs)

2
− a2

h

, (3c)

ϕ1 = π− arctan

 (R1 −Rs)bh

ah

√
(R1 −Rs)

2
− a2

h

, (3d)

where Rs denotes the distance from ox to o′x′(revolution axis); ah signifies the length of the semitransverse
axis, and bh indicates that of the semiconjugate axis.

Figure 2d shows the circular curved beam, where R indicates the mean radius.

2.2. Energy Expression of the CLCB

The energy expressions of the CLCB are established in the framework of HSDT. Hence, the
displacement components of the CLCB for an arbitrary point can be written as

U(ϕ, y, z, t) = u(ϕ, y, t) +ψϕ(ϕ, y, t)z + φϕ(ϕ, y, t)z2 + λϕ(ϕ, y, t)z3, (4a)

W(ϕ, y, z, t) = w(ϕ, y, t), (4b)

in which u and w indicate the displacements along the ϕ and z orientations at the middle surface,
respectively. In addition, ψϕ denotes the rotation of the transverse normal with respect to the ϕ
direction. φϕ and λϕ signify the higher-order terms connected to the Taylor series. Mathematically,

ψϕ =

(
∂U
∂z

)
z=0

,φϕ =
1
2

(
∂2U
∂z2

)
z=0

,λϕ =
1
6

(
∂3U
∂z3

)
z=0

. (5)

The linear strain–displacement relationships, which consider z/Rϕ terms, can be given as follows:

εϕ =
1

1 + z/Rϕ

(
ε0
ϕ + zk0

ϕ + z2k1
ϕ + z3k2

ϕ

)
, (6a)

γϕz =
1

1 + z/Rϕ

(
γ0
ϕz + zk0

ϕz + z2k1
ϕz + z3k2

ϕz

)
, (6b)

where ε0
ϕ and γ0

ϕz signify the middle surface normal and shear strains, respectively, and ki(i=0,1,2)
ϕ and

ki(i=0,1,2)
ϕz indicate curvature changes. They are defined as

ε0
ϕ =

1
Rϕ

(
∂u
∂ϕ

+ w
)
, k0
ϕ =

1
Rϕ

∂ψϕ

∂ϕ
, k1
ϕ =

1
Rϕ

∂φϕ

∂ϕ
, k2
ϕ =

1
Rϕ

∂λϕ

∂ϕ
, (7a)

γ0
ϕz =

1
Rϕ

(
−u +

∂w
∂ϕ

)
+ψϕ, k0

ϕz = 2φϕ, k1
ϕz =

1
Rϕ

∂φϕ

∂ϕ
+ 3λϕ, k2

ϕz = 2
1

Rϕ
λϕ. (7b)
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The force (N) and moment resultants (M) of the CLCB can be represented by middle surface
strains and curvature changes:

Nϕ

Ny

Nϕy

Mϕ

My

Mϕy

N1
ϕ

N1
y

N1
ϕy

M2
ϕ

M2
y

M2
ϕy



=



A11 A12 A16

A12 A22 A26

A16 A26 A66

B11 B12 B16

B12 B22 B26

B16 B26 B66

C11 C12 C16

C12 C22 C26

C16 C26 C66

D11 D12 D16

D12 D22 D26

D16 D26 D66

B11 B12 B16

B12 B22 B26

B16 B26 B66

C11 C12 C16

C12 C22 C26

C16 C26 C66

D11 D12 D16

D12 D22 D26

D16 D26 D66

E11 E12 E16

E12 E22 E26

E16 E26 E66

C11 C12 C16

C12 C22 C26

C16 C26 C66

D11 D12 D16

D12 D22 D26

D16 D26 D66

E11 E12 E16

E12 E22 E26

E16 E26 E66

F11 F12 F16

F12 F22 F26

F16 F26 F66

D11 D12 D16

D12 D22 D26

D16 D26 D66

E11 E12 E16

E12 E22 E26

E16 E26 E66

F11 F12 F16

F12 F22 F26

F16 F26 F66

G11 G12 G16

G12 G22 G26

G16 G26 G66





ε0
ϕ

ε0
y

γ0
ϕy

k0
ϕ

k0
y

k0
ϕy
k1
ϕ

k1
y

k1
ϕy
k2
ϕ

k2
y

k2
ϕy



, (8a)



Qϕ

Qy

Pϕ
Py

Q1
ϕ

Q1
y

P2
ϕ

P2
y


=



A55 A45

A45 A44

B55 B45

B45 B44

C55 C45

C45 C44

D55 D45

D45 D44

B55 B45

B45 B44

C55 C45

C45 C44

D55 D45

D45 D44

E55 E45

E45 E44

C55 C45

C45 C44

D55 D45

D45 D44

E55 E45

E45 E44

F55 F45

F45 F44

D55 D45

D45 D44

E55 E45

E45 E44

F55 F45

F45 F44

G55 G45

G45 G44





γ0
ϕz
γ0

yz
k0
ϕz

k0
yz

k1
ϕz

k1
yz

k2
ϕz

k2
yz


, (8b)

where Nϕ, Ny, Nϕy, N1
ϕ, N1

y, and N1
ϕy signify the in-plane forces; Mϕ, My, Mϕy, M2

ϕ, M2
y, and M2

ϕy
denote the moment resultants; and Qϕ, Qy, Pϕ, Py, Q1

ϕ, Q1
y, P2

ϕ, and P2
y indicate the transverse shear

force resultants. The corresponding extensional stiffnesses Aij (i, j = 1, 2, 6), coupling stiffnesses Bij,
bending stiffnesses Cij, and other stiffness coefficients (Di j, Ei j, Fi j, Gi j and Hi j) can be expressed as

