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Abstract: Photovoltaics is a promising technology to produce sustainable energy, thanks to the high
amount of energy emitted by the sun. One way of having solar cells with low production costs is
to apply thin-film technology and with earth-abundant raw materials. A keen interest is arising
in kesterite compounds, which are chalcogenides composed of abundant and non-toxic elements.
They have already achieved excellent performance at the laboratory level. Here, we report the
synthesis and characterization of mixed chalcogenides based on copper, zinc, iron, and tin. Solutions
have been studied with different zinc and iron ratios. The distortion of the elementary cell of
kesterite increases with the addition of iron until a phase transition to stannite occurs. The process
of synthesis and deposition proposed herein is cheap and straightforward, based on the sol-gel
technique. These thin films are particularly attractive for use in cheap and easily processable solar
cells. The synthesized layers have been characterized by X-ray diffraction, UV-Vis absorption, and
Raman, X-ray photoelectron, and energy-dispersive X-ray spectroscopy measurements.
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1. Introduction

For decades, the most developed economies have been pushing toward the abandonment of
fossil fuel technologies in favor of technologies that use renewable energy [1]. The production of
electricity from renewable sources, of which photovoltaics contributes with less than 10%, exceeded
26% of total production in 2018 [2]. The research on solar cells is driven by the enormous amount of
solar radiation that reaches the Earth, which is 100 million times the total energy consumed in one
year [3]. Moreover, solar panels can be installed on any roof and so, being a decentralized technology,
can supply energy directly to consumers [4]. One way for producing high-efficiency solar cells with
low production costs is to employ thin-film technology, which uses nanometer- or micrometer-thick
layers to build a device. In this scenario, quaternary chalcogenides have aroused great attention, above
all, for the thickness of the solar cells, which is usually around 2um. The Culn;_,GaxSe; (CIGS) thin
film stands out in this family, being able to compete in efficiency with the well-established silicon
technology [5]. However, CIGS has the disadvantage of being composed of indium and gallium,
which are rare elements and not suitable for large-scale production [6]. An alternative is to replace
indium and gallium with zinc and tin, selenium with sulfur, moving to the kesterite Cu,ZnSnS,
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(CZTS), or by replacing zinc with iron and moving to the stannite phase structure CupFeSnS4 (CFTS).
In nature, this compound is found as a mineral in which zinc and iron are mixed, and it takes on two
compositions: Kesterite with less than 30% of iron, and stannite with an iron percentage exceeding
80% [7]. Altering the phase structure also changes the optical properties, so the iron-to-zinc ratio
controls the energy gap that can be tuned between 1.36 and 1.51 eV [8]. Like the other chalcogenides,
these compounds also have a high absorption coefficient and a direct bandgap, so the final thickness of
the absorber material can be minimal, in the micrometer range, with a theoretical photovoltaic energy
conversion limit greater than that of silicon (30-32%) [9]. Nevertheless, CZTS-based solar cells have
only recently exceeded 10% laboratory efficiency [10], and CFTS-based ones do not even reach 5%
efficiency [8]. Most of the research on CFTS is focused on the synthesis of nanoparticles, to be later
deposited as thin films; however, such layers suffer, above all, from bad adhesion to the substrate and
uneven grain growth [8]. To overcome these drawbacks, the most common deposition techniques for
solution-processable materials, such as blade coating, spin coating, drop casting, or spray coating,
should be employed to prepare uniform and compact CFTS thin films. Nevertheless, despite being
a very promising compound [6], very little progress has been made in optimizing CFTS thin films;
therefore, a more detailed understanding of iron-based chalcogenides as a solar radiation absorbent
layer is required [8].

