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Abstract: The relationship between strain fatigue life and evolution of meso-deformation
inhomogeneity was studied, through the cyclic process of numerical simulation of crystal plasticity
compared with the fatigue test of steel hot-rolled ribbed-steel bar 400 (HRB400). The statistical
characterization parameters at grain level, including the standard deviation of the dot product
of longitudinal stress and strain, the product of the macro stress and the standard deviation of
the longitudinal strain, and the product of the macro stress ratio and the standard deviation of
the longitudinal strain, were proposed and respectively applied to measure the meso-deformation
inhomogeneity of materials. These parameters take the effect of peak stress into account, distinct
from the pure strain statistical parameters. The numerical results demonstrate that the low-cycle
fatigue life curves of materials are predictable using the new parameters as FIPs (fatigue indicator
parameters), and the predictions are more rational than by utilizing the FIPs without considering the
peak stress effect.

Keywords: strain inhomogeneity; crystal plasticity; BCC; polycrystalline RVE; fatigue indicator
parameter; fatigue life prediction

1. Introduction

The issue of metal fatigue has been investigated for a long time, and the prediction of the fatigue
life of materials and structures has always been the focus of scholars. In order to evaluate the fatigue
life of materials or structures based on existing theories and methods, the fatigue (stress fatigue or
strain fatigue) characteristic curve of materials must be measured by a series of experiments [1]. This
method was improved and brought to evaluate and predict the fatigue lives of various materials and
components by later researchers. Wang et al. presented an experimental study on the fatigue behavior
of shot-peened open-hole plates with Q345 steel and evaluated the fatigue life result with an S–N
curve (alternating Stress versus Number of cycles to failure) [2]. Ni and Mahadevan developed a
strain-based probabilistic fatigue life prediction methodology for spot-welded joints based on p-ε-N
curves family and Miner’s rule [3]. In the investigation on multiaxial fatigue damage by Ince and
Glinka, their method was also based on the fatigue characteristic curve of material, but more material
parameters for multiaxial conditions were needed [4]. Wang et al. researched the microstructure and
low-cycle fatigue behavior of Al-9Si-4Cu-0.4Mg-0.3Sc alloy with different casting states and evaluated
the fatigue life of this material with the Manson–Coffin formula [5]. All these studies need a series of
fatigue experiments to calibrate the parameters in their fatigue life formula.
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Scholars also try to seek the parameters reflecting the failure mechanism and damage accumulation
of materials, so as to establish a method to evaluate the fatigue life of materials. Ahmadzadeh and
Varvani-Farahani studied fatigue damage and life evaluation of SS304 and Al 7050-T7541 alloys by
means of energy-based fatigue damage models [6]. Radhakrishnan proposed the relationship between
the total fracture energy versus fatigue life, applying medium carbon steel and copper, and a good
correlation was obtained between the experimental data and the theoretical prediction [7]. Jiang et al.
developed an EVICD (event independent cumulative damage) fatigue prediction model that takes
the plastic strain energy as the major contributor to the fatigue damage [8]. Feng et al. established an
energy dissipation-based multiaxial fatigue model that allows the fatigue life prediction for a given
strain path, and then the proposed model was verified and applied to the AISI 316L stainless steel [9].
Fan et al. proposed a generalized life prediction model on the basis of the hysteresis energy and law of
energy conservation for the creep–fatigue interaction [10]. Because the fatigue damage mechanism of
materials is still not clear and is difficult to quantitatively describe, the empirical fatigue life formula of
materials is used. A series of fatigue experiments are required to calibrate the parameters in these
formulas in order to evaluate the fatigue life law of materials. It is a new topic to predict the low cycle
fatigue behavior of materials, only according to the known hysteresis behavior and the fatigue life data
measured under a single strain amplitude, without fitting a series of test data.