{
Ai j, Bi j, Ci j, Di j, Ei j, Fi j, Gi j, Hi j

}
=

Nk∑
k=1

zk+1∫
zk

S
k
i j

{
1, z, z2, z3, z4, z5, z6, z7

}
dz, (9)

where S
k
i j indicates transformed reduced stiffness coefficients for the k’th layer. In addition, they are

defined as

S
k
11 = Sk

11m4 + 2
(
Sk

12 + 2Sk
66

)
m2n2 + Sk

22n4,

S
k
12 =

(
Sk

11 + Sk
22 − 4Sk

66

)
m2n2 + Sk

12

(
m4 + n4

)
,

S
k
22 = Sk

11n4 + 2
(
Sk

12 + 2Sk
66

)
m2n2 + Sk

22m4,

S
k
16 =

(
Sk

11 − Sk
12 − 2Sk

66

)
m3n +

(
Sk

12 − Sk
22 + 2Sk

66

)
mn3,

S
k
26 =

(
Sk

11 − Sk
12 − 2Sk

66

)
mn3 +

(
Sk

12 − Sk
22 + 2Sk

66

)
m3n,

S
k
66 =

(
Sk

11 + Sk
22 − 2Sk

12 − 2Sk
66

)
m2n2 + Sk

66

(
m4 + n4

)
,

S
k
44 = Sk

44m2 + Sk
55n2, S

k
45 =

(
Sk

55 − Sk
44

)
mn, S

k
55 = Sk

55m2 + Sk
44n2,

Sk
11 =

Ek
1

1−µk
12µ

k
21

, Sk
12 =

µk
12Ek

2
1−µk

12µ
k
21

, Sk
22 =

Ek
2

1−µk
12µ

k
21

, Sk
44 = Gk

23, Sk
55 = Gk

13, Sk
66 = Gk

12,

m = cosαk
f iber, n = sinαk

f iber,

(10)

where αk
f iber denotes the fiber orientation angle of the k’th lamina with respect to the ϕ-axis of the

CLCBs and Sk
e f (e, f = 1, 2, 4, 5, and 6) is the material properties. With regard to CLCBs, the following
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parameters (Ny, Nϕy, N1
y, and N1

ϕy; Qy, Py, Q1
y, and P2

y; My, Mϕy, M2
y, and M2

ϕy) are presumed to be zero.
Hence, Equation (8) can be rewritten as

Nϕ

Mϕ

N1
ϕ

M2
ϕ

 =


A11 B11 C11 D11

B11 C11 D11 E11

C11 D11 E11 F11

D11 E11 F11 G11



ε0
ϕ

k0
ϕ

k1
ϕ

k2
ϕ




Qϕ

Pϕ
Q1
ϕ

P2
ϕ

 =


A55 B55 C55 D55

B55 C55 D55 E55

C55 D55 E55 F55

D55 E55 F55 G55



γ0
ϕz

k0
ϕz

k1
ϕz

k2
ϕz

, (11)

where
Ai j = Ai j − 1/RϕBi j, Bi j = Bi j − 1/RϕCi j , Ci j = Ci j − 1/RϕDi j, (12a)

Di j = Di j − 1/RϕEi j, Ei j = Ei j − 1/RϕFi j, Fi j = Fi j − 1/RϕGi j Gi j = Gi j − 1/RϕHi j , (12b)

A = A−BC−1BT, (12c)

A =


A11 B11 C11 D11

B11 C11 D11 E11

C11 D11 E11 F11

D11 E11 F11 G11


A =


A11 B11 C11 D11

B11 C11 D11 E11

C11 D11 E11 F11

D11 E11 F11 G11

, (12d)

B =


A12 A16 B12 B16 C12 C16 D12 D16

B12 B16 C12 C16 D12 D16 E12 E16

C12 C16 D12 D16 E12 E16 F12 F16

D12 D16 E12 E16 F12 F16 G12 G16

, (12e)

C =



A22 A26

A26 A66

B22 B26

B26 B66

C22 C26

C26 C66

D22 D26

D26 D66

B22 B26

B26 B66

C22 C26

C26 C66

D22 D26

D26 D66

E22 E26

E26 E66

C22 C26

C26 C66

D22 D26

D26 D66

E22 E26

E26 E66

F22 F26

F26 F66

D22 D26

D26 D66

E22 E26

E26 E66

F22 F26

F26 F66

G22 G26

G26 G66


, (12f)

Q = Q− SP−1ST, (12g)

Q =


A55 B55 C55 D55

B55 C55 D55 E55

C55 D55 E55 F55

D55 E55 F55 G55


Q =


A55 B55 C55 D55

B55 C55 D55 E55

C55 D55 E55 F55

D55 E55 F55 G55

, (12h)

S =


A45 B45 C45 D45

B45 C45 D45 E45

C45 D45 E45 F45

D45 E45 F45 G45

P =


A44 B44 C44 D44

B44 C44 D44 E44

C44 D44 E44 F44

D44 E44 F44 G44

. (12i)



Materials 2020, 13, 1010 8 of 22

On the foundation of previous discussions, the kinetic energy of the CLCB may be represented as

T = 1
2

t
V ρ(z)

[( .