CupZny_Fe SnSy, C(Z,F)TS, literature until 2014 reports that the transition from kesterite to
stannite occurs with about 40% iron [11,12]. In 2016, Shadrokh et al. [13] argued that the phase transition
from kesterite to stannite occurs with 60% iron. More recently, the structural transition from kesterite
to stannite was, instead, assessed for an amount of iron greater than 75% [14]. The C(Z,F)TS optical
band gap is frequently reported as decreasing from 1.5 to 1.2 eV with increasing iron content [13-17].
Solution processing methods have proven to be very suitable to produce CZTS-based solar cells, though
they require annealing in a sulfur vapor atmosphere to form the pure polycrystalline phase [15,18,19].
Here, we report a sol-gel procedure with drop-casting deposition to prepare C(Z,F)TS thin films for
photovoltaic applications. The sol-gel process employs a DMSO-based solution containing a high
concentration of thiourea to not necessitate the addition of sulfur during the annealing step [20]. Herein,
we use the molecular ink to produce high-quality thin films, suitable for photovoltaic applications,
and by controlling the environment of the ink synthesis and deposition, we manage to obtain
high-quality C(Z,F)TS thin films. The 80% and 100% Fe thin films proved to be particularly attractive
for use in cheap and easily processable solar cells.

2. Materials and Methods

2.1. Precursor Solution

The detailed procedure to synthesize the molecular ink was published by us elsewhere [20].
Notably, 0.13 M of a mixture of anhydrous iron acetate Fe(CH3COO), (90% TCI) and zinc acetate
dihydrate Zn(CHzCOO),-2H,0 (99.99% Sigma-Aldrich, Darmstadt, Germany), 0.12 M tin dichloride
dihydrate SnCl-2H,O (98% Sigma-Aldrich, Darmstadt, Germany), 0.25 M copper acetate monohydrate
Cu(CH3COO0);-HyO (99% Merck, Darmstadt, Germany), and 1.25 M thiourea NH,CSNH, (99%
Sigma-Aldrich, Darmstadt, Germany) were solved in dimethyl sulfoxide (99.90% Sigma-Aldrich,
Darmstadt, Germany) for the samples realized in air and dimethyl sulfoxide (anhydrous, >99.9%
Sigma-Aldrich, Darmstadt, Germany) for the samples realized in a glovebox.

2.2. Thin-Films Synthesis

The deposition method made use of a sol-gel procedure with drop-casting deposition.
The deposition took place on fluorine tin oxide (FTO)-coated glass. For the samples produced
in air, C(Z,F)TS AIR, the substrate underwent ozone UV-light treatment to increase the adhesion of a
1 pL cm™2 drop. After deposition, the samples were left for 5 min in air and were then placed under
107! mbar vacuum for 20 min to dry. For the samples prepared under a controlled inert atmosphere,
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C(Z,F)TS GB, a nitrogen-filled glovebox was used, where the precursor solution had been entirely
prepared, as described in the previous paragraph. The drop-casting (onto ozone-UV light-cleaned
FTO-glass) was performed in a glovebox, and the samples were subsequently put in air to undergo
the gelation process (for 30 min). The C(Z,F)TS AIR and C(Z,F)TS GB-coated samples were finally
annealed at 500 °C for 1 h. The procedure was repeated once in order to reach a micrometer final
film thickness.

2.3. Characterization

X-ray diffraction patterns were collected by using a MiniFlex 600, Rigaku (Rigaku, Eschweiler,
Germany), equipped with a Cu Ko source (A = 1.5412 A). Raman spectroscopy was performed using
a Jasco Ventuno micro-Raman spectrometer (Jasco, Cremella, Italy), equipped with a 633 nm laser.
XPS was performed on a Kratos Axis Ultra DLD X-ray photoelectron spectrometer (Kratos Analytical
Ltd, in Mantchester, U.K.) equipped with a monochromatic Al K« X-ray source (1486.6 eV), and on a
Thermo Scientific Nexsa X-ray photoelectron spectrometer, also with the monochromatic Al K X-ray
source. The chemical composition of the thin films was studied by the field emission scanning electron
microscopy, FE-SEM, Tescan VEGA TS Univac 5136XM (Tescan, Brno, Czech Republic), equipped with
an EDS EDAX Genesis 4000 XMS Imaging 60 SEM. The optical band gaps of the C(Z,F)TS thin films
were evaluated by measuring transmission and reflectance spectra with a Jasco V-570 UV/Vis/NIR
spectrometer (Jasco, Cremella, Italy).

