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Abstract: Machining of metals is an essential operation in the manufacturing industry. Chip formation
in metal cutting is associated with large plastic strains, large deformations, high strain rates and
high temperatures, mainly located in the primary and in the secondary shear zones. During the
last decades, there has been significant progress in numerical methods and constitutive modeling
for machining operations. In this work, the Particle Finite Element Method (PFEM) together with a
dislocation density (DD) constitutive model are introduced to simulate the machining of Ti-6Al-4V.
The work includes a study of two constitutive models for the titanium material, the physically based
plasticity DD model and the phenomenology based Johnson–Cook model. Both constitutive models
were implemented into an in-house PFEM software and setup to simulate deformation behaviour
of titanium Ti6Al4V during an orthogonal cutting process. Validation show that numerical and
experimental results are in agreement for different cutting speeds and feeds. The dislocation density
model, although it needs more thorough calibration, shows an excellent match with the results. This
paper shows that the combination of PFEM together with a dislocation density constitutive model is
an excellent candidate for future numerical simulations of mechanical cutting.

Keywords: Particle Finite Element Method (PFEM); metal cutting processes; Johnson-Cook;
dislocation density constitutive model; titanium Ti6Al4V

1. Introduction

Metal machining is an important manufacturing technique in major mechanical industries like the
automobile or aerospace. Using this technology, the material is removed continuously from the work
piece by a cutting tool, creating a new shape for the piece. Although new manufacturing techniques,
such as additive manufacturing [1], have recently been developed for metal processing, machining
is the most prevalent manufacturing operation in terms of volume and expenditure. It has been
estimated that machining expenditure contributes to approximately 5% of the GDP in developed
countries [2,3]. However, still today, after decades of research, machining presents a challenging and
exciting intellectual problem for researchers and practitioners.

Numerical simulation of metal cutting processes has become important as it is capable to provide
detailed insight of the processes. Via the improvement of the accuracy of the numerical simulations
it will be the possibility to replace difficult, costly or even impossible experiments used for tool and
process design. Also, the modelling and simulation at the design stage can contribute to the shortening
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of the development time. It will reduce the costs for the design of new cutting tools and the production
of new components.

To properly model cutting processes a numerical tool should include capabilities such as: the
treatment of the thermo-mechanical coupling, the reproduction of the material response, the treatment
of the incompressibility, and the modelling of the thermo-mechanical contact and friction. It must
also include adaptive discretizations to deal with large strain and deformations, the breakage and
separation of the chip and prediction of the tool wear.

The finite element method (FEM) is the standard tool to simulate machining processes either
in its Lagrangian, Eulerian or Arbitrary Lagrangian Eulerian (ALE) formulation [4–12]. As large
deformations are present in the metal cutting process, when a Lagrangian mesh is excessively distorted
it does not allow the continuation of the simulation. The problem of FE-mesh distortion, is usually
solved via mesh adaptivity and automatic remeshing, however, the use of remeshing can introduce
problems with diffusion of the state variables.

During the last years, new revolutionary techniques appeared extending and improving the
capabilities of FEM in order to model metal cutting. New developed methods can be classified
into: methods supported by a mesh, mesh free methods and particle methods. The methods
supported by a mesh include the Multi-material Eulerian Method (MMEM) [13,14], the Volume
of Solid (VOS) [15], and the Material Point Method (MPM) or Point in Cell (PiC) method [16,17].
Among the particles/meshless methods applied to metal cutting we found: the Smoothed Particle
Hydrodynamics (SPH) [18,19], the Finite Point Method (FPM) [20], the Constrained Natural Element
Method (CNEM) [21], the Discrete Element Method (DEM) [22], the Maximum Entropy MeshFree
method [23], the stabilized optimal transportation meshfree method (OTM) [24], and the Particle Finite
Element Method (PFEM) [25–28]. Most of these new methods are applied using similar simplified
models. For instance, they usually consider the tool as rigid with no heat transfer between the tool
and the piece [6]. This represents a poor approach if one wants to model realistic chips. Furthermore,
these methods have a relatively high computational cost in comparison to FEM [6]. However, some of
the new methods, like the PFEM, allow modeling the deformations and the heat transfer between the
tool and the chip. With the advantage that the computational cost of the PFEM is similar to that of
specialized FEM programs [29].

There are several references [25–28] that present the capabilities of the PFEM as a numerical tool to
model large deformations surpassing the problems of mesh distortions and diffusion of state variables
that are typical in FEM simulations. Also, PFEM includes capabilities to deal with thermo-mechanical
coupling, contact and friction, treatment of the incompressibility constraint due to plasticity. This
numerical method is the better candidate for the purposes of this work. Details about PFEM in metal
cutting are available in Reference [25].

The constitutive model is one of the most important features in an accurate modeling of metal
cutting processes. For metal cutting simulations a constitutive model must represent the behavior of the
material at high strain rates and be able to account for strain softening, strain hardening and thermal
softening over a wide range of temperature, strain and strain rates. In many numerical simulations
carried out up to now, the material behaviour of metals is represented by phenomenological power
laws [7], described in terms of strains and strain rate. Power laws equations relate the flow stress to
the plastic strain, strain rate and temperature, but they are not based on the underlying physics of the
material deformation. A very common example of a power law is the Johnson-Cook (JC) model [30],
the most used constitutive model for the numerical modeling of machining processes [7]. However,
one weakness of these empirical relationships is that the precision and accuracy in the prediction
of experimental results is inadequate outside the calibration range. Therefore, it is preferable to use
models which are related to the physics of the deformation because the range of validity out of the
experimental calibration range is larger compared to phenomenological models. There is evidence of
this better behavior when the dislocation density (DD) constitutive model was used to model metal
cutting with SANMAC 316L stainless steel in References [27,31,32]. A physically based Voyiadjis-Abed
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model including the hardening due to dynamic strain aging is presented in References [33,34], it is
expected that including the dynamics strain aging in the numerical modeling of metal cutting process
will increase the accuracy of the results.