In order to study the process of metal fatigue, it is necessary to consider both the mechanism of
slip deformation and the failure of metals at grain level under cyclic loading. A crystal-plasticity cyclic
constitutive model for the ratcheting of polycrystalline material considering dislocation substructures
was developed by Ren et al. [11]. Farooq et al. studied the complex phenomena of interaction between
different grains by a model of crystal plasticity with kinematic hardening under cyclic load [12].
The low-cycle fatigue life prediction of GH4169 superalloy was investigated using the accumulated
plastic slip and energy dissipation as fatigue indicator parameter (FIP) [13]. Li et al. presented a
multi-scale crystal plasticity model and applied the accumulated slip as FIP to predict crack initiation
in precipitate-strengthened steel [14]. Cruzado et al. developed a microstructure-based model that
accounts for the effect of grain size, which can be applied to the fatigue simulations and predict the
fatigue crack initiation using the local plastic work as an FIP [15,16]. This investigation implied that if
the fatigue behavior of a material presents the Coffin–Manson relationship, the value determination
of FIP needs two or more fatigue tests with different stress (or strain) amplitude. Lucarini et al.
introduce an upscaling approach for micromechanics-based fatigue that can estimate fatigue life at
the specimen/component level from the simulation of relatively small representative volume element
(RVE) of the polycrystalline microstructure [17]. Liu et al. develop a plasticity model to predict the
fatigue crack nucleation of polycrystalline materials in which the accumulated dislocation dipoles are
considered to be the origin of damage [18].

Meanwhile, some investigations have been conducted into the possibility for the method of
predicting the fatigue life curve of materials. Applying the crystal plastic constitutive model considering
the influence of back stress, which can reflect the mechanical behavior of materials under cyclic load,
Zhang et al. carried out the numerical simulation with a representative volume element (RVE)
containing a certain number of grains [19]. It is found that the hysteretic behavior of FCC (face-centered
cubic) polycrystalline copper under symmetric strain can be presented by a numerical simulation.
The inhomogeneity of the stress field and the strain field in the RVE can also be reflected by the
numerical simulation, and the statistical standard deviation of the longitudinal strain in the RVE
can be utilized to measure the inhomogeneity of deformation, which can predict the occurrence of
materials’ fatigue failure. Zhang et al. conducted a numerical simulation on the fatigue process of
GH4169 and found that the standard deviation of the meso longitudinal strain, the mean value of
the first principal strain, and the maximum value of the first principal strain could all be used as
characterization parameters for the deformation inhomogeneity [20]. The curves of these parameters
with cycle growth can reflect the fatigue damage accumulation of materials, and can be used for the
reasonable prediction of the low-cycle fatigue life of materials. On this basis, Zhang et al. further
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discussed the feasibility of using Shannon differential entropy as an FIP [21]. Liu et al. proposed the
FIPs characterizing meso-inhomogeneous deformation on a metal material surface and used them to
predict the low-cycle fatigue life [22]. However, these studies all focus on FCC materials. Whether or
not the strain inhomogeneity, as the FIPs of materials, is suitable for more general metal, such as steel
with body centered cubic (BCC) structure, which is widely used, needs to be further studied.

For this purpose, in this paper, hot-rolled ribbed-steel bar 400 (HRB400) steel is taken as an object
to validate the rationality of using strain inhomogeneity as an FIP. Grain of HRB400 has the BCC crystal
structure, and its plastic deformation mechanism is mainly slip. By virtue of polycrystalline RVE and
crystal plasticity analysis, the numerical simulation of the whole fatigue cyclic process is carried out,
and the parameters that can characterize the meso-inhomogeneity of materials are discussed. Three
developed FIPs considering the effect of peak stress are proposed, based on the standard deviation
of the mesoscopic longitudinal strain and the average mesoscopic first principal strain, and they are
the standard deviation of the dot product of mesoscopic stress and strain, the product of the macro
stress peak and the standard deviation of the mesoscopic longitudinal strain in RVE, and the product
of the macro stress ratio and the standard deviation of the mesoscopic longitudinal strain in RVE. The
validity of these parameters in predicting the fatigue life curve of materials is equally verified.