Ui j

)2
+

( .

Wi j

)2](
1 + z

Rϕ

)
Rϕdϕdydz =

= 1
2 b
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where

(I0, I1, I2, I3, I4, I5, I6) =

zk+1∫
zk

ρ(z)
(
1 +

z
Rϕ

)(
1, z, z2, z3, z4, z5, z6

)
dz. (14)

Besides, the strain energy may be expressed as

U =
1
2

y

V

(
Nϕε0

ϕ + Mϕk0
ϕ + N1

ϕk1
ϕ + M2

ϕk2
ϕ+

Qϕγ0
ϕz + Pϕk0

ϕz + Q1
ϕk1
ϕz + P2

ϕk2
ϕz

)
Rϕdϕdydz. (15)

2.3. Variational Formulation for Curved Beam

In general, by solving the governing equations associated with boundary conditions, the eigenvalue
solutions can be gained. However, it is not an easy job to conduct this process, as choosing suitable
admissible functions for arbitrary boundary conditions is difficult. Alternatively, a new procedure
by which the problem is expressed in a modified variational form may be developed to simplify
the solution.

In this research, a highly efficient and accurate variational approach is adopted and vibration
analysis of moderately tall CLCBs with diverse curvatures is conducted. First, the total variational
functional

∏
total is obtained, the terms of which include the kinetic energy T, strain energy U, and strain

energy function connected with the interface and boundary restraint
∏

p f . Then, the displacement
field is expanded in terms of Jacobi polynomials, which contain unknown Jacobi expanded coefficients.
By conducting the variational operation (i.e., δ

∏
total = 0) with respect to unknown Jacobi expanded

coefficients, an equation in matrix form can be acquired. Through solving this equation, the frequencies
and corresponding mode shapes can be easily determined.

Besides, the formulation is derived by employing the multi-segment partitioning technique.
The curved beam is separated into Nϕ identical segments along the ϕ orientation. As each segment
becomes a free–free substructure, the displacement discretization with respect to admissible functions
becomes more convenient. This is related to the fact that the continuity conditions of the CLCB need
not be imposed, as their satisfaction is implemented in a variational statement. As such, the issue is
simplified to simulating the interaction of each beam segment with common boundaries. This will
make the computer implementation of CLCBs much simpler: (a) The selections of admissible functions
become flexible as both boundary and continuity conditions are relaxed; (b) by flexibly choosing the
appropriate admissible functions, the convergence performance of the present methodology can be quite
fast and stable; and (c) the accuracy of the modified variational method can be substantially improved
by segmentation, especially for higher modes. Then, the vibration problem may be distinguished by an
improved variational principle [24–26], which turns into finding the minimum value of a variational
functional as ∏

ve
=

Nϕ∑
i=1

(Ui − Ti), (16)

where Ti is the maximum kinetic energy of the i’th beam segment and Ui is the corresponding maximum
strain energy.
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To construct a uniform model to handle arbitrary boundary conditions, as well as ensure numerical
stability, the technique of penalty function is exploited. The strain energy function connected with the
boundary elastic restraint can be shown as

∏
p f =

1
2

Nϕ∑
i=1

 ηuku(ui − ui+1)
2 + ηwkw(wi −wi+1)

2 + ηϕkϕ(ϕi −ϕi+1)
2

+ηφkφ(φi −φi+1)
2 + ηνkν(νi − νi+1)

2


= 1

2

[
ku0u2 + kw0w2 + kϕ0ϕ2 + kφ0φ

2 + kν0ν2
]
ϕ=ϕ0

+ 1
2

[
ku1u2 + kw1w2 + kϕ1ϕ2 + kφ1φ

2 + kν1ν2
]
ϕ=ϕ1

+ 1
2

Nϕ∑
i=1

 ku(ui − ui+1)
2 + kw(wi −wi+1)

2 + kϕ(ϕi −ϕi+1)
2

+kφ(φi −φi+1)
2 + kν(νi − νi+1)