A FEM model of orthogonal cutting of Al6061-T6 alloys at high speeds is presented in
Reference [35]. The previous model predicts dislocation densities and grain size during machining
processes. They found that low cutting speeds and negative rake angles promotes dislocation density
and refines the grain size, high cutting speed and positive rake angles generates thin deformation layers
in the machined surface. Another FEM model that study the effects of grooved tools on dislocations
density and grain size for Al6061-T6 alloy is developed in Reference [36]. They found that groove
width change grain size and dislocation density profile along the chip and bellow the machined surface.
A coupled Eulerian–Lagrangian (CEL) finite element model with a dislocation density-based material
plasticity model was developed in to simulate grain refinement and the evolution of dislocation during
orthogonal cutting of commercially pure titanium (CP Ti). They show that the developed model
captures the material mechanical behavior and accurately predicts a grain size of CP Ti chips at a
cutting speed of 10 mm/s. A dislocation density model of OFHC copper for high-speed cutting was
investigated through experiments and FEM simulations in Reference [37]. This study found that the
dislocation densities around the tool-chip interface decrease when the cutting speed is increased and
the oscillations in cutting forces at high cutting speed is induced by the evolution and distributions
of dislocations density. In A dislocation density based viscoplastic constitutive model for lead free
solder under drop impact [38] .The constitutive behavior (flow stress) and microstructure evolution
were treated independently (uncoupled) in most of the previous dislocations models, and the material
behaviors were not influenced by the microstructure evolution. In the present work a coupled
model between microstructure and mechanical behavior that describe the behavior of Ti6Al4V during
machining that was presented in References [39,40] is used.

Other works have been devoted to modeling tool displacement during ball end milling and
its influence on the machined surface roughness [41,42]. The coupling of a FEM/PFEM model,
a constitutive behaviour, a microstructure evolution model and tool displacement model are expected
to improve the predictability of the developed model.

The present study combines the PFEM [26] and the DD plasticity model of Ti6Al4V presented in
References [39,40]. The objective is to improve the numerical approximation of the results and solve
the typical problems that appear in the FEM simulation of metal cutting processes. The introduction of
the DD model is essential for this purpose. To validate the approach, the today’s most used constitutive
model for machining simulations, the phenomenological JC plasticity model, will be taken as reference
for comparison. The adaptation of the use of a DD constitutive model into the new advances of the
PFEM technique and the validation of the obtained results are the main novelties of this work. These
set of improvements will configure an new standard for the future simulation of machining processes.

This paper is structured as follows: In Section 2 the PFEM is described including the basic
steps, the meshing procedure and transfer of information. Section 2 makes special emphasis on the
improvements made to the PFEM that allow to simulate the chip formation during metal cutting.
Then, the JC strength model and a DD constitutive model are presented in Section 3. the experimental
measurements carried out in this work are presented in Section 4. In Section 5, the numerical simulation
procedures are presented and explained. A set of representative numerical simulations using both
previously mentioned constitutive models are presented and analyzed in Section 6, which is followed
by a discussion of the results in Section 7 and the conclusions in Section 8.

2. The Particle Finite Element Method

The PFEM was developed originally for the treatment of fluids and free surfaces flows [43].
The aim was to utilize a Lagrangian description of motion, that follows and tracks the fluid particles
along the domain, in order to characterize fluid free surfaces. The PFEM emerges also to explore
the possibilities of using a Lagrangian description of the fluid domains in the modelling of fluid
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structure interaction, traditionally used to study the problems in solid mechanics. Nowadays,
the PFEM is applied in the modeling of a wide range of engineering applications, such as: fluid
structure interaction in port engineering, erosion processes in rivers, mixing processes, fluid coupling
with thermal effects, slurry in stirred media mills, the pulp fluid in tumbling mills and granular
flows [44–49]. An early approach for the modelling of cutting, riveting and excavation problems is
presented in References [25,50–52].

In this paper, the PFEM is adapted and improved for the modelling of machining processes.
In solid mechanics, the Lagrangian description is commonly used to model the continuum and, in the
specific case of our work, to model machining of material. However, when the formulation is applied
using the standard finite element method, it has some critical limitations. The main drawback is
that excessively distorted elements prevent simulation progress. In order to surpass this drawback,
the particle and Lagragian nature of the PFEM is used in this work.

The original idea of the PFEM was to improve the mesh quality with the re-tessellation of the
domain only when needed. This limits the geometry of the elements to triangles in 2D and tetrahedra
in 3D. It is common to use only linear elements for simplicity of the operations. This re-tessellation is
performed locally which allows the representation of large deformations problems in the continuum
domain while global remeshing and transfer of information from mesh to mesh is avoided. Usually,
the re-triangulation is performed only when some criteria associated to element distortion is fulfilled.
In two dimensions, the re-triangulation consists in recalculating the element connectivity using a
Delaunay triangulation [53,54] with the position of the particles (i.e., of the mesh nodes) in the updated
configuration. The Delaunay triangulation maximize the minimum angle of all the triangles in the
mesh and thus mesh distortion is minimized, as a consequence the number of triangles with poor
aspect ratio in the mesh are minimized or in the better cases removed. An example of the remeshing
scheme used in the PFEM simulation of metal cutting processes is shown in Figure 1.