2. Material and Strain Fatigue Experiments

HRB400 (hot-rolled ribbed-steel bar 400) employed in the experiment is a kind of construction
steel that is widely used. It is a kind of low carbon steel supplied by Guangxi Guigang Iron and Steel
Group Co. LTD (the brand is Guibao). The base material diameter is 25 mm. The density of this
material is 7.682 g/cm3, and the chemical composition is shown in Table 1. The mechanical property
parameters in Table 2 were obtained through the testing of basic mechanical properties (the elongation
was measured according to the original gauge length of 30 mm). Figure 1 measured by the EBSD
(electron backscatter diffraction) test shows the grain distribution in which boundaries of grains are
clearly shown. The average grain size is 15.8 µm, and the different colors in the figure represented the
orientation of separate grains.

Table 1. Chemical composition of hot-rolled ribbed-steel bar 400 (HRB400) (mass fraction %).

C Si Mn P S Ceq Fe

0.23 0.37 1.30 0.032 0.015 0.48 rest

Table 2. Mechanical properties of HRB400.

E/MPa G/MPa µ σ0/MPa σb/MPa δ/% ψ/% ε̄f

201,000 75,100 0.34 410 615 33.7 58.2 0.871

The material is processed into the plate sample shown in Figure 2 by wire cutting and
surface polishing.

The fatigue test was carried out according to ASTM (American Society of Testing Materials) E606
(Standard Practice for Strain-Controlled Fatigue Test). The MTS809 electro-hydraulic servo tension and
torsion fatigue testing machine was used, and the gauge distance of the extensometer was 25 mm. The
samples were subjected to cyclic symmetrical tension-compression load with constant strain amplitude,
and the ambient temperature was room temperature. The loading waveform was a sine wave with a
frequency of 0.05 Hz. The strain amplitudes of the test were 0.0035, 0.004, 0.006, 0.008, 0.010, 0.012, and
0.014, respectively. Taking a half-life range, if the error of the peak value of stress is no more than 2% of
the mean value of stress amplitude, the cycle in this range is regarded as stabilized; the hysteresis loop
is taken at the midpoint of the range. The stable hysteresis loops (solid lines) under different strain
amplitudes are shown in Figure 3. The half-life hysteresis loops are also drawn in Figure 3 (plotted
with circle points). Figure 4 shows the variation of the stress peak and valley with the number of cycles



Materials 2020, 13, 1464 4 of 18

for the HRB400 at different applied strain amplitudes, which indicates the hysteresis behavior of the
steel is basically stabilized.
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For all tests, loading was stopped when the loading obviously dropped and cracks appeared on
the sample surface, and the number of cycles corresponding to this time was recorded as the fatigue
life of the material, as shown in Table 3. The relationship between the strain amplitudes and the fatigue
life in strain fatigue can be represented by the Morrow formula:

Ee =
σ f

E
(2N f )

b (1)

Ep = ε f (2N f )
c (2)

Ea = Ee + Ep =
σ f

E
(2N f )

b + ε f (2N f )
c (3)

where Ee, Ep, and Ea denote the elastic, plastic, and total strain amplitudes, respectively; while σ f and
b are elastic fatigue constants known as the strength coefficient and exponent, respectively; and ε f
and c are the ductility coefficient and exponent, respectively. The coefficients in these formulas can be
obtained by fitting the experimental data in Table 3, which are σ f = 1368.01 MPa, b = −0.124, ε f = 0.313,
and c = −0.485, respectively. The test data and the Morrow curves are all presented in Figure 5.

Table 3. Fatigue life of HRB400 under different strain amplitudes.

Ea 0.0035 0.004 0.006 0.008 0.010 0.012 0.014

N f 16,800/15,128 8681/12,009 4680/5392 2165/1727 1185/1302 810/820 399/540
N f 15964 10341 5036 1946 1244 815 470

The fracture of specimen applied amplitude 0.004 was photographed with an Hitachi s-3400n
(Hitachi, Tokyo, Japan) scanning electron microscope (SEM), and is illustrated in Figure 6. The overall
appearance of this fracture was observed by a Keyence ultra-depth VHX-2000 microscope (Osaka,
Japan). This figure shows the different fracture morphology of the initial fracture area (point A),
fracture propagation area (point B), and transient fracture area (point C). In the crack initiation region
and propagation region, the fracture shows cleavage characteristics, while the instantaneous fracture
region presents typical dimple fracture characteristics.
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3. The Constitutive Model and the Material Model

