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Abstract: Super-microporous material (pore size 1–2 nm) can bridge the pore size gap between the
zeolites (<1 nm) and the mesoporous oxides (>2 nm). A series of super-microporous titania–alumina
materials has been successfully prepared via a facile one-pot evaporation-induced self-assembly
(EISA) strategy by different solvents using fatty alcohol polyoxyethylene ether (AEO-7) as the template.
Moreover, no extra acid or base is added in our synthesis process. When titanium isopropylate is
used as the titanium source, these materials exhibit high BET surface areas (from 275 to 396 m2/g) and
pore volumes (from 0.14 to 0.18 cm3/g). The sample prepared using methanol as the solvent shows
the largest Brunauer–Emmett–Teller (BET) surface area of 396 m2/g. When tetrabutyl titanate is used
as the titanium source, these materials exhibit high BET surface areas (from 282 to 396 m2/g) and
pore volumes (from 0.13 to 0.18 cm3/g). The sample prepared using ethanol as the solvent shows the
largest BET surface area of 396 m2/g.

Keywords: super-microporous alumina–titania; different solvents; fatty alcohol polyoxyethylene
ether; high BET surface areas

1. Introduction

Porous materials have received considerable attention owing to their ability to interact with
atoms, ions, molecules, and nanoparticles not only at their surfaces, but throughout the bulk of the
materials [1]. Therefore, the presence of pores in nanostructured materials greatly promotes their
physical and chemical properties. Among these non-siliceous oxides, TiO2–Al2O3 is of interest for
many applications in wide fields, such as catalysis [2–5], ceramic [6,7], gas sensor [8], solar cells [9,10],
and others [11]. Mixed titania–alumina oxides exhibit properties superior to those of single-metal
oxides (alumina or titania). Such a mixture may broaden the range of applications available to this
hybrid material. For instance, tielite (Al2TiO5) is used as a potential adsorbent in the decontamination
of chemical warfare agents [12], in materials for aeronautical and automotive purposes [13], and in
orthopedic and dental implants [14]. The reported alumina–titania support for molybdenum dispersion
used for the hydrodeoxygenation of palmitic acid exhibited excellent catalytic performance [3].
A study describes the enhanced performance of the chemical looping combustion of methane with
an Fe2O3/Al2O3/TiO2 oxygen carrier [15]. Syntheses of mesoporous alumina–titania systems by
different preparation methods have been reported. For example, Stacy M. Morris et al. [16] prepared
mesoporous alumina–titania materials over a wide range of compositions by the self-assembly of
Al and Ti isopropoxides and a triblock copolymer structure-directing agent. Liu Erming et al. [17]
synthesized a series of macro–mesoporous titania/alumina core–shell materials in an oil/water interface.
Guo Changyou et al. [18] synthesized a mesoporous Al2O3–TiO2 composite oxide using solvothermal
method in a benzyl alcoholeoleyl amine system. However, little work has been carried out on the
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preparation of super-microporous (pore size 1–2 nm) titania–alumina mixed oxides. The materials in this
pore size range could bridge the pore size gap between the zeolites (<1 nm) and the mesoporous oxides
(>2nm). Such materials exhibit the potential of size and shape selectivity for those organic molecules
that are too large to access into the pores of microporous zeolites and zeolite-like materials [19,20].

In this research, a series of super-microporous titania–alumina materials (pore size 1–2 nm) were
prepared through the evaporation-induced selfassembly (EISA) method using titanium isopropylate
or tetrabutyl titanate as the Ti source and aluminum nitrate nonahydrate as the Al source. There was
no acid or base addition during the whole preparation process. By varying the solvent used among
methanol, ethanol, 1-butanol, isobutanol, or 1-octanol, we successfully obtained titania–alumina
materials with tailored framework properties.

2. Materials and Methods

2.1. Chemicals

Fatty alcohol polyoxyethylene ether AEO-7 (Mav = 575-605, RO(C2H4O)nH, n = 7) was purchased
from BASF (China) co., LTD. Shanghai branch. Aluminum nitrate nonahydrate, anhydrous ethanol,
and tetrabutyl titanate were obtained from Tianjin Chemical Reagent Co. Titanium isopropylate was
purchased from Shanghai Aladdin Biological Technology Co., Ltd. All the chemicals were of analytical
grade and used as received without further purification.

2.2. Preparation of Super-Microporous Titania–Alumina Materials

In a typical synthesis, 2.0 g of fatty alcohol polyoxyethylene ether AEO-7 was dissolved in
20 mL of waterless ethanol at room temperature. Then, 5 mmol aluminum nitrate nonahydrate
and 5 mmol titanium isopropylate or tetrabutyl titanate were added. Upon rapid stirring at room
temperature for least 2 h, the resulting homogeneous sol was transferred to a petri dish and underwent
solvent evaporation at 45 ◦C for two days and at 100 ◦C for one day. The final solid products
were heated at 400 ◦C for 5 h to remove the organic template and named as MTA. The as-prepared
super-microporous titania–alumina samples were labeled, starting with a prefix of MTA followed
by the type of solvent (M, E, B, IB, and O, which refer to methanol, ethanol, 1-butanol, isobutanol,
and 1-octanol, respectively), then titanium precursors (i and b, which refer to titanium isopropoxide
and tetrabutyl titanate), and finally calcination temperature. For example, MTA-M-i-400 refers to
super-microporous titania–alumina prepared from titanium isopropoxide with methanol solvent
calcined at 400 ◦C for 5 h. High-temperature treatment (550 ◦C and 750 ◦C) was carried out in air for
1 h with a temperature ramp of 10 ◦C/min.

