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Abstract: Semiconductor photocatalysts have attracted a great amount of multidiscipline research
due to their distinctive potential for solar-to-chemical-energy conversion applications, ranging from
water and air purification to hydrogen and chemical fuel production. This unique diversity of
photoinduced applications has spurred major research efforts on the rational design and development
of photocatalytic materials with tailored structural, morphological, and optoelectronic properties in
order to promote solar light harvesting and alleviate photogenerated electron-hole recombination
and the concomitant low quantum efficiency. This book presents a collection of original research
articles on advanced photocatalytic materials synthesized by novel fabrication approaches and/or
appropriate modifications that improve their performance for target photocatalytic applications such
as water (cyanobacterial toxins, antibiotics, phenols, and dyes) and air (NOx and volatile organic
compounds) pollutant degradation, hydrogen evolution, and hydrogen peroxide production by
photoelectrochemical cells.

Keywords: TiO2 nanomaterials; visible light activated titania; heterojunction photocatalysts; photonic
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Semiconductor photocatalysis has been considered as a key technology to face the global concerns
of environmental pollution and the ever increasing energy demands, through the utilization of
environmentally benign earth-abundant materials and renewable energy sources, such as solar
energy [1]. Photocatalytic materials have been attracting significant interest for diverse applications,
ranging from sustainable water/air remediation as well as hydrogen and chemical fuel production
by photocatalytic water splitting [2]. Their unique potential for solar powered technologies has
been the stimulus for the development of nanostructured photocatalysts with improved structural,
morphological, and electronic properties that could effectively evade the two main limitations of the
process efficiency, i.e., the low quantum yield, stemming from the recombination of photogenerated
charge carriers, and the poor visible light harvesting, pertinent mostly to wide band gap semiconductors
such as the benchmark titanium dioxide (TiO2) photocatalysts [3].

Research efforts have been accordingly focused on the design and fabrication of advanced
photocatalytic materials relying on competent modification approaches such as coupling with
plasmonic nanoparticles, surface engineering, and heterostructuring with other semiconducting
and/or graphene-based nanomaterials, as well as tailoring the materials’ structure and morphology
(e.g., nanotubes, nanowires, and photonic crystals) in order to boost light harvesting and photon
capture, charge separation, and mass transfer that play a pivotal role in photocatalytic environmental
remediation and solar to chemical energy conversion applications [4,5].

This Special Issue consists of 10 original full-length articles on advanced photocatalytic materials
fabricated by innovative synthetic routes and judicious compositional modifications, with diverse
applications ranging from the degradation of hazardous water and air pollutants to hydrogen
evolution and photoelectrocatalytic hydrogen peroxide production. T. M. Khedr at al. [6] reported
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on the degradation of microcystin-LR (MC-LR), a highly toxic and persistent hepatotoxin commonly
detected in cyanobacterial algae blooms, by visible-light-activated C/N-co-modified mesoporous
anatase/brookite TiO2 photocatalysts, prepared by a one-pot hydrothermal method. The complete
removal of MC-LR from aqueous solutions was achieved under visible light irradiation, related to the
unique combination of visible light photogenerated electrons from anion-induced impurity states and
interfacial charge transfer between the brookite and anatase phases.

N-modified TiO2 was utilized by M. Janus et al. [7] as an additive for the technologically appealing
application of photocatalytic active cement mortars that feature air purification by NOx decomposition
without compromising, and even improving, cement’s mechanical properties. Laser pyrolysis was
applied by K. Wang et al. [8] to synthesize novel C-modified titania/graphene nanocomposites
with markedly high activity on different photocatalytic applications from acetic acid oxidative
decomposition and methanol dehydrogenation (even without a Pt co-catalyst) to visible-light induced
phenol degradation and Escherichia coli inactivation. Surface functionalization of TiO2 photonic
crystals by graphene oxide (GO) nanocolloids and subsequent thermal reduction was reported by
Diamantopoulou et al. [9] as a promising approach for the development of efficient photocatalytic films
that combine the unique slow photon-assisted light harvesting, surface area, and mass transport of
macroporous photonic structures with the enhanced adsorption capability, surface reactivity, and charge
separation of GO nanosheets.

Fluorine-doped tin oxide (FTO) inverse opals crystal were also exploited by X. Ke et al. [10] as
macroporous photonic crystal substrates for the successive deposition of plate-like WO3 and Ag2S
quantum dots with tunable photoelectrochemical response by the light incidence angle. Control over
the shape and facet growth of TiO2 nanocrystals was demonstrated by Y. Du et al. [11] by tuning
the pH of the exfoliated metatitanic nanosheet solutions used as precursors in a simple fluorine-free
microwave-assisted hydrothermal method, leading to enhanced photocatalytic and photovoltaic
performance. The oriented morphology and enhanced surface area of TiO2 nanowires, grown on TiO2

nanotube arrays by electrochemical anodization, in combination with Au plasmonic nanoparticles were
successfully applied by T.C.M.V. Do et al. [12] for the photocatalytic degradation of eight important
antibiotics in model aquaculture wastewater from the Mekong Delta region.

Plasmonic Ag nanomaterials were also incorporated in silver-copper oxide heterostructures by
H. Suarez et al. [13] to promote the full-spectrum photocatalytic-assisted volatile organic compound
(VOC) oxidation in the gas phase, using n-hexane as a probe molecule, with LED illumination in the
visible-NIR range. V. H. Nguyen et al. [14] reported on sulfate modification as an efficient means to
improve the structural and photocatalytic properties of sol-gel synthesized BiVO4 with annealing
temperature, used as an alternative metal oxide photocatalyst beyond TiO2, leading to enhanced
decomposition of methylene blue as a model dye pollutant under LED visible light.

The sensitization of mesoporous Titania films by nanoparticulate CdS and CdSe, in combination
with ZnS passivation was used by T. S. Andrade et al. [15] for the fabrication of ZnS/CdSe/CdS/TiO2/FTO
photoanodes, enabling broad visible light harvesting. These photoelectrodes combined with a Pt-free
counter electrode, made of carbon cloth with deposited nanoparticulate carbon, were used for the
assembly of a photoelectrochemical cell operating as a Photo Fuel Cell, i.e., without any external
bias. These devices were demonstrated to photoelectrocatalytically produce substantial quantities
of hydrogen peroxide with the Faradaic efficiency exceeding 100% in the presence of NaHCO3

carbonate electrolyte.
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