3.1. The Crystal Plastic Constitutive Model

The Euler velocity gradient tensor L of material points in a grain can be decomposed into the
stretching tensor D and the spin rate tensor W according to continuum mechanics. The relationship
can be expressed as follows:

D = D∗ + DP = sym(L∗) + sym
(
LP

)
,

W = W∗ + Wp = asym(L∗) + asym
(
LP

) (4)
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where D∗ and DP are the elastic stretching tensor and plastic stretching tensor, respectively; and W∗

and Wp are the elastic spin tensor and the plastic spin tensor, respectively.
In the case of small elastic deformation, the rate constitutive relation can be expressed as the

following formula:
.
σ

J
=
〈4〉
C : D∗ =

〈4〉
C :

(
D−DP

)
(5)

where
<4>
C is the fourth-order elastic constitutive tensor of the crystal in a global coordinate system

fixed during calculations. The crystal axis coordinate system of each crystal is calculated according to
its initial orientation and rotation history during deformation.

.
σ

J is the Jaumann rate of Cauchy stress,
in which the effect of rigid body rotation during deformation has been deducted, and can be calculated
as follows:

.
σ

J
=

.
σ−W ·σ+σ ·W (6)

where σ and
.
σ are the Cauchy stress and its rate, respectively. The logarithmic strain increment ∆ε can

be obtained by integral of stretching tensor D for the time increment period of t and t + ∆t. Therefore,
the cumulative incremental change of σ can be updated as follows by using Equations (5) and (6):

t+∆tσ − tσ| t+∆t = ∆σJort+∆tσ = tσ| t+∆t +
<4>
C : (∆ε− ∆εp) (7)

where ∆εp is the logarithmic plastic strain increment, and tσ| t+∆t is tσ| under the corresponding
configuration at t + ∆t.

For the plastic deformation under slipping mechanism, based on the evolution law of slip shear
strain of single crystal proposed by Hutchinson [23], the relationship between shear stress and shear
strain rate in the α-slip system can be described referring to the Chaboche model to consider the
influence of Bauschinger effect by introducing the back stress into it [24,25].

.
γ
(α)

=
.
γ0sgn

(
τ(α) − x(α)

)∣∣∣∣∣∣τ(α) − x(α)

g(α)

∣∣∣∣∣∣k (8)

where τ(α) and x(α) are the shear stress and back stress on the α-slip system, respectively; g(α) defines
the scalar function describing the elastic domain of the shear stress for the α-slip system;

.
γ0 is a constant

denoting the reference shear strain rate; and k denotes the rate sensitivity parameter. The evolution of
back-stress x(α) is introduced as follows [26]:

.
x(α) = a

.
γ
(α)
− c[1− e1(1− exp(−e2γ))]x(α)

∣∣∣∣ .
γ
(α)

∣∣∣∣− px(α) (9)

where parameter a is the material constant describing the linear hardening of slip systems, parameters
c and p are material constants representing nonlinear hardening characteristics, and e1 and e2 are
material constants that reflect the law of cyclic hardening or softening. The identification of these four
parameters is based on cyclic tests combined with numerical simulation.

The evolution of scalar function g(α) is calculated according to the formula suggested by Pan and
Rice [27]:

.
g(α)(γ) =

n∑
β=1

hαβ(γ)
∣∣∣∣ .
γ
(β)

∣∣∣∣,γ =

∫ n∑
β=1

∣∣∣dγ(β)∣∣∣ (10)

where hαβ is the slip-plan hardening modulus. Furthermore, Hutchinson proposed that the modulus
can be calculated as follows [28]:

hαβ(γ) = h(γ)
[
q + (1− q)δαβ

]
(11)
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where q is a constant and h(γ) is given according to Chang and Asaro [29] as follows:

h(γ) = h0 sech2
(

h0γ

τs − τ0

)
(12)

where h0 is the initial hardening rate; and τ0 and τs are the critical resolved shear stress and the
saturation value, respectively. These parameters are regarded as material constants that are obtained
by experiments and numerical simulation.