Figure 1. Remeshing steps in a standard Particle Finite Element Method (PFEM) numerical simulation.
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2.1. Basic Steps of the PFEM

The continuum in the PFEM is represented using a updated Lagrangian formulation. This
description uses an incremental update of the body configuration. That is, all variables are assumed
to be known at the beginning of the time step at time t. The new set of variables is sought for in the
next or updated configuration at time t + ∆t. The FEM is used to solve the balance equations that
comes from continuum mechanics. Therefore, a mesh is generated in the domain of interest to solve
differential equations in the standard form of finite elements.

Recall that in a Lagrangian framework the nodes that represent the domain of interest are treated
as material particles for which motion is tracked. This strategy is mandatory to represent the separation
of particles from the main domain, and to follow their subsequent motion as individual particles with
an initial velocity and acceleration and a known density, under the influence of a gravitational field.
In fluid mechanics, the particles that separate represent drops and in machining this methodology is
used to study the formation of discontinuous chips.

For completeness, the PFEM process is outlined starting with a set of particles C representing the
domain of interest, the volume V defining the continuum and the mesh M that connects the particles
in the domain (see Figure 1). A typical solution with the PFEM involves the following steps:

1. Definition of the domain(s) Ωn in the last converged configuration, t = tn, keeping the existing
spatial discretization Mn.

2. Elimination of existing connectivities and reconstruction of the mesh through a Delaunay
triangulation [53,54] of the domain.

3. Definition of the boundary applying geometrical techniques like the α-shape method [55].
4. Application of a contact search to recognize self-contact and contact between multiple bodies.
5. Transfer of the historical internal variables information to the new discretization Mn+1
6. Solution of the non-linear system of equations for tn+1 = tn + ∆t.
7. Return to step 1 and repeat the process for the next time step.

The above procedure has to be improved for the modelling of metal cutting problems. Some of
the weaknesses to be solved are:

• Using α-shapes for the detection of the external boundaries is not accurate.
An improper identification of the boundary can artificially increase or decrease chip thickness.

• A reconnection of the previous cloud of particles produces a bad discretization of the domain.
Particles move as the material deforms and it may happen that in some regions the number of
particles stack, the other way around, in other regions particles becomes too low. It harms the
accuracy of the solution.

To surpass these obstacle we propose the use of a constrained Delaunay triangulation [53,54]
together with the introduction and elimination of particles inside the domain. The procedure is
designed to preserve the external and internal boundaries and to distribute particles accordingly to the
demand of mesh accuracy. The addition and removal of particles enhance the quality of the solution,
and allows for the resolution of the different scales of the solution.

The original PFEM removes and adds particles by comparing with a problem dependent
characteristic distance h. The size of h is usually constant throughout the domain (see References [56]).
In the present work the criteria for the removal and the addition of particles is extended considering
different scenarios:

2.1.1. Removal of Particles

• If the distance between two particles dnodes is less than a certain characteristic distance hrem

(dnodes < hrem), one of the particles will be removed (see Figure 2a). A similar criterion is applied
to the domain boundary dnodes < hs,rem, being hs,rem characteristic distance for the boundary (see
Figure 2c).
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• If the error estimator ‖σ− σh‖ (see Zienkiewicz and Zhu [57,58]), is smaller than a given tolerance
(‖σ− σh‖ < εtol,rem), the node that is in the center of the patch is removed (see Figure 2b). Used
error estimators are based on the norm of the isochoric-stress or plastic strain values.

(a) Two particles are too close. (b) The node that is in the
center of the patch is removed.

(c) Two nodes in the boundary
are too close.

Figure 2. Three main criteria to remove a particle.

2.1.2. Addition of Particles

• If the plastic power generated due to plasticity exceeds a prescribed tolerance, a new particle is
introduced at the Gauss point of the finite element

∫
Ωe Dmech d Ωe > εtol,ins (see Figure 3a).

• If the radius of an element circumcircle rec is greater than a certain characteristic distance hins

(rec > hins), a particle is introduced at the center of the circumcircle (see Figure 3b).
• If the distance between two particles on the tool tip dnodes is greater than a certain characteristic

distance hs,ins, (dnodes > hs,ins), a new particle is inserted in the boundary (see Figure 3c).

In the boundary of the domain, the insertion of nodes is fundamental for machining problems.
The geometrical description of the tool is done by the introduction of particles on the boundary of
the work piece mainly close the tool tip (see Figure 3c). The characteristic distance hs,ins has a direct
relationship with the tool radius size, where the generation of the chip is originated. This allows for
the contour increase and creates the shape of the chip.

The insertion of particles takes place in the primary shear zone and in the border where the chip
is in contact with the tool. The removal of particles takes place in the formed chip far from the primary
shear zone. The leading benefit of the proposed strategy is that an adaptation and mesh improvement
of the mesh quality is done through the addition of particles and Delaunay triangulation. It is not
necessary to create a complete new mesh as in FEM.

The information transfer after performing a new tessellation is crucial in order to conserve the
fidelity of the FEM solution from one triangulation to the next. The information necessary in later time
steps has to be transferred from the old mesh to the new mesh, it includes the nodal variables like
temperatures, pressures, displacements and velocities in the new introduced particles, and internal
variables in the new element.