3. Results and Discussion

3.1. Phase Structure Analysis

The fabricated CZTS thin films were characterized by X-ray diffraction (XRD), and Raman and
X-ray photoelectron spectroscopy (XPS). Figure 1 shows XRD patterns of the C(Z,F)TS thin films,
varying the amount of iron. The diffraction peaks at 20 of 16.5°, 18.4°, 27.5°, 28.7°, 31.7°, 32.1°, and
47.6° can be assigned respectively to (002), (101), (110), (112), (004), and (204) crystallographic planes
of CZTS and CFTS, in agreement with ICCD No. 01-075-4122 (CZTS) and ICDD No. 00-035-0582
(CFTS) [15].
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Figure 1. X-ray diffraction (XRD) patterns of the 20%, 40%, 60%, 80%, and 100% CZFTS thin films,
made in glovebox and air: (a) entire acquisition scale and (b) magnification on the main peaks.

Both in the samples made in an inert environment and those made in air, there is a peak shift to
higher angles, increasing the iron content. In the samples prepared in air, there is also a broadening of the
(112) peak when the iron content exceeds 40%, indicating a decrease in the order in the crystallites [15].
Instead, the diffractograms of samples made in the glovebox display narrow peaks, characteristic
of highly crystalline thin films. The variation from 28.58° to 28.70° with increasing iron amount is
consistent with the literature and is attributed to a decrease in unit cell volume when increasing the iron
content [6,8,14,15]. This difference in the two methodologies implies that crystallinity is significantly
improved as a result of avoiding exposure to air of the moisture during the preparation of the solutions
and the drop-casting procedure.
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The lattice parameters, a and ¢, were calculated by applying the tetragonal structure formula
1/dpa? = (h? + k?)/a? + 12/c?, where (h k 1) are the Miller indices and d is lattice plane space [21].
In Figure 2, the lattice parameters, the relative unit cell volume a?
parameter ¢/2a are summarized. The trends of the lattice parameters 2 and c are quite different between

¢, and the tetragonal distortion

the samples made in an inert environment and those prepared in air. Parameter a increases for up to
40% iron in GB C(Z,F)TS where it remains almost unchanged upon further increases in the Fe content;
meanwhile, in AIR C(Z,F)TS, we register the opposite trend where it remains constant until 80% iron,
and then it decreases. Parameter c is slightly stretched up to 80% iron, while it falls within the values
typically reported in the literature with 100% iron [15,22]. As regards to the samples in air, instead, c is
stable up to 40% iron, and then the structure is distorted. The variations of parameters a and c, as a
consequence of the cation redistribution in the crystal lattice, are reflected in the volume of the unit cell
that decreases with increasing Fe substitution [15,22,23]. The exception is the 20% GB C(Z,F)TS sample,
which shows a parameter a lower than the others, and its volume is smaller; this is correlated to the
partial replacement of Cu with Fe in the reticular sites. The phase structure transition was studied
by analyzing the tetragonal distortion parameter: ¢/2a is reported to be higher than 1 for CFTS in the
case of the kesterite structure and less than 1 for the stannite structure, and vice versa for CZTS [12,15].
Therefore, we can observe that the samples made in the glovebox have a ¢/2a trend assigned to the
distortion in the kesterite phase structure (CFTS ¢2a = 1.01). The thin films realized in air have a
distortion of the crystal lattice that deserves further investigation, but the ¢/2a trend could be attributed
to the distortion of the stannite phase (CFTS ¢/2a = 0.99).
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Figure 2. (a) Lattice parameters a and ¢, calculated by applying the tetragonal structure formula, and
(b) relative volume a2¢, lattice distortion ¢/2a of the 20%, 40%, 60%, 80%, and 100% C(Z,F)TS thin films,
made in glovebox and air.