2


(17)

where kτ(τ = u, w,ϕ,φ, ν) indicates the penalty terms expressing the elastic stiffness at both ends
of the curved beam, and ητ(τ = u, w,ϕ,φ, ν) represents the continuity or boundary coefficients.
By properly defining ητ and kτ, both continuity conditions for the interface and the arbitrary boundary
conditions can be conveniently obtained. For the continuity conditions of two neighbored curved
beam domains, the continuity coefficients ητ(τ = u, w,ϕ,φ, ν) = 1, while for boundary conditions,
different combinations of boundary coefficients ητ and kτ are imposed to achieve various boundary
conditions (Table 1). Meanwhile, it is worth noting that both classical and elastic boundary restraints
can be achieved by properly selecting the values of kτ(τ = u, w,ϕ,φ, ν); note that kτ0 and kτ1 represent
the penalty terms at edges ϕ = ϕ0 and ϕ = ϕ1, respectively. The elastic boundary restraints represent
a boundary condition between simply supported and clamped boundary conditions, which can be
modeled by springs at the edges. For instance, by setting one or some of the kτ(τ = u, w,ϕ,φ, ν) at
certain values, the elastic boundary conditions can be conveniently obtained.

Table 1. Boundary coefficients and penalty parameters for various boundary conditions.

Boundary Conditions Boundary Coefficients Penalty Parameters

ηu ηw ηϕ ηφ ην ku kw kϕ kφ kν

Free (F) 0 0 0 0 0 0 0 0 0 0
Simply supported (SS) 1 1 0 0 0 1014 1014 0 0 0

Slided (SD) 0 1 0 0 0 0 1014 0 0 0
Clamped (C) 1 1 1 1 1 1014 1014 1014 108 108

Elastic supported 1 (E1) 1 1 1 1 1 108 108 1014 108 108

Elastic supported 1 (E2) 1 1 1 1 1 1014 1014 108 108 108

Elastic supported 1 (E3) 1 1 1 1 1 108 108 108 108 108

More information about the penalty terms to handle the boundary conditions can be found in
previous investigations [27–31]. Consequently, the variational form for a CLCB subjected to arbitrary
boundary conditions is ∏

total

=

Nϕ∑
i=1

(Ui − Ti) +
∏
p f

. (18)

2.4. Solution Procedure

By introducing the modified variational approach in conjunction with the multi-segment
partitioning strategy, the choice of admissible displacements for each beam segment can be flexible.
This is due to the fact that continuity and boundary conditions of the curved beam are relaxed by the
functional

∏
total. The

∏
total allows the use of identical displacement functions for every curved beam
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segment. In the present analysis, the displacement components for each divided segment of the CLCB
are congruously represented by means of Jacobi polynomials.

ui =
M∑

m=0

UmP(α,β)
m (ϕ)eiωt, (19a)

wi =
M∑

m=0

WmP(α,β)
m (ϕ)eiωt, (19b)

ψi
ϕ =

M∑
m=0

ψϕm P(α,β)
m (ϕ)eiωt, (19c)

φi
ϕ =

M∑
m=0

ΦϕmP(α,β)
m (ϕ)eiωt, (19d)

λi
ϕ =

M∑
m=0

ΥϕmP(α,β)
m (ϕ)eiωt, (19e)

where Um, Wm, ψϕm , Φϕm , and Υϕm indicate the relevant Jacobi expanded coefficients; P(α,β)
m (ϕ)

represents the Jacobi polynomial of order m, which is related to the displacement components
along the central line orientation; and ω and t signify angular frequency and time, respectively.
Besides, the maximum value of m or the truncation terms are represented by M. By choosing different
combinations of Jacobi parameters α and β, various orthogonal polynomials can be obtained such
as Chebyshev, Gegenbauer, and Legendre polynomials. More details about these can be discovered
in [32–34]. Substituting Equations (13) and (15)–(17) into Equation (18) and incorporating Equation (19),
the following can be achieved: ∏

total

=
∏
total

(
Um, Vm,ψϕm , Φϕm ,Υϕm

)
. (20)

Conducting the variation operation for
∏

total, i.e., δ
∏

total = 0, with regard to Jacobi expanded
coefficients (Um, Vm, ψϕm , Φϕm , and Υϕm ), the following characteristic equations can be obtained:(

K−ω2M
)
E = 0, (21)

in which K signifies the stiffness matrix, M indicates the mass matrix, and E denotes the undetermined
coefficients. Apparently, through the solution of Equation (21), the eigenvalues and eigenvectors can
be acquired.

3. Results and Discussions

In this part, the convergence performance, reliability, efficiency, and accuracy of the current
methodology are studied by a number of numerical cases. For the sake of brevity, the free, clamped,
simply supported, slided, and elastic boundary conditions are represented by F, C, SS, SD, and E,
respectively, as shown in Table 1. Besides, three kinds of elastic boundary restraints (E1, E2, and E3) are
taken into consideration. Then, a two-letter string is utilized to represent the boundary conditions of
two ends, e.g., SS-E indicates the curved beam subjected to the simply supported boundary condition
at edge ϕ = ϕ0 and the elastic one at edge ϕ = ϕ1.