Transfer use to be a very diffusive process. In this work, the transfer is made straight from
the previous Gauss point to the Gauss point of the new element. When the mesh does not change
and the information is transferred between Gauss points, the equilibrium is preserved before and
after the triangulation. When the mesh change, the equilibrium is perturbed locally in areas where
introduction and deletion of particles occur and the transformation of the information is unavoidable.
A thermo-mechanical test was presented in a previous work (see Reference [26]), where PFEM and
FEM solutions were compared. Similar results were obtained, showing that the transfer of the internal
variables from Gauss point to Gauss point as is done in the present work has a negligible effect in
problems similar to the simulations carried out in this work.

More details about the PFEM in metal cutting can be found in Reference [27].
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(a) The plastic power criteria. (b) The radius of an element
circumcircle is greater than a
given tolerance.

(c) The criteria based on the
distance between two boundary
particles at tool tip.

Figure 3. Three main criteria to add a new particle.

3. Constitutive Models

As stated in the objectives of the article, accurate reproduction of the material response is a critical
feature to consider. In a typical machining event, strain rates between 103 and 106 s−1 and high
temperature may be attained within the primary shear zone, while the remainder of the work piece
deforms at moderate or low strain rates. In other manufacturing process like extrusion, forging and
rolling the maximum strain rate reach 103 s−1 [59]. The high strain rates and temperature in machining
demonstrates the extreme conditions that take place in that process. In this section, two constitutive
models that describe the behavior of metal in a wide range of temperatures, strain and strain rates
are presented.

3.1. Johnson-Cook Strength Model

The Johnson-Cook (JC) strength model [30] is a constitutive model categorized as a
phenomenological model. Under certain conditions, the flow stress of some materials was observed to
behave in a manner that could be described reasonably well by a particular mathematical formula.
The JC model describes the flow of the material as the product of three mathematical terms:

σy = A
(

1 +
B
A

εn
)(

1 + C ln ε̇
′) (

1− θ
′m)

(1)

composed by A, the initial yield strength of the material at room temperature T0 and at a reference
strain rate of ε̇0. ε the equivalent plastic strain, ε̇

′
the strain rate non-dimensionalized by the reference

strain rate, and B, C, m and n are fitting constants.
In Equation (1), θ

′
is given by

θ
′
=

T − T0

Tmelt − T0
, (2)

where Tmelt is the melting temperature and T is the work piece temperature. The non-dimensionalized
strain rate ε̇

′
is given by

ε̇
′
=

ε̇

ε̇0
, (3)

where ε̇ is the effective plastic strain rate and ε̇0 is the reference strain rate.
The JC model (Equation (1)) assumes an independent effect of the strains, strain rates and the

temperatures on the yield strength. In Equation (1), the expression in the first bracket constitutes a
nonlinear strain hardening law, the expression in the second bracket models the strain rate hardening
and third bracket represents thermal softening, respectively. In Table 1, a set of JC parameters for
Ti6Al4V available in the literature together with the set of JC parameters obtained in the present
study are presented. Set no. 7 was obtained using an optimization algorithm (curve fitting) on the
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experimental stress-strain curves available in Reference [40]. Although the sets of properties of the JC
model presented in Table 1 correspond to the Ti6Al4V material, it is found that they differ considerably
from each other. Mathematically, there is no guarantee that using the same experimental stress-strain
curves, the same JC parameters will be obtained by different authors. In addition, the JC parameters
also depend on the experiment that was carried out to obtain the parameters, as well as the maximum
temperatures, deformations and deformation rates achieved in these experiments (see Reference [60]).

Table 1. The parameters of the Johnson-Cook constitutive equation for Ti-6Al-4V.

Set A (MPa) B (MPa) n C m ε̇0 (1/s) Reference

1 782.7 498.4 0.28 0.028 1 1× 10−5 Lee and Lin [61]
2 724.7 683.1 0.47 0.035 1 1× 10−5 Lee and Lin [62]
3 968 380 0.421 0.0197 0.577 1 Li and He [63]
4 862.5 331.2 0.34 0.012 0.8 1 Meyer and Kleponis [64]
5 1098 1092 0.93 0.014 1.1 1 Chen et al. [65]
6 997.9 653.1 0.45 0.0198 0.7 1 Seo et al. [66]
7 860 612 0.78 0.08 0.66 1 Our work

3.2. Dislocation Density Constitutive Model

This section presents a summary of the dislocation density constitutive model developed in
References [39,40,67,68]. The flow stress consist of three parts, the long range, the short-range parts of
the resistance to the motion of dislocations and the drag component [69–71]

σy = σG + σ∗ + σdrag, (4)

where σG is the athermal stress contribution from the long-range interactions of the dislocations
substructure, σ∗ is the friction stress needed to move dislocations through the lattice and pass
short-range obstacles and σdrag is the viscous drag component of the flow stress.

The long-range term of Equation (4) is taken from Reference [72] as,

σG = mαGb
√

ρi, (5)

where m is the Taylor orientation factor, α is the proportionality factor, b is the Burger’s vector, ρi is the
immobile dislocation density and G the shear modulus. The shear modulus G can be computed from
the Young’s modulus E and Poisson ratio ν as

G =
E

2(1 + ν)
. (6)

Here, it is assumed that the Young’s modulus E depends on the temperature.
The short-range stress component according to Reference [73] can be represented as,

σ∗ = τ0G

1−
[

kT
∆ f0Gb3 ln

(
ε̇re f

ε̇p

)]1/q
1/p

, (7)

where k is the Boltzmann constant, T is the temperature, ∆ f0Gb3 is the activation energy neccesary to
overcome short-range obstacles, τ0G is the shear strength in the absence of thermal energy, ε̇re f is the
reference strain rate and ε̇ is the strain rate. The exponents 0 < p ≤ 1 and 0 < q ≤ 2 are related to the
shape of energy barriers.
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The part of the flow stress due to drag σdrag can be computed based on a formulation proposed in
Reference [74] as follows

σdrag = G

 Be
Bp

+ T
300

Cdrag

 ε̇p, (8)

where Be
Bp

and Cdrag are calibration parameters. At strain rates greater than 103 the term σdrag is
described by Equation (8), at smaller strain rates σdrag = 0.