For the samples prepared in a glovebox, ¢/2a decreases abruptly after 20% iron substitution, while
for the ones made in air, after 40% iron. At low Fe substitution, Cu is still dominant in the reticular sites
of the unit cell base, but with the decrease in the Zn amount, Cu gradually takes the place of Zn, leaving
its site to Fe. These atomic rearrangements are characteristic of the structural transition from kesterite
to stannite [12,15,24]. In the middle region, ¢/2a slightly changes for the GB C(Z,F)TS films and slowly
decreases for AIR C(Z,F)TS films: Here, the double substitution, Cu with Fe and Zn with Cu, leads to
the change in crystal parameters. After 80% iron, ¢2a dramatically decreases in GB C(Z,F)TS films
and increases in AIR C(Z,F)TS films, reaching typical values of a stannite structure [15,23]. In XRD
patterns, no oxide phase has been detected, but it has been reported that oxygen can compensate a
sulfur-deficient chalcogenide stoichiometry, generating the form of Cuy(ZnxFe;-x)SnOySy—y [15,25,26].
The XRD technique, however, is unable to distinguish some typical secondary phases, because the
main peaks of CFTS and CZTS cover those characteristics of some by-products such as ZnS and
CupSnS; [15,27]. Therefore, in order to distinguish the coexistence of secondary phases, the thin
films were compared with the support of Raman spectroscopy. Figure 3 shows the Raman spectra
of the C(Z,F)TS thin films, varying the iron amount. In the GB 100% Fe film Raman spectrum, the
dominant peak is at 322 cm~!, and the other peaks are observed at 294 and 358 cm™~! [6,15,27]; the peak
at 342 cm™! reveals the presence of iron pyrite FeS, [28]; with the decrease in the iron content, the main
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peak broadens, indicating a shorter coherence length of phonons due to the worsening crystallinity,
and moves to higher wavenumbers: The 20% Fe film has the highest peak shift at 335 cm ™!, which is
closer to that of the Kesterite structure, usually observed at 338 cm~! [27,29-31]. Moreover, with the
decrease in iron content, both the shifting of the peak at 294 to 288 cm~! and the appearance of the

peak at 373 cm~!, with less than the 40% iron, are consistent with the transition from the stannite to the
kesterite phase structure [6,15,27].
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Figure 3. Raman spectra of the 20%, 40%, 60%, 80%, and 100% C(Z,F)TS thin films, made in glovebox
and air.

The secondary-phase iron pyrite FeS; disappears, adding 20% zinc to CFTS, and producing the
stable stannite mineral structure CuyZng,FeqgSnS, [7]. The critical importance of controlling the
molecular ink synthesis and deposition is evident in the Raman spectra comparison: Between the
samples made in air, only the compounds closest to the kesterite phase, 20% and 40% iron, have good
crystallinity, and the appearance of peaks at 290 and 303 cm™!, attributed to the ternary phase Cu,SnS;,
is registered [29,31,32].

The full-width at half-maximum, FWHM, of the peaks related to the main vibrational modes
depends on the cation order in the lattice [33]. FWHMs were evaluated by the deconvolution of the
Raman spectra fitted, with Gaussian or mixed Gaussian-Lorentzian peaks. Figure 4 summarizes the
position and the FWHM of the main peak of the C(Z,F)TS thin films. Moving from a peak position still
ascribable to kesterite in the GB 20% Fe film, 335 cm ™!, to an intermediate kesterite phase, such as that
of 40%, there is a clear increase in FWHM. The peak width decreases in GB 60% Fe, and it reaches a
minimum value of 9.3 cm™! in GB 100% Fe, with a Raman shift typical of the stannite phase [15,27].
The data related to the thin films produced in air confirm the XRD analysis: The main peak in AIR 20%
Fe is in the position reported for kesterite structures, and after 40% Fe, the FWHM worsens drastically.
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Figure 4. Raman shift position and FWHM of the main peak for the 20%, 40%, 60%, 80%, and 100%
C(Z,F)TS thin films, made in glovebox and air.