First, it is essential to investigate the convergence performance of the present modified variational
approach for vibration analysis of the curved beam. To begin with, the comparison of dimensionless
frequencies Ω for a C-C circular CLCB with respect to different Nϕ is presented in Table 2.
The non-dimensional frequency Ω is defined as Ω = ω

(
R2(ϕ1 −ϕ0)

2
)√

12ρ/(E1h2). Two thicknesses h
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= 0.1 and 0.2 m are considered. The material properties are ρ = 1580 kg/m3, E2 = 10 GPa, E1 = 15E2,
G12 = G13 = G23 = 0.55E2, µ12 = 0.27, and [α1

f iber/α
2
f iber] =[0◦/90◦] (i.e., the fiber orientation angles of

the first and second lamina are 0◦ and 90◦, respectively). In addition, the geometric parameters are
ϕ0 = −π/3 and ϕ1 = π/3. The Jacobi parameters are α = β = 0 and the truncation number is M = 8.
The number of segments is selected as Nϕ = 2, 4, 6, 8, and 10. In addition, the results from exact
solutions exploiting CBT [3] and exact serious results based on FSDT [14] are shown for comparison.
As Nϕ is increased, fast convergence of Ω can be observed. In addition, the present results coincide
well with the ones by FSDT and CBT. As a consequence, with small Nϕ, accurate results of Ω can be
achieved. For subsequent cases, unless otherwise specified, Nϕ = 8 is chosen by default.

Table 2. Comparison of dimensionless frequencies Ω (first five modes) for a C-C curved laminated
composite beam with respect to different Nϕ.

h Mode
Number

Number of the Segment Nϕ Ref. [14] Ref. [3]
2 4 6 8 10

0.1

1 23.519 23.514 23.514 23.513 23.513 23.245 23.628
2 43.556 43.540 43.537 43.538 43.536 42.803 43.800
3 76.148 76.105 76.101 76.099 76.099 74.476 76.687
4 94.982 94.936 94.929 94.925 94.921 93.286 95.388
5 122.318 122.192 122.186 122.183 122.180 120.064 123.059

0.2

1 19.816 19.805 19.803 19.799 19.795 19.116 20.005
2 32.761 32.736 32.724 32.714 32.703 31.450 33.003
3 55.356 55.340 55.304 55.264 55.224 52.850 55.849
4 55.495 55.480 55.454 55.446 55.437 54.094 55.971
5 79.636 79.568 79.550 79.544 79.533 75.675 80.422

Secondly, the influence of penalty terms kτ(τ = u, w,ϕ,φ, ν) (see Equation (19)) on Ω is investigated.
The dimensionless frequency Ω versus penalty parameters kt for a C-C curved beam is shown in
Figure 3. The free vibration of CLCBs with arbitrary boundary conditions including both classical
(clamped, free, and simply supported boundary conditions) and elastic boundary conditions is
investigated. Here, for the convergence performance of penalty terms, the typical C-C boundary
conditions are selected. Note that for other boundary conditions, similar results can be achieved.
The material properties, geometric parameters, Jacobi parameters (α and β), and number of truncation
terms M are the same as those of Table 2. For each case, one type of kτ is varied from 100 to 1016 while
the others are unchanged (= 1014). When penalty parameters are absent or small, pseudo-rigid modes
might emerge, indicating that the continuity conditions of the interface may not be imposed properly.
By augmenting kτ, the continuity condition can be satisfied. It is observed that when kτ is in the range
of 1010–1016, the solution becomes very stable, with Ω remaining the same. Therefore, kτ(u,v,ϕ) = 1014

and kτ(φ,ν) = 1012 are employed as the coupling parameters in the following discussions. It should
be noted that for different types of curved beams (e.g., elliptical, paraboloidal, and hyperbolical
ones), when kτ(u,v,ϕ) > 1010 and kτ(φ,ν) > 108, similarly, Ω converges to certain values (not shown).
Thus, the determinations of penalty and boundary parameters are consistent for different curved beams.

It has been mentioned before that the present approach can be applicable to the prediction
of the vibration behavior of a curved laminated beam subjected to elastic boundary conditions.
Hence, the impact of boundary parameters on the vibration characteristics should be analyzed.
The dimensionless frequency Ω versus boundary parameters kτ for a C-E curved laminated beam is
shown in Figure 4, with the other parameters being the same as those of Figure 3. The edge ϕ = ϕ0 is
clamped while the border ϕ = ϕ1 is elastically supported. For the edge ϕ = ϕ1, one set of boundary
springs vary between 100 and 1016 while the others are presumed to be infinity (= 1014). The variations
of Ω with kτ are similar to those in Figure 3, and the results can reflect that the determination of kτ in
Table 1 for different boundary conditions should be appropriate.
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Thirdly, the Jacobi orthogonal polynomials including the number of truncation terms and Jacobi
parameters (α and β) should be investigated. The dimensionless frequency Ω versus truncation terms
M for a circular CLCB and elliptical CLCB with the C-C boundary condition is displayed in Figure 5a,b,
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respectively, the other parameters remaining the same as those of Figure 3. Obviously, for both cases,
Ω converges very fast with the increase in M. As M becomes larger than 8, Ω (first five modes) converges
to certain values. Subsequently, M = 8 is selected for all the numerical examples. To demonstrate the
effect of Jacobi parameters (α and β) on the vibration behavior of the curved beam, the percentage
error of Ω for various combinations of α and β is illustrated in Figure 6. Several combinations of (α, β)
including (α, β) = (−0.5, −0.5), (−0.5, 0), (0.5, 0), (0, 0.5), (0.5, 0.5), and (1, 1) are chosen. The results of (α,
β) = (0, 0) are used as the base results, with the percentage error defined as

(
Ωα,β −Ωα=0,β=0

)
/Ωα=0,β=0.