3.2.1. Evolution of Immobile Dislocation Density

The immobile dislocation density is expressed in terms of hardening (+) and recovery (−)
contributions as,

ρ̇i = ρ̇
(+)
i − ρ̇

(−)
i . (9)

The recovery of immobile dislocation density can be obtained as the sum of a term due to glide,
a term due to climb and a term due to globularization as

ρ̇
(−)
i = ρ̇

(−)
i(glide) + ρ̇

(−)
i(climb) + ρ̇

(−)
i(glob). (10)

The increase in immobile dislocations density is assumed to be proportional to the plastic strain
rate, which is related to the density of mobile dislocations and inversely to the mean free path

ρ̇
(+)
i =

m
b

1
Λ

ε̇ (11)

the mean free path Λ can be computed from the grain size (g) and the subgrain diameter (s) as,

1
Λ

=

(
1
g
+

1
s

)
. (12)

The evolution of the subgrain diameter has been modeled using a relation proposed by Holt [75].

s =
Kc√

ρi
, (13)

where Kc is a calibration parameter.
The grain growth model can be written according to Reference [76] as,

gn − gn
0 = Kt. (14)

Here, g0 is the grain size at the beginning of the simulation, t is the time elapsed and K is a
calibration parameter.

The submodel for recovery by glide can be written based on the formulation presented in
Reference [77]

ρ̇
(−)
glide = Ωρ̇i ε̇

p, (15)

where Ω is a parameter that depends on the temperature, it is usually called recovery function.
Static recovery controlled by diffusion climb is assumed to have the form according to

Reference [67]

ρ
(−)
i(climb) = 2cγDapp

cv

ceq
v

Gb3

kT

(
ρ2

i − ρ2
eq

)
. (16)

cγ is a material coefficient, Dapp is the apparent diffusivity, cv is the fraction of vacancies, ceq
v is the

thermal equilibrium vacancy concentration and ρeq is the equilibrium immobile dislocations density.
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Mathematical and modeling details about Dapp term can be found in References [39,40]. The reduction
of dislocations density due to globularization is given by

ρ̇
(−)
i(glob) = ψẊg(ρi − ρeq)H(ρi − ρcrit

i ). (17)

Here, ρeq is the equilibrium value of dislocation density, ρcrit
i is the critical dislocation density above

which globularization is initiated, Ẋg is the globularization rate, ψ is a calibration constant and H
is the step function. The reduction of dislocations density due to globularization is active until the
dislocations density ρi is less or equal to the equilibrium dislocation density ρeq, otherwise, ρ̇

(−)
i(glob) = 0.

According to [39,40], globularization is modeled as,

Xg = Xd + (1− Xd)Xs. (18)

Here, Xg, Xd and Xs denote total globurized, its dynamic and its static component, respectively.
The rate of static globularization can be written as

Ẋs = M
ġ
g

, (19)

where ġ is the grain grow rate and M is a material parameter. The rate of dynamic globularization is
modeled based on Reference [78] as,

Ẋd =
Bkp(εp)kp−1

eB(εp)kp
ε̇p, (20)

where εp is the equivalent plastic strain, and B and kp are material parameters. The static and dynamic
globularization only grow when ρi ≥ ρcrit

i .

3.2.2. Evolution of Excess of Vacancy Concentration

In Reference [79] a model for excess vacancy concentration with generation and aniquilation
components was proposed. That model can be written as

ċv =

[
χ

mαGb2√ρi

Qv f
+ ζ

cj

4b2

]
Ω0

b
ε̇p − Dvm

[
1
s2 +

1
g2

] (
cv − ceq

v

)
+ ceq

v

(Qv f

kT2

)
Ṫ. (21)

Here, χ is the fraction of mechanical energy spent on vacancy generation, Qv f is the activation energy
of vacancy formation, ζ is the neutralization effect by vacancy emiting and absorbing jogs, cj is the
concentration of jogs, Ω0 is the atomic volume, Dvm is the diffusivity of vacancies and Ṫ is the time
derivative of the temperature field.

The coupled solution of the system of ordinary differential equations (ODE) of
Equations (9) and (21) is carried out at elementary level with a Newton-Raphson iterative scheme,
a similar solution scheme to coupled equations is presented in References [27,31,32]. The coupled
solution of Equations (9) and (21) gives the new value of ρi and cv. The starting values at the beginning
of the cutting simulation of ρi = ρinit

i at 20 ◦C and of cv = 0. The obtained value of ρi is used in
Equation (5) to calculate the long-range component of the flow stress. The long-range component
is used in the non-linear solution of the mechanical and thermal problem of the next time step.
A flowchart about how to implement the dislocations density constitutive model is presented in Box
1. In Reference [27] extra details about how to implement a dislocations density constitutive model
inside a in-house PFEM software are presented. The material parameters of the dislocation density
constitutive model are presented in Appendix A.
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Box 1. Flowchart of the implementation of the dislocations density constitutive model.

Given the new value of ε̇p and εp, and the old value Xd, Xs, Xg, ρi, g and cv.

1. Update ρi and cv with the non-linear solution of Equations (9) and (21). The non-linear
solution for the set of equations is carried out a Newton-Raphson scheme.