The chemical composition was analyzed through energy-dispersive X-ray spectroscopy, EDS,
measurements. The atomic percentages of the components, versus the Fe/(Fe+Zn) ratio, are displayed
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in Figure 5. The error on the atomic percentage is about 3% on Cu, Zn, Sn, Fe, and S. In the GB thin
films, Cu, Sn, and S agree with the values reported in the literature [34]; meanwhile, the AIR thin films
show substantial deviations from the expected values. This agrees with the XRD analysis; the distortion
in the structure calculated for the AIR samples is reflected in the atomic percentages of Cu, Sn, and S,
which are very far from those of the kesterite structure. The EDS analysis reveals that the environment
has a substantial impact on the thin-film composition: Only the AIR 40% Fe thin film can be considered
in a kesterite composition, also confirming the Raman analysis. The atomic percentages of Fe and
Zn follow the same trend in both series, complying with the ratios in the precursor solutions, except
for the sample “AIR 100% Fe” that deviates, because, as seen from the Raman analysis, it is mainly
composed of the secondary phase Cu,SnSs, and the iron may be present in abundance in oxidized
forms. The EDX confirms a progressive replacement of zinc with iron, with stoichiometric ratios of
kesterite up to 74% iron and stannite at 100% iron. The structure rearrangements characteristic of
the transition from kesterite to stannite, Cu with Fe and Zn with Cu [12,15,23,24], leads to the crystal
parameters distortion hypothesized by XRD analysis for the glovebox samples.
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Figure 5. Atomic percentages of Cu, Zn, Fe, Sn, and S, calculated by energy-dispersive spectroscopy,
EDS, measurements of the 20%, 40%, 60%, 80%, and 100% C(Z,F)TS thin films, made in glovebox and
air, versus the Fe/(Fe+Zn) ratio.

The data confirm the XRD and Raman analysis, adding that the operation in a protected
environment significantly reduces the formation of secondary phases. The elemental composition of
the C(Z,F)TS films was investigated through X-ray photoelectron spectroscopy, XPS, measurements.
Figure 6 shows the typical survey spectra of C(Z,F)TS thin films: The peaks corresponding to Cu, Zn,
Fe, Sn, and S are identified, and the C 1s and O 1s peaks are also visible. A Na 1s peak appears in
all the samples, as inevitable doping from the glass substrate [35]. In the sample processed in air, a
decrease in Na content is observed with increasing Fe content: This can be attributed to the increase in
thickness that follows the Fe amount in the C(Z,F)TS films grown using the deposition procedure in air.
Cl residues of SnCl, are noted in the samples made in gloveboxes in the thin films with percentages of
Fe inferior to 40%.
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Figure 6. X-ray photoelectron spectroscopy, XPS, survey spectra of the 20%, 40%, 60%, 80%, and 100%
C(Z,F)TS thin films, made in glovebox and in air.
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High-resolution core-level spectra for Cu 2p, Zn 2p, Fe 2p, Sn 3d, and the S 2p regions were
investigated: The spectra are reported in Figure 7, and the fitted parameters of the main peak positions
are listed in Table 1. The Cu 2p core-level spectra show that the peaks are located at around 952.3
and 932.5 eV, with a difference of about 19.8 eV between the binding energy of Cu 2p;, and Cu 2p3),,
suggesting the formation of Cu(I) [36-39]. Typical Fe 2p peaks appeared around 724.2 eV (2p;;) and
710.1 eV (2p3)2), confirming the presence of Fe(Il). Other peaks are visible at 708, 722, 728, and 733 eV,
which can be related to the formation of the chemical species FeS,, FeO, FeOOH, and Fe(III) [40].
In C(Z,F)TS prepared in the glovebox, the percentage of Fe (III) is higher, as it can be seen from the
onset of the peak at 711 eV in Figure 7b for the sample with more than 60% iron [36]. Recently, it has
been suggested that Fe (III) has a clearer doping effect than Fe (II) on CZTS semiconductor layers [14].
The high-resolution core level for the O 1s region, reported in Figures 7c and 8a, confirms the presence
of both FeO and FeOOH [41].