In addition, three types of boundary restraints are considered: F-F, F-C, and C-C boundary conditions.
It is shown that the maximum value of the percentage error is no more than 2× 10−2, which may indicate
that the Jacobi parameters may not affect the value of Ω. Thus, different admissible displacement
functions with various Jacobi parameters can be used to establish the formulation, leading to flexible
selections of admissible displacements. For the following calculations, unless otherwise stated,
(α, β) = (0, 0) is utilized.Materials 2020, 13, x FOR PEER REVIEW 14 of 23 
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After comprehending the characteristics of several parameters, it is necessary to show the
reliability and precision of the present approach. Due to lack of experimental data, the present results
are compared to those from results by other numerical studies in the literature. To further validate
the present method, the finite element method (FEM) is also utilized for comparison. Table 3 shows
the comparison of Ω (first eight modes) for the C-C elliptical, paraboloidal, and hyperbolical CLCBs.
The material parameters are ρ = 1500 kg/m3, E2 = 10 GPa, E1 = 15E2, G12 = G13 = 0.5E2, G23 = 0.6E2,
µ12 = 0.25, and αk

f iber = [0◦/90◦/0◦]. The geometric dimensions are: (a) Elliptical one: h = 0.15 m,
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ae = 2 m, be = 1 m, ϕ0 = 0, and ϕ1 = π/2; (b) Paraboloidal one: h = 0.15 m, L =1 m, R0 = 0.2 m, and R1 =

1 m; Hyperbolical one: ah = 3 m, h = 0.15 m, R0 = 0.2 m, R1 = 1 m, Rs = 4 m, and L = 1 m. Free vibration
results obtained through the finite element method (FEM) using ABAQUS software are given as a
reference. The types of elements are quadrilateral S4R (S4R is a general shell element type in ABAQUS)
for all the cases. The numbers of elements for the elliptical, paraboloidal, and hyperbolical beams are
5808, 1310, and 1330, respectively. As shown in Table 3, the errors of the results by the present method
and those by the FEM are not larger than 2.92%, which is small and indicates the accuracy of the
present methodology. The natural frequencies depend on the different radii of curvature, lamination
schemes, and boundary conditions. The differences of frequencies at the C-C boundary condition with
respect to different types of CLCB (i.e., elliptical, paraboloidal, and hyperbolical) should be related to
the radii of curvature changes. Then, the comparison of Ω for circular CLCBs subjected to various
boundary conditions is displayed in Table 4. Results from the decomposition approach [17] and wave
solution method [35] are given as a contrast. Three boundary restraints F-F, F-C, and C-SS are taken into
account. For all the cases, the frequencies are in complete agreement. To further validate the present
method, several mode shapes for curved composite laminated beams including elliptical, paraboloidal,
and hyperbolical ones in the x–z plane are presented in Figure 7. The mode shapes obtained by the
FEM through ABAQUS are presented for comparison. Apparently, all the mode shapes from the
present methodology and FEM match well with each other. On the whole, the present methodology is
capable of solving the vibration problem of the CLCB subjected to arbitrary boundary conditions.

Table 3. Comparison of frequencies (first eight modes) for C-C elliptical, paraboloidal, and hyperbolical
curved laminated composite beams.

Mode
No.

Elliptical Beam Paraboloidal Beam Hyperbolical Beam

Present FEM Error (%) Present FEM Error (%) Present FEM Error (%)

1 380.16 376.6 0.95 739.05 734 0.68 793.17 784.9 1.05
2 594.22 589.8 0.75 1162.5 1155.3 0.62 1207.4 1195.3 1.01
3 934.78 930.1 0.50 1826.5 1807.7 1.03 1809.0 1773.4 2.01
4 1116.0 1111.4 0.41 2481.2 2449.6 1.27 2433.8 2375.3 2.46
5 1503.5 1490.6 0.87 3161.2 3110.7 1.60 3107.4 3042 2.15
6 1819.4 1813.8 0.31 3409.7 3391 0.55 3451.1 3443.1 0.23
7 2169.6 2151.3 0.85 4011.5 3915.2 2.40 3979.0 3866 2.92
8 2375.5 2359.8 0.67 4655.6 4582 1.58 4565.8 4498.2 1.50