2. Calculate the updated value of the grain size g with Equation (13).
3. Calculate the grain grow rate with the old, the new value of the grain size and the size

of the time step.
4. Update Xs with Equation (19), Xd with Equation (20) and Xg with Equation (18).
5. Calculate the long-range component of the flow stress using Equation (5).

4. Experimental Measurements

In this experimental investigation, triangular inserts TNMG 160408-QF of grade 4015 coated
with TiCN-A2O3-TiN by chemical vapour deposition (CVD) are used. This combination of coating
and substrate is preferable for both continuous and intermittent turning operations. The insert was
mounted on a turning tool holder PTGNL 3225P having a wedge angle of 90◦ in order to achieve
a clearance angle of 6◦. The insert used had a grooved geometry made up by a radius of 46 µm,
a primary land of 0.15 mm and a rake face with an active rake face angle of −6◦ due to the tool holder.
The edge geometry have great influence on the cutting and feed force components and measured
profile of the cutting edge, which was used to define the simulation model, are shown in Figure 4.
A George Fischer CNC turning lathe was used for the turning tests where prefabricated tubes are
orthogonally cut in a machining operation. The tubes have one closed end and an outer diameter
of 140 mm, a thickness of 3 mm and a length of 115 mm. For measuring the cutting and feed force
components, a three component Kistler dynamometer of type 9263 was used together with a 300 Hz
low pass filter. The measured force time curves, converges towards a steady state value, similar to the
one show Figures 5, 9 and 10. The values presented in Table 5 were obtained by averaging the signal
between tool displacement 0.4 mm and 0.8 respectively.

(a) (b)
Figure 4. Experimental tool; (a) insert, (b) cutting edge profile.
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Figure 5. Experimental forces vs. tool displacement for experiment 4 (see Table 5).

5. Simulation Procedures

An implicit PFEM was used with an updated Lagrangian formulation accounting for large
deformation, large strains, thermal coupling strains, heat transfer due to conduction, heat generation
due to plasticity and heat generation due to friction [26,27]. A staggered/fractional step approach
called isothermal split method [80–82] was used to couple the mechanical and thermal problem. The full
Newton–Raphson (NR) method including line search was used to solve the mechanical problem
(equilibrium equations). Also, NR was used to solve the nonlinear equations that comes from the
thermal problem and from the dislocation density constitutive model [27]. Continuous use of Delaunay
triangulation [53] and the insertion and removal of particles are the principal ingredients of the PFEM
to maintain a reasonable shape of elements and to capture gradients of strain, stress, strain rate and
temperature [25].

An orthogonal cutting operation was employed to mimic 2D plane strain conditions. The thickness
of the work piece, used for all test cases is equal to 3 mm. Coupled thermo-mechanical plane strain
elements are used for the discretization of the work piece and the tool, respectively. A stabilized mixed
displacement–pressure-temperature finite element formulation with linear shape functions is used
for the work piece [26]. A mixed stabilized formulation employed to avoid problems due to material
incompressibility. In the test cases presented in this work, the initial number of particles to describe
the work piece is 105, see Figures 6 and 7. The number of particles increases progressively as the
simulation advances. The tool geometry is a section of an scanned real tool profile (see Figure 4b) and
is discretized by 2298 three-node linear triangle thermo-mechanical elements.
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Figure 6. Mesh used to create the particles at the beginning of the simulation. Feed 0.05 mm.
Dimensions are in mm.

Figure 7. 2D plane strain PFEM model of orthogonal cutting: initial set of particles. The picture is for a
feed of 0.05 mm.

The length and height of the work piece were 8 mm × 1.61 mm. A horizontal displacement,
corresponding to the cutting speed times the time interval of interest, was applied to the nodes at
the right side of the tool (the tool motion is from the right to the left). The left side and the bottom
side of the work piece was fixed. The particle connectivity using Delaunay triangulation was updated
every 8th time step increment, equivalent to a tool displacement of 0.0032 mm. The minimum distance
between particles used in the numerical simulations was 0.012 mm. More information about meshing
parameters is provided in Table 2. The effect of insertion of particles is illustrated in Figure 8.

Table 2. Mesh parameters used in the numerical simulations.

Parameter Size

hrem 0.012 mm
hins 5 times hrem
hs,rem 0.012 mm
hs,ins 5 times hs,rem
εtol,rem Problem dependent (remove a particle if rec < 5× 0.012 mm)

εtol,ins

Problem dependent (insert a particle if rec > 0.012 in the
center of the element. In case of boundary elements insert it
in the boundary side)

Material properties for the work piece material are shown in Tables 1, 3, A1 and A2. Material
properties of the tool are assumed thermo-elastic and are shown in Table 4.
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Figure 8. Particles used at the end of the numerical simulation. The Johnson-Cook constitutive model
was used with the parameters with parameters 7.

Table 3. Thermo physical properties of Ti6Al4V used in the simulations with the Johnson-Cook and
dislocation density model (the temperature is given in Kelvins).

Property Equation Units Reference

Young’s modulus E 107× 103 − 200× T · exp(− 1300
T ) MPa Babu [40]

Thermal conductivity kT 0.015(T − 273.15) + 7.7 W/m K Karpat [83]
Poisson’s ratio ν 0.33 − −
Heat capacity Cp 2.7 exp(0.0002(T − 273.15)) N/mm2K Karpat [83]

Table 4. Thermo physical properties of the tool.