The Zn 2p1;; and 2p3p, are visible at binding energies of about 1021.9 and 1044.9 eV, with a peak
separation of about 23.0 eV, indicating the presence of Zn(II) [36-39]. The Sn 3d3/, and Sn 3ds), peaks
are registered around 494.7 and around 486.3 eV, respectively, with a peak separation of about 8.4 eV,
confirming the formation of Sn(IV) [36-39]. The S 2p core-level spectra exhibit the S 2p;, and S 2p3»
peaks, registered around 162.7 and 161.6 eV, with a peak separation of about 1.1 eV, in agreement
with the sulfide phases binding energies [36-39]. Therefore, in all the analyzed samples, the binding
energy for Cu, Zn, Fe, Sn, and S confirmed that the primary chemical states are respectively + 1, + 2,
+ 2, + 4, and - 2, in agreement with the states in the Cuy(Zn,Fe)SnS, chemical formula [19]. Most
of the oxygen is bound with the iron, suggesting substitution of S by O in the structure. Therefore,
the chemical formula should be better expressed as Cuy(ZnxFe;_)SnOySy—y [12,25,26]. The residual
carbon is analyzed in Figure 8b,d: The spectra reveal the presence of carbonyls (C=0) and carboxylic
acid esters (O—C=0), which most likely originate from adventitious atmospheric carbon dioxide and
organic contamination [42-45]. Comparing the high-resolution core-level spectra of O 1s in Figure 8a,c,
the ratio between FeOOH and FeO varies if the samples are made in an inert environment or air, but,
above all, the oxide species are overall reduced. The phase structure analysis leads us to conclude that
the condensed formula of C(Z,F)TS is more likely Cuy(ZnyFe;_,)SnOyS,_y than Cuy(ZnyFe;_)SnS,,
and in the sample produced in a glovebox, Cuz(Zng2Feys)SnOy S,y is in the kesterite phase and
CuFeSnOyS,-y is in the stannite structure. We can summarize that kesterite thin films can be produced
with up to 20% of iron both in air and in an inert atmosphere, but as soon as the iron content exceeds
40%, the oxidation of the iron dominates and the process has to be carried out in a glovebox. The iron
oxidation can be squeezed by controlling the sensitive part of the preparation, i.e., the one in which the
components are put in contact in solution to form the precursor ink and the one in which the droplet
adheres to the substrate.

Table 1. Calculated main peak positions in the XPS spectra of the high-resolution core level for Cu 2p,
Zn 2p, Fe 2p, Sn 3d, and S 2p regions of the 20%, 40%, 60%, 80%, and 100% C(Z,F)TS thin films, made
in glovebox and air.

Fe (%) Method Cu 2p (eV) Zn 2p (eV) Fe 2p (eV) Sn 3d (eV) S 2p (eV)
12 3/2 12 3/2 12 32 12 32 12 32

AIR 951.99 93229 1044.69 1021.69 72399 709.79 494.69 486.29 16249 161.39

20 GB 952.68 93278 1045.08 1022.08 723.88 709.68 494.78 486.38 16298 161.88
AIR 951.65 932.16 1044.76 1021.66 72416 710.14 494.66 48626 162.36 161.36
40 GB 952.68 932.78 104498 1022.08 723.88 709.48 49478 486.28 163.18 161.88
AIR 951.81 93211 1044.61 1021.71 72421 710.19 49461 486.21 16221 161.21
60 GB 952.58 932.68 1044.98 1021.88 72528 71098 49458 486.18 162.88 161.78
AIR 951.99 932.09 1044.76 1021.66 724.09 710.29 494.69 486.29 162.29 161.19
80 GB 952.78 932.88 1045.08 1022.08 724.08 710.48 494.68 486.28 163.08 161.98
100 AIR 951.85 932.05 / / 723.85 709.95 494.65 486.25 162.25 161.05

GB 952.78  933.08 / / 72448 71048 49478 486.38 163.28 162.08
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Figure 7. XPS spectra of the high-resolution core level for Cu 2p, Zn 2p, Fe 2p, Sn 3d, and S 2p regions
of the 20%, 40%, 60%, 80%, and 100% C(Z,F)TS thin films, made in glovebox (a—e) and air (fj).