Finally, several novel results are presented, which can be served as benchmark solutions.
The frequencies (first five modes) for the elliptical, paraboloidal, and hyperbolical CLCB with
diverse lamination schemes and boundary conditions are shown in Tables 5–7, respectively. For each
kind of beam, four lamination schemes including αk

f iber = [0◦], [0◦/90◦], [0◦/90◦/0◦], and [0◦/90◦/0◦/90◦]
are considered. Besides, four types of classical (C-C, SS-SD, F-C, and F-F) and three kinds of elastic
boundary restraints (E1-E1, E2-E2, and E3-E3) are studied. The geometric parameters are: (a) Elliptical
one: h = 0.2 m, be = 1 m, ae = 2 m, ϕ0 = −π/3, and ϕ1 = π/3; (b) Paraboloidal one: h = 0.2 m, L = 2
m, R0 = 0.2 m, and R1 = 1 m; and (c) Hyperbolical one: h = 0.2 m, ah = 3 m, Rs = 4 m, R0 = 0.5 m,
R1 = 0.5 m, L = 2 m, and L1 = 1 m. Several aspects should be pointed out in Tables 5–7. First, the natural
frequencies depend on the different radii of curvature, lamination schemes, and boundary conditions.
Secondly, despite different radii of curvature and boundary conditions, the fundamental frequencies
of the CLCB that own a single layer ([0◦]) or symmetric lamination [0◦/90◦/0◦] are always those that
have anti-symmetric laminations ([0◦/90◦] and [0◦/90◦/0◦/90◦]. Thirdly, the C-C boundary condition
always corresponds to the largest fundamental frequencies, regardless of the radii of curvature and
lamination schemes.
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Table 4. Comparison of Ω (first five modes) for circular curved laminated beams subjected to various boundary conditions.

Mode No.
F-F F-C C-SS

HBT[LST] HBT[LMR] Present HBT[LST] HBT[LMR] Present HBT[LST] HBT[LMR] Present

1 765.68 765.306 771.373 338.33 338.197 343.494 764.78 763.348 769.884
2 2100.96 2097.346 2115.244 1349.00 1346.992 1341.057 2097.01 2088.465 2108.493
3 4092.08 4077.308 4115.793 3019.38 3009.457 3093.753 4081.73 4053.791 4097.477
4 6707.87 6666.978 6744.373 5329.25 5298.837 5384.977 6686.94 6619.074 6700.256
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Table 5. Frequencies (first five modes) for an elliptical curved laminated composite beam with diverse
lamination schemes and boundary conditions.

Lamination
Schemes (◦)

f (Hz) Boundary Conditions

F-F F-C SS-SD C-C E1-E1 E2-E2 E3-E3

[0]

1 103.35 18.207 21.931 214.16 56.997 171.69 53.464
2 262.64 85.296 150.65 263.09 61.286 254.28 59.808
3 460.62 226.56 300.36 539.35 97.939 512.11 97.190
4 677.35 384.05 505.66 583.42 193.52 580.83 177.09
5 898.48 581.31 685.43 886.62 359.43 860.50 320.60

[0/90]

1 51.865 8.846 11.239 128.84 48.745 112.12 46.682
2 141.13 45.614 82.267 174.40 59.679 167.82 58.532
3 267.66 129.77 179.62 371.09 83.032 348.96 82.089
4 422.68 240.35 324.54 397.31 130.95 393.14 130.60
5 597.93 378.64 469.09 633.42 220.11 586.10 213.05

[0/90/0]

1 102.10 17.923 21.640 216.71 56.984 172.22 53.410
2 262.42 84.886 150.17 254.95 61.292 248.28 59.810
3 465.29 227.31 300.04 547.94 97.685 518.58 97.038
4 690.84 383.60 506.01 550.78 193.14 539.92 176.80
5 920.99 576.64 653.50 867.54 362.43 833.45 322.23

[0/90/0/90]

1 72.274 12.514 15.476 167.75 53.351 138.49 50.262
2 192.11 62.109 110.87 208.30 60.627 201.28 59.339
3 353.63 172.04 232.27 450.34 89.398 423.16 89.277
4 542.19 303.71 406.54 454.42 155.25 445.22 150.87
5 744.91 464.35 547.68 729.13 280.43 687.52 260.79

Table 6. Frequencies (first five modes) for a paraboloidal curved laminated composite beam with
diverse lamination schemes and boundary conditions.

Lamination
Schemes (◦)

f (Hz) Boundary Conditions

F-F F-C SS-SD C-C E1-E1 E2-E2 E3-E3

[0]

1 373.52 64.623 164.28 371.90 85.164 322.36 82.579
2 800.98 312.45 507.90 657.91 87.915 607.76 87.789
3 1253.6 707.78 881.86 1036.3 210.21 997.29 175.46
4 1714.7 1110.7 1167.5 1424.0 552.63 1401.6 464.38
5 2242.4 1181.7 1455.7 1859.1 964.69 1843.9 867.60

[0/90]

1 197.02 32.159 87.238 245.62 81.521 197.89 77.791
2 491.20 185.02 320.31 469.30 87.631 420.62 87.597
3 857.49 468.35 641.00 790.40 149.76 710.61 147.49
4 1275.6 817.64 769.92 1149.3 349.65 1105.4 321.28
5 1593.7 834.84 1048.4 1518.4 667.48 1415.6 612.78

[0/90/0]