2.3. Characterization

Powder X-ray diffraction (XRD) measurements were performed using a Shimadzu XRD-6000
diffractometer made in Japan using Ni-filtered Cu Kα (0.154 nm) radiation. N2 adsorption/desorption
isotherms at 77 K were measured on a Quantachrome QUADRASORB SI instrument.
The Brunauer–Emmett–Teller (BET) method was used to calculate the specific surface area.
The microporous structure was obtained from the t-plot analysis of the adsorption branch of the
isotherm. The pore size distribution was calculated using the density functional theory (DFT) method
pore size model applied to the adsorption branch of the isotherm. Total pore volumes were obtained
at pressure 0.95 [21,22]. Micropore volumes were obtained from the t-plot method at a pressure of
0.2–0.5. Thermogravimetric-differential scanning calorimeter (TG-DSC) analysis was conducted on a
NETZSCH (STA449F3) instrument made in Germany.

3. Results and Discussions

Figure 1 presents the TG-DSC pattern of the obtained precursor without removal of the template
when tetrabutyl titanate and ethanol are used as the titanium source and solvent. The endothermic
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peak at 180 ◦C is attributed to the evaporation of water and ethanol in the gel. The more prominent
thermal event located in the 200–400 ◦C temperature range is attributed partly to the remaining water
included in the pores and mostly from the decomposition and oxidation of the template.
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b is the smallest. When titanium isopropylate is used as titanium source, MTA-M-i exhibits a BET 
surface area of 396 m2/g area and a microporous surface area of 375 m2/g, which are much larger than 
other sample. The physisorption measurements reveal the largest BET surface area when methanol 
is used as the solvent. 

 
Figure 2. N2 adsorption–desorption isotherms of samples MTA-b (A) and MTA-i (B) calcined at 400 
°C. 

Figure 1. Thermogravimetric-differential scanning calorimeter (TG-DSC) curves of the obtained
precursor when tetrabutyl titanate and ethanol are used as titanium source and solvent.

The nitrogen adsorption–desorption isotherms and the corresponding pore size distribution
curves for MTA-400 samples using different solvents and titanium sources are displayed in Figures 2
and 3. The detailed textural properties are listed in Table 1. It can be seen that all samples calcinated at
400 ◦C exhibit a typical type I isotherm with no distinct hysteresis loop, thus indicating the presence of
micropores. All these samples show narrow pore size distribution around 1–2 nm. It is also observed
that there is no significant relation between porous structure type and solvent. BET surface areas does
not have a linear relationship with the solvent. When ethanol is used as the solvent, MTA-E-b has
the bigger BET surface area among them. The isotherm obtained using MTA-E-b, yields a surface
area of 396 m2/g of which 377 m2/g in the form of micropores. The surface area of MTA-IB-b is the
smallest. When titanium isopropylate is used as titanium source, MTA-M-i exhibits a BET surface
area of 396 m2/g area and a microporous surface area of 375 m2/g, which are much larger than other
sample. The physisorption measurements reveal the largest BET surface area when methanol is used
as the solvent.
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Table 1. Brunauer–Emmett–Teller (BET) surface areas and pore structures of various samples calcined
at 400 ◦C.

Samples SBET (m2/g) Smic (m2/g) Vtotal (cm3/g) Vmic (cm3/g) Pore Size (nm)

MTA-M-b 370 350 0.17 0.15 1.5
MTA-E-b 396 377 0.18 0.16 1.5
MTA-B-b 294 277 0.14 0.12 1.5
MTA-IB-b 282 267 0.13 0.11 1.3
MTA-O-b 319 305 0.15 0.13 1.5
MTA-M-i 396 375 0.18 0.16 1.5
MTA-E-i 275 251 0.14 0.11 1.5
MTA-B-i 346 327 0.16 0.14 1.5
MTA-IB-i 309 292 0.15 0.13 1.3
MTA-O-i 303 286 0.14 0.12 1.5

Note: SBET, Smic, Vtotal, and Vmic are the BET surface areas, microporous surface areas, total pore volumes, and
microporous volumes, respectively.

XRD results show that all samples calcined at 400 ◦C (not shown) are amorphous without the
presence of any crystalline alumina and/or titania phases, suggesting that the extremely homogeneous
super-microporous titania–alumina nanomaterials are formed. With the increase of quenching
temperature, some samples begin to show crystallinity (as confirmed by wide angle powder XRD
patterns shown in Figure 4) at the calcination temperature 550 ◦C. Several relatively weak diffraction
peaks at 2θ= 25.3◦, 38.5◦, 48◦, 55.1◦ and 62.6◦ are observed, which could be indexed as the anatase phase
of titania. XRD results show that sample MTA-IB-b and MTA-M-i are crystalline, consisting only of
anatase titania without any traces of crystalline alumina. When the solvent is ethanol, XRD patterns of
the sample show quite broad and weak diffraction peaks, which suggests that the anatase titania crystal
size is extremely small. However, the materials synthesized with other solvents are still amorphous.
When the temperature is up to 750 ◦C (in Figure 5), all the samples are crystalline.
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4. Conclusions

We have successfully synthesized a series of super-microporous titania–alumina materials without
adding acid or base and calcining under mild conditions. It is found that the BET surface area does not
have a linear relationship with the solvent. When titanium isopropylate is used as titanium source,
the BET surface area of the sample prepared using methanol as the solvent is the largest at 396 m2/g.
When tetrabutyl titanate is used as titanium, using ethanol as the solvent presents the largest BET
at 396 m2/g. Most importantly, this work opens a new methodology for the preparation of porous
titania–alumina materials with good textural properties.
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