Materials 2020, 13, 1471 90of 13

GB Air
FRTSE —20% Fe Tx10° 4 — 2% Fe
a Cls ——40% Fe C Cls 2846 ——40%Fe
N ——60% Fe ] c-C —— 60% Fe
6x10 80% Fe Gx10’ ——80% Fe
= —— 100% Fe 7 —— 100% Fe
% 5x10° S  5x10° 4
< 4x10° 4 < a1’
z =
£ , 285.3 - 285.0 E 5
£ 3x10°4 £ 3x10°
z c-c E
2x10° 2x10° 4
C=0
1x10° 0-C=0 1x10"
0 0

202 291 290 289 288 287 286 285 284 283 282 281 280
Binding Energy(eV)

292 291 290 289 288 287 286 285 284 283 282 281 280
Binding Energy(eV)

20x10¢

—20% Fe ,
b —40% Fe O1ls ——0%Fe O1s

——60% Fe — 23.;" E“

——80% Fe LS
s 1009 Fe gt — B0% Fe FeO
e ——100% Fe
g
2
< "
= 1Lox10%
£ FeOOH

5.0x10" o
FeOOH FeO
Mﬂ o 7 . . . . r
535 5 533 532 531 530 529 528 535 534 533 532 531 530 529 s

Binding energy (eV) Binding energy (eV)

Figure 8. XPS spectra of the high-resolution core level for C 1s and O 1s regions of the 20%, 40%, 60%,
80%, and 100% C(Z,F)TS thin films, made in glovebox (a,b) and air (c,d).

3.2. Energy Gap Tuning

The optical band range was estimated through UV-Vis spectroscopy measurements; the absorption
coefficient («) was calculated using the relation «(A) = 1/t In[(1 — R(A))/T(A)], where ¢ is the thickness of
the sample, and T(A) and R(A) are the transmittance and reflectance of the film, respectively. The thin
films made have « calculated values higher than 1 x 10* cm~!. The optical band gap was determined
using the relation ahv = C (hv — Eg), where Eg is the bandgap, / is the Planck constant, v is the
frequency of the photons, and C is a constant. The value of the exponent n depends on the nature of
the optical transition and, as the C(Z,F)TS is a direct band gap semiconductor [8], the value of n used is
1/2 [46]. Figure 9 shows (orv)? as a function of kv for samples made in an inert environment and those
made in air: The optical band range can be obtained by extrapolating the linear section of the curve
and taking the value that intercepts the x-axis [46]. The extrapolated values, with estimated errors of
+ 0.02 eV, are reported in Figure 9: The comparison is made between the samples produced in the
glovebox and those made in air but with small iron content. The C(Z,F)TS GB dataset is consistent
with most of the experimental reports [6,8,14,15,47]. The discrepancy with the C(Z,F)TS AIR thin-film
values can be related to a difference in the crystallinity and the stoichiometry [15]. Khadka et al. [15]
pointed that in the band gaps reported by Shibuya, they do not take into account the complexity of the
conduction band of these compounds, affected by the formation of defects and structural deformations.
The 80% and 100% Fe thin films produced in the glovebox prove to be particularly attractive for use
in the photovoltaic field, as an efficient photovoltaic semiconductor material has a direct bandgap
between 1.1 and 1.8 eV [48,49].
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Figure 9. Plot of (otv)? as a function of v for the estimation of the optical bandgap of the 20% and
40% C(Z,F)TS thin films made in air; the 20%, 40%, 60%, 80%, and 100% C(Z,F)TS thin films made in
glovebox; and the calculated optical band with estimated errors of + 0.02 eV.

4. Conclusions

In this work, the synthesis and characterization of different thin films were made to obtain a
material suitable for use in low-cost and environmentally friendly solar cells. The absorber material
proposed is based on mixed chalcogenides and composed of economic and non-toxic elements. All thin
films were produced by a sol-gel method and deposited by drop-casting, employing a solution
containing a large amount of thiourea to not necessitate the addition of sulfur during the annealing step.
The phase structure analysis confirmed that by increasing the iron concentration, kesterite evolves
to stannite after 80% iron content. By operating the sensitive part of the process in a controlled inert
atmosphere, we obtain high-quality samples of C(Z,F)TS thin films. The 80% and 100% Fe thin films
proved to be particularly attractive for use in cheap and easily processable solar cells.
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