For the α-slip system, m(α) and n(α) are denoted as the unit vectors of initial slip direction and the
unit normal vector of the initial slip plane, respectively. Referring to the methods, the Schmid tensor,
which reflects the relationship between shear stress–strain of slip system and stress–strain under global
rectangular coordinate system, can be written as follows [30,31]:

P(α)∗ =
1
2

(
m(α)∗n(α)∗ + n(α)∗m(α)∗

)
, and m(α)∗ = F∗ ·m(α), n(α)∗ = n(α)

· F∗−1 (13)

where F∗ is the elastic part of the deformation gradient tensor. The increment of logarithmic strain
tensor in Equation (7) is calculated as follows [32]:

∆εp =
n∑
α=1

P(α)∗∆γ(α) (14)

where ∆γ(α) is obtained by the integral of
.
γ
(α). According to the Schmid law, we have the following:

τ(α) = P(α)∗ : σ (15)

The calculation process and algorithm of the above model are detailed in [19,26], which can be
implemented by the user material subroutine UMAT of ABAQUS (Dassault Systemes, Paris, France).

3.2. Polycrystalline RVE Material Model

The RVE material model, containing 8000 elements and shown in Figure 7, was used for numerical
simulation. Generally speaking, the more elements the material model contains, the higher the
calculation accuracy will be. However, an appropriate reduction of the elements in the RVE can
substantially reduce the time consumption, while the effect of the reduction of elements on the
calculation results is still acceptable [21].
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Figure 7. The representative volume element (RVE) with 8000 elements.

On the positive surfaces orthogonal to the three-axis, the displacement along normal is specified;
on the negative surfaces orthogonal to the 1-axis, 2-axis, and 3-axis, are fixed in the normal direction;
on the positive surfaces perpendicular to the one-axis and two-axis, the macro normal stress and
shear stress are set as zero, respectively, while the surfaces are kept as plane. Under such a boundary
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condition, the state of the RVE is nearly the same as a material unit on the working section of the
samples under symmetric tension–compression cyclic load controlled by strain. The six surfaces of the
RVE will always remain plane (macroscopic homogeneous deformation), and the RVE maintains under
macroscopic uniaxial stress state during the deformation process. As principle analysis, the effects of
metallurgical defects, grain boundary effects, and size effects are not considered in the calculation.

The macroscopic mechanical behavior of metal can be reflected by the statistical mean values of
stress and strain in the RVE, and the mesoscopic mechanical behavior of inhomogeneity of materials
can be reflected by the statistical standard deviations of stress and strain using the above method. The
statistical mean and standard deviation of stress and strain are calculated as follows:

σi j =
nRVE∑
k=1

(
σi j

)
k
pk , εi j =

nRVE∑
k=1

(
εi j

)
k
pk

σ̂i j =

√
nRVE∑
k=1

(
σi j

)2

k
pk − σ

2
i j , ε̂i j =

√
nRVE∑
k=1

(
εi j

)2

k
pk − ε

2
i j

(16)

where nRVE is the amount of the elements in the RVE; (σi j)k and (εi j)k are the mesoscopic Cauchy stress
tensor components and logarithmic strain tensor, respectively; the subscript k is the sequence number
of the finite element; and pk = ∆Vk/V, where ∆Vk denotes the volume of the kth element and V the
total volume of the RVE.

3.3. Model Parameters of Crystal Plastic Constitutive Model

The parameters of the crystal plastic constitutive model for HRB400 shown in Table 4 were
calibrated by the trial-and-error method. Figure 8 shows the comparison between the simulated stable
hysteretic curve and the experimental curve. The conclusion can be drawn from Figure 8 that the
numerical simulation can reasonably reproduce the macroscopic mechanical behavior of the material
by the crystal plastic model combined with the RVE.

Table 4. Crystal plastic model parameters for HRB400.