1 373.15 63.977 163.75 358.74 85.290 300.87 82.653
2 817.30 316.41 512.27 664.06 87.895 602.30 87.767
3 1292.5 725.21 830.90 1058.7 209.82 1013.9 175.42
4 1775.5 962.32 1061.6 1460.7 562.24 1437.0 468.36
5 1921.2 1169.0 1464.0 1848.6 994.58 1841.3 888.14

[0/90/0/90]

1 270.67 45.008 119.10 290.34 83.809 237.39 80.442
2 635.86 242.33 406.68 554.66 87.796 496.35 87.709
3 1055.0 583.18 731.14 905.41 172.60 841.77 161.38
4 1498.5 844.42 897.74 1277.4 442.01 1249.1 385.83
5 1673.8 974.15 1237.1 1626.3 813.80 1588.1 733.36
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Table 7. Frequencies (first five modes) for a hyperbolical curved laminated composite beam with
diverse lamination schemes and boundary conditions.

Lamination
Schemes (◦)

f (Hz) Boundary Conditions

F-F F-C SS-SD C-C E1-E1 E2-E2 E3-E3

[0]

1 304.37 63.190 84.575 516.70 83.783 454.97 82.037
2 706.30 215.16 437.29 896.56 84.652 867.29 82.866
3 1133.2 599.33 851.70 1121.3 201.41 1098.4 169.28
4 1564.2 1018.0 1265.3 1308.2 457.61 1284.3 390.81
5 1987.4 1414.5 1411.8 1718.8 862.73 1701.3 772.01

[0/90]

1 166.56 31.709 46.314 375.75 81.434 331.10 78.948
2 446.82 132.13 279.03 689.45 82.951 647.32 82.043
3 776.96 399.38 585.56 834.51 143.64 739.01 141.75
4 1162.2 743.98 878.91 1057.0 303.53 999.08 283.67
5 1537.4 1058.2 988.53 1429.0 608.67 1378.6 561.35

[0/90/0]

1 303.83 62.500 84.171 531.51 83.853 462.71 82.065
2 719.58 217.47 442.46 881.36 84.665 877.44 82.869
3 1165.7 610.38 876.96 991.48 200.91 931.96 169.20
4 1620.2 1050.2 1103.1 1356.6 464.23 1329.0 393.67
5 2061.9 1277.5 1316.8 1782.3 887.96 1763.4 789.18

[0/90/0/90]

1 225.23 44.300 62.334 446.17 82.850 388.20 80.604
2 570.08 169.93 352.15 766.94 83.946 757.90 82.550
3 955.03 493.94 721.36 864.92 165.59 781.68 155.42
4 1371.1 882.44 1018.6 1184.5 373.57 1146.2 332.75
5 1760.7 1113.6 1118.4 1572.6 734.99 1541.4 663.31

Several mode shapes of elliptical (Figure A1), paraboloidal (Figure A2), and hyperbolical
(Figure A3) CLCBs with different lamination schemes ([0◦/90◦/0◦] and [30◦/−30◦/30◦/–30◦]) and
boundary conditions (C-F and C-C) are presented (see the Appendix A). The material and geometric
properties in Figures A1 and A2 are in accordance with those in Tables 5–7, respectively. To demonstrate
the material properties, the mode shapes of isotropic beams (elliptical, paraboloidal, and hyperbolical)
are also given in Figures A1–A3. The material properties of the isotropic beams are ρ = 1500 kg/m3, E =

100 GPa, and µ = 0.25. The following aspects should be noted. First, for all the cases, the mode shapes
for laminated composite beams and isotropic beams are different. With regard to the F-C boundary
condition, obvious differences can be observed for the first-order mode, while for the C-C boundary
condition, the mode shapes are similar for the first- and second-order modes, although distinct
differences can be observed for the third-order mode. Secondly, with various radii of curvature changes
and boundary conditions, the corresponding mode shapes are also quite different. Thirdly, by choosing
different lamination schemes, the material properties change, leading to variations in mode shapes of
the CLCBs. By properly selecting the lamination schemes, high strength ratio and corrosion resistance
can be obtained, which may make the laminated composite materials perform better than others.
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4. Conclusions

This paper proposes a unified formulation for dynamic analysis of different types of CLCBs
subjected to general boundary conditions. In the framework of HSDT, an improved variational
approach along with a multi-segment partitioning technique is exploited to construct the theoretical
model. The displacement components of each curved beam segment are presented in terms of Jacobi
orthogonal polynomials. Through a series of numerical cases, the fast convergence performance and
stable, highly efficient, and precise features of the current methodology have been demonstrated. It has
been proved that the present methodology can be applicable for vibration cases with respect to both
classic and elastic boundary conditions. Furthermore, it should be noted that the current approach
leads to flexible choices of admissible displacement functions, which is one prominent advantage
compared to other methods. This paper presents the free vibration results, while the dynamic analysis
of CLCBs under external excitation by the present approach has not been studied. Besides, linear
geometric analysis of CLCBs by a unified formulation has been conducted. The present approach
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should also be appropriate for non-linear geometric analysis of CLCBs by considering the non-linear
geometric effect (e.g., introducing the damping force). These will be considered in our future study.
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