Property Value Units

Young’s modulus E 540× 103 MPa
Thermal conductivity kT 25 W/m K

Poisson’s ratio ν 0.3 −
Heat capacity Cp 2.12 N/mm2K

The model for tool–chip interface employed in this study is a regularized Coulomb friction law.
A value for the friction coefficient was µ = 0.5 (see Rodríguez et al. [28]) and the regularization
parameter Vrel = 10 mm/s. The regularized Coulomb friction law improves the convergence rate of the
NR algorithm, this is one of the reasons to use a regularized Coulomb friction law.

In this study, the fraction of plastic work converted into heat is assumed to be constant and
equal to 90%, following the standard assumption of the FEM modeling of metal cutting process [7,31].
The heat generated due to friction is also calculated and applied as a surface heat flux, 50% of the heat
generated due to friction goes to the tool and the other 50% goes to the work piece. The contact heat
transfer coefficient used is 5× 106 W

m2C according to [31,32].
The predicted cutting forces and chip shapes are strongly influenced by the minimum distance

between particles and as well as the maximum time step used in the numerical simulation. For that
reason, we select experiment number 4 (see Table 5) with the JC model with materials properties
7 to select the minimum particle size to be used in the primary and secondary shear zone and the
maximum tool displacement per time step to be used in the numerical simulations. A tool displacement
per time step of 0.0032 mm and a distance between particles of 0.012 mm converges to a value of
cutting force 1215 N and a feed force of 720 N. An explanation of the meaning of cutting and feed
forces in machining processes is given in [84,85]. The convergence analysis of forces and chip shape
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was done with a converge tolerance in forces of 1× 10−5. The minimum particle distance, the tool
displacement and convergence tolerance obtained with experiment number 4 were used in all the
numerical simulations used in the present work. The computing time for experiment 4 with JC model
with materials properties 7 takes 1 h and 40 min running on a Dell computer with an Intel Xeon(R)
CPU E5-1660 v3 @ 3.00GHz x 16 processor and 32 GB of RAM (Located Lulea, Norrbotten. Sweden).
The computer time of experiments with feed 0.05 mm and JC model halves the computing time.
The previous examples with DD model increase by approximately 1.3 times.

Table 5. Experimental results. std represents the standard deviation.

Experiment Cutting Feed Cutting Feed std std
Number Velocity (m/min) (mm) Force (N) Force (N) Cutting Force (N) Feed Force (N)

1 30 0.05 420 486 4.35 7.91
2 30 0.15 940 760 13.46 20.50
3 60 0.05 399 478 3.51 9.31
4 60 0.15 888 689 4.12 9.13
5 120 0.05 440 528 17.73 40.03
6 120 0.15 840 760 4.62 11.61

6. Examples

Results from PFEM simulations of orthogonal cutting using a dislocation based constitutive model
and Johnson-Cook constitutive model were compared with experimental measurements of cutting and
feed forces, see Tables 5–7.

Table 6. Numerical results at 60 m/min and a cutting depth feed of 0.05 mm (Experiment 3). Error
is measured with respect to experimental results presented in Table 5 using Equation (22). DD is an
abbreviation for the dislocation density model.

Material Cutting Feed Error Error
Properties Force (N) Force (N) Cutting (%) Feed (%)

1 539 476 35.1 0.4
2 620 500 55.4 4.6
4 373 315 6.5 34.1
5 765 569 91.7 19
6 475 396 19 19.2
7 588 446 47.4 6.7

DD 507 468 27.1 2.1

Table 7. Numerical results at 60 m/min and a feed of 0.15 mm (Experiment 4). Error is measured with
respect to experimental results presented in Table 5 using Equation (22). DD is an abbreviation for the
dislocation density model.

Material Cutting Feed Error Error
Properties Force (N) Force (N) Cutting (%) Feed (%)

1 1157 721 30.3 4.6
2 1303 768 46.7 11.5
3 819 546 7.8 20.8
4 821 536 7.5 22.2
5 1570 758 76.8 10.0
6 1003 628 13 8.9
7 1215 720 36.8 4.5

DD 944 692 6.3 0.4
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6.1. Forces

Table 5 presents the measured values of cutting and feed forces at different cutting feeds and
different velocities. The values reported are the values at steady state. The reported values include the
mean/average and the standard deviation for each of the experiments.

The predicted histories of cutting force Fc and feed force Ff for the experiment numbers 2, 4 and
6 are shown in Figures 9 and 10, where experiment number 2, 4 and 6 where randomly selected for
comparison. The results presented in Figure 9 were obtained with the Johnson-Cook constitutive
model and the parameters obtained in this work. The results presented in Figure 10 were obtained
with the dislocation density constitutive model. The force values presented in Tables 6 and 7 were
evaluated by averaging the force in the steady state region. Average values of the computed forces in
the steady state region are compared with the experimental results in Tables 6 and 7. The error used
for the evaluation of the computed results is defined as

error(%) =
| Fi,computed − Fi,measured |

Fi,measured
× 100, (22)

the i takes value of c and f , where c and f make reference to cutting and feed force respectively.

(a) (b)

Figure 9. Predicted forces using the Johnson-Cook model with our parameters 7 (see Table 1); (a) cutting,
(b) feed.

(a) (b)

Figure 10. Predicted forces using the dislocation density model; (a) cutting, (b) feed.
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6.2. Chip Geometry

The chip formation was simulated as a continuous process without taking into account any
damage criteria. The chip geometry was compared with simulated results achieved by the DD model
and by the JC model. A detailed comparison with the two constitutive models is presented in Figure 11
for a feed of 0.05 mm and a cutting speed of 60 m/min, and for a feed of 0.15 mm and a cutting speed
of 60 m/min in Figure 12.