Elastic Constants Material Parameters of the Crystal Viscoplastic Model

C11
GPa

C12
GPa

C44
GPa

τ0
MPa

τs
MPa

h0
MPa

a
GPa

c
GPa ps−1 e1 e2

.
γ0 s−1 q k

293.4 158.0 67.6 103 109 40 31 0.42 0 0 0 0.001 1 200
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4. Low-Cycle Fatigue Life Prediction Based on Inhomogeneity of Material Deformation

4.1. The Indicator Parameters of Material Deformation Inhomogeneity

Not only can the macroscopic cyclic mechanical behavior of the material be simulated, but also
the parameters that describe the inhomogeneity of the internal deformation of the material can be
calculated from the simulation, because the differences in grain size, shape, and orientation were
taken into account while the RVE was constructed. These two parameters that can measure the
inhomogeneity are the standard deviation of the mesoscopic longitudinal strain ε̂ll and the average
mesoscopic first principal strain ε1. Their numerical values are different, but their evolution laws are
approximately the same. They can be used as the FIPs to apply to the prediction of material fatigue life
in the case of symmetrical strain cycle, according to the studies in the literature [19,20]. The fatigue
failure criteria can be expressed by the following:

ε̂ll = ε̂ll f atigue (17)

ε1 = ε1 f atigue (18)

4.2. The Parameters of Deformation Inhomogeneity Considering the Influence of Peak Stress

The fatigue failure of materials is also related to the magnitude of stress in addition to the evolution
of meso-deformation inhomogeneity. On the basis of this consideration, three FIPs including the
influence of peak stress are proposed in this paper.

Firstly, ε̂I
ll, which is the statistical standard deviation of the dot product of mesoscopic strain εll,

and stress σll in the RVE at the tension peak can be expressed as follows (refer to Equation (16)):

ε̂I
ll =

√
nRVE∑
k=1

(εI
ll)

2

k
pk − ε

I
ll

2

εI
ll = εll · σll (do not sum)

(19)

Secondly, the stress peak of the macroscopic stability hysteretic curve is taken as the weighted
coefficient of the standard deviation of the mesoscopic longitudinal strain ε̂ll, and ε̂II

ll can be achieved.

ε̂II
ll can be calculated as follows:

ε̂II
ll =

∑
max
·ε̂ll (20)

Thirdly, ε̂III
ll can be obtained by taking the ratio of stress peak to macroscopic yield stress as the

weighted coefficient of ε̂ll. ε̂III
ll can be calculated by the following:

ε̂III
ll =

∑
max∑
0.2
· ε̂ll (21)

where
∑

0.2 is the macroscopic yield stress on the stable hysteresis state, and its value is determined
in light terms of the elastic range of the test hysteresis loops (cf. Figure 3) and the offset residual
plastic strain of 0.2%, as shown in Figure 9. It is necessary to point out that the value of

∑
0.2 is slightly

different depending on the strain amplitude.
If these parameters, ε̂I

ll, ε̂
II
ll , and ε̂III

ll are utilized as FIPs, we must check whether they can give
a reasonable judgment on the occurrence of material fatigue failure according to the corresponding
critical value that is reached, that is,

ε̂I
ll = ε̂I

ll f atigue (22)

ε̂II
ll = ε̂II

ll f atigue (23)
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ε̂III
ll = ε̂III

ll f atigue (24)

where ε̂I
ll f atigue, ε̂

II
ll f atigue, and ε̂III

ll f atigue are the critical values of ε̂I
ll, ε̂

II
ll , and ε̂III

ll , respectively.
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Figure 9. The definition of macroscopic yield stress.

4.3. Prediction of Low Cycle Fatigue Life of Materials

Figure 10 shows the evolution curves of these five indicator parameters characterizing the
meso-inhomogeneous deformation of materials with the number cycles. It can be concluded that ε̂I

ll,

ε̂II
ll , ε̂

III
ll , ε̂ll, and ε1 all increase with the number of cycles, and the evolution law is similar. The test

fatigue lives of materials under different strain amplitudes are marked and the relationship between
lives and indicator parameters is shown in Figure 10. The later stage of the evolution curve shows an
approximate linear growth according to the calculation results of this paper and in the literature [19,20].
Linear extension line (black dot line) is employed in the figure after the test fatigue life is exceeded in
order to reduce time consumption. The abscissa of red solid dot on the curve of any specified strain
amplitude cycle corresponds to the fatigue life of a single specimen, and the abscissa of blue pentagram
corresponds to the average life of all specimens. The ordinate of these marked dots corresponds to the
values of FIPs, which are shown in Table 5.
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The vertical coordinate value of the blue star point of the corresponding curve in Figure 10 is
regarded as the approximate critical value of the corresponding parameter. A horizontal line can be
drawn through the point. The intersected point of the horizontal line and the parameter curve of other
strain amplitude cycles by simulation is the predicted life of the corresponding strain amplitude cycle.
Therefore, according to the fatigue test of any strain amplitude, the fatigue life of the cyclic loaded
specimen at other strain amplitudes can be predicted through Figure 10. The prediction of fatigue life
based on parameters ε̂ll, ε1, ε̂I

ll, ε̂
II
ll , and ε̂III

ll is listed in Tables 6–10.

Table 5. The values of fatigue indicator parameters (FIPs) corresponding to the test fatigue life
of HRB400.

Ea
Test Life
(Average)

^
εll

_
fatigue

¯
ε1fatigue

^
ε

I

ll
_
fatigue

^
ε

II

ll
_
fatigue

^
ε

III

ll
_
fatigue

0.0035 15964 0.0389 0.0666 14.1 13.6 0.0418
0.004 10341 0.0326 0.0561 12.2 11.6 0.0355
0.006 5036 0.0283 0.0502 12.0 11.4 0.0331
0.008 1946 0.0225 0.0403 10.1 9.87 0.0271
0.010 1244 0.0256 0.0449 11.8 11.7 0.0322
0.012 815 0.0276 0.0477 12.9 13.0 0.0349
0.014 470 0.0267 0.0454 12.6 12.8 0.0346
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Table 6. The prediction of fatigue lives applying various critical values of ε̂ll f atigue in the representative
volume element (RVE).

^
εll

_
fatigue

0.0389
Ea = 0.0035

0.0326
Ea = 0.004

0.0283
Ea = 0.0.006

0.0225
Ea = 0.008

0.0256
Ea = 0.010

0.0276
Ea = 0.012

0.0267
Ea = 0.014

Test Life
(Average)

Ea N f
0.0035 15,964 12,611 10,526 7819 9210 10,187 9732 15,964
0.004 12,800 10,341 8844 6807 7892 8609 8286 10,341
0.006 7262 5939 5036 3822 4466 4894 4704 5036
0.008 4681 3615 2885 1946 2438 2772 2619 1946
0.010 3061 2176 1597 945 1244 1506 1385 1244
0.012 2083 1241 858 525 687 815 759 815
0.014 1230 748 534 322 429 506 470 470

Table 7. The prediction of fatigue lives applying various critical values of ε1 f atigue in the RVE.

¯
ε1fatigue

0.0666
Ea = 0.0035

0.0561
Ea = 0.004

0.0502
Ea = 0.006

0.0403
Ea = 0.008

0.0449
Ea = 0.010

0.0477
Ea = 0.012

0.0454
Ea = 0.014

Test life
(Average)

Ea N f
0.0035 15,964 12,625 10,873 8148 9344 10,127 9480 15,964
0.004 12,802 10,341 8988 6898 7842 8443 7950 10,341
0.006 7109 5769 5036 3849 4382 4725 4444 5036
0.008 4212 3281 2765 1946 2312 2545 2354 1946
0.010 2699 1961 1562 1016 1244 1404 1271 1244
0.012 1712 1147 904 587 723 815 739 815
0.014 1071 728 577 367 458 518 470 470

Table 8. The prediction of fatigue lives applying various critical values of ε̂I
ll f atigue in the RVE.

^
ε

I

ll
_
fatigue

14.1
Ea = 0.0035

12.2
Ea = 0.004

12.0
Ea = 0.006

10.1
Ea = 0.008

11.8
Ea = 0.010

12.9
Ea = 0.012

12.6
Ea = 0.014

Test Life
(Average)

Ea N f
0.0035 15,964 13,345 13,031 10,514 12,801 14,322 13,931 15,964
0.004 12,147 10,341 10,133 8345 9974 11,005 10,733 10,341
0.006 6049 5147 5036 4094 4951 5491 5353 5036
0.008 3411 2718 2635 1946 2572 2981 2874 1946
0.010 1903 1356 1292 885 1244 1569 1483 1244
0.012 1005 714 687 475 665 815 772 815
0.014 606 436 418 279 404 494 470 470

Table 9. The prediction of fatigue lives applying various critical values of ε̂II
ll f atigue in the RVE.

^
ε

II

ll
_
fatigue

13.6
Ea = 0.0035

11.6
Ea = 0.004

11.4
Ea = 0.006

9.87
Ea = 0.008

11.7
Ea = 0.010

13.0
Ea = 0.012

12.8
Ea = 0.014

Test Life
(Average)

Ea N f
0.0035 15,964 12,886 12,617 10,542 13,151 14,944 14,699 15,964
0.004 12,514 10,341 10,152 8633 10,527 11,805 11,627 10,341
0.006 6189 5137 5036 4235 5235 5864 5778 5036
0.008 3303 2565 2493 1946 2635 3109 3043 1946
0.010 1777 1197 1152 867 1244 1597 1549 1244
0.012 913 635 613 456 656 815 792 815
0.014 540 374 360 265 387 483 470 470
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Table 10. The prediction of fatigue lives applying various critical values of ε̂III
ll f atigue in the RVE.

^
ε

III

ll
_
fatigue

0.0418
Ea = 0.0035

0.0355
Ea = 0.004

0.0331
Ea = 0.006

0.0271
Ea = 0.008

0.0322
Ea = 0.010

0.0349
Ea = 0.012

0.0346
Ea = 0.014

Test Life
(Average)

Ea N f
0.0035 15,964 12,912 11,845 9084 11,447 12,635 12,499 15,964
0.004 12,520 10,341 9542 7580 9241 10,140 10,042 10,341
0.006 6584 5470 5036 3945 4876 5363 5310 5036
0.008 3874 3033 2762 1946 2634 2979 2940 1946
0.010 2242 1591 1331 867 1244 1527 1495 1244
0.012 1291 849 725 475 683 815 800 815
0.014 728 496 423 272 399 478 470 470

A predicted fatigue life curve can be drawn based on the fatigue test of any strain amplitude
according to Tables 6–10. Figure 11 shows the prediction of fatigue life curves obtained from various
strain amplitude fatigue tests and FIPs, respectively, and the Morrow curve obtained by fitting all test
data. It is obvious that the introduction of inhomogeneous deformation indicator parameters affected
by peak stress is reasonable from the predicted fatigue life curve shown in the figure. It is necessary
to point out that each prediction only employed the test data obtained at a single strain amplitude,
whereas the Morrow curve must use all test data.
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4.4. Error Test of Life Prediction

In order to check the error between predicted and test lives, Figure 12 was plotted. In the
figure, the test and predicted values of fatigue lives of cyclic experiments were the abscissa and
ordinate, respectively. The validities of these five FIPs, ε̂ll f atigue, ε̂1 f atigue, ε̂I

ll f atigue, ε̂
II
ll f atigue, and ε̂III

ll f atigue,
in prediction of fatigue life were compared. The predicted results with the maximum and minimum
values of FIPs are also shown in this figure. The blue thick solid line represents the ideal prediction
result, that is, the predicted life is completely consistent with the experimental life. The blue thin solid
line indicates the two times error band, and the black dotted line indicates the three times error band.
Except that the result predicted by the maximum value of ε̂ll f atigue and ε̂1 f atigue is close to 2.5 times error
(the critical value of the indicator parameter was determined by the cyclic test with a strain amplitude
of 0.35%), the error range of other predictions is within 2 times. It should be pointed out that it is more
reasonable to judge the fatigue failure with the new suggested FIPs, indicating that the tensile stress at
the peak of the cycle is an important factor affecting the initiation of the fatigue crack.
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5. Conclusions

The research presented in this paper leads to the following conclusions:

(1) The fatigue life prediction method based on the parameter of meso-deformation inhomogeneity
is also applicable for BCC materials.

(2) Considering the influence of the stress peak, three improved FIPs are suggested on the basis of
the indicator parameter ε̂ll. These new parameters are similar to each other in describing the
evolution of the inhomogeneity of the meso-deformation along with the cycle.

(3) More reasonable fatigue life prediction results can be obtained using the FIPs proposed in this
paper, which means that the description of fatigue damage accumulation by the new indicator
parameters is closer to the actual process.
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