In Figure 13, a comparison of the predicted chip shapes at different cutting speeds using the JC
model and the material properties 7 is shown. In Figure 14, a comparison of predicted chip shapes at
different cutting speeds using DD model. Figure 14 only include results obtained for 30 m/min and
60 m/min cutting speed, because with 120 m/min cutting speed the reached temperature in the work
piece is greater than the maximum temperature where DD model material properties are available.

In this work, no experimental measurements of chip thickness and contact length were made.
Therefore, only a comparison of simulated chip thicknesses and shear plane angle is presented in
Table 8 for a feed of 0.15 mm and a cutting speed of 60 m/min.

Figure 11. Predicted chip shape using two constitutive models: dislocation density (DD) and
Johnson-Cook. Feed of 0.05 mm and a cutting speed of 60 m/min (Experiment 2).

Table 8. Predicted chip thickness and shear angle at 60 m/min and a feed of 0.15 mm (Experiment 4).
DD is an abbreviation for dislocation density.

Material Chip Shear
Properties Thickness (mm) Angle (deg.)

1 0.207 27
2 0.229 26
3 0.206 28
4 0.224 28
5 0.320 18
6 0.230 27
7 0.253 25

DD 0.194 30
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Figure 12. Predicted chip shape using two constitutive models: dislocation density (DD) and
Johnson-Cook. Feed of 0.15 mm and a cutting speed of 60 m/min (Experiment 4).

Figure 13. Predicted chip shape at different cutting speeds using Johnson-Cook model and material
properties 7 (see Table 1). Feed of 0.15 mm.
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Figure 14. Predicted chip shape at different cutting speeds for the dislocations density model. Feed of
0.15 mm.

6.3. Material Response

The Figures presented in this section correspond to the steady state conditions. The results shown
are for the cutting speed of 60 m/min and feed of 0.15 mm (Experiment 4). Results from the DD and
the JC models are presented.

Temperature fields are presented in Figure 15. Maximum temperature takes place in the contact
between the chip and rake face of the tool. Figure 15a shows the temperature field generated by the
DD model with a maximum value of 1298.1 K, temperature distribution related to the JC model with
material properties having a maximum of 1562.3 K is shown in Figure 15b.

(a) (b)
Figure 15. Temperature field; (a) the dislocation density, (b) the Johnson-Cook model.

Figure 16 illustrates the distribution of effective plastic strain rates in the primary and secondary
shear zones. Figure 16a presents a maximum plastic strain rate value of 61,426 s−1 calculated by the DD
model. The distribution of plastic strain rates having a maximum value of 37,750 s−1 calculated using
the JC and material properties 7 is shown in Figure 16b. It is important to remark that Figure 16a,b



Materials 2020, 13, 1979 20 of 27

present the contour field at the same instant of time, the difference in the chip shape is a consequence
of the different models.

The vacancy concentration and the dislocation density are shown in Figure 17. Close to the tool
rake face and over the machined surface (see Figure 17) a significant increase of vacancy concentration
coupled with the dislocation recovery is present. In the external surface of the formed chip and a short
distance below the surface the maximum value of dislocation takes place, the increased dislocation
density controls the hardening of the material (see Equations (4) and (5)).

(a) (b)
Figure 16. Plastic strain rate; (a) the dislocation density, (b) the Johnson-Cook model.

(a) (b)
Figure 17. State variables obtained from the dislocation density (DD) model; (a) dislocation density,
(b) vacancy concentration.

7. Discussion

Machining is a very important process in the manufacturing industry. The ability to predict process
parameters and final properties from the process with numerical modelling is an important challenge.
Good numerical tools that virtually can reproduce the machining process will save time and improve
final product quality. The goal of the present study was to compare the predictive capability of a DD
model with the JC model in the numerical modeling of orthogonal cutting processes. The comparison
was made in terms of predicted cutting forces, shear angles and deformed chip thicknesses.

We can state that the PFEM method is a particular class of Lagrangian formulation based on
the strengths of the FEM and particle methods. For example, as the PFEM is based on FEM, PFEM
converges to the solution by decreasing the distance between particles. Also, PFEM uses ingredients
from particle methods and has the ability to predict large deformations, fracture or separation of
material from the main domain. The goal is to model discontinuous chip and the PFEM give possibility
of model large deformations robustly with high accuracy. In this work we do not consider fracture or
separation of material from the main domain. However, these phenomenon can readily be included
within the PFEM modelling framework.

One of the main difficulties of modelling metal cutting processes with FEM is the availability of
a robust remeshing scheme which includes an accurate transfer of historical variables from mesh to
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mesh. The PFEM solves the problems of remeshing and diffusion of state variables trough the use of
Delaunay triangulation to update the particles connectivities in the updated configuration among other
ingredients that were introduced in Section 2.

Analysing the results, Figures 9 and 10 show that for a feed of 0.15 mm, the cutting forces decrease
when cutting speed is increased, following the same tendency presented by experimental results in
Table 5. Furthermore, Table 5 shows that the standard deviation of the measured forces is less than
40 N, representing less than the 7% of the mean forces in all the experiments. Also, Figures 9 and 10
show that with the JC model with material properties number 7, the influence of cutting speed on
feed forces cannot be identified. Meanwhile, the DD model predict a decrease in feed forces with the
cutting speed.

The JC model with material properties number 3 and 4 better predict the cutting forces with
an error of the order of 7%. Meanwhile, the JC model with material properties number 5 gives an
error of the order of 80%, being greater for a small feed (see Tables 6 and 7). The JC model with our
parameters predict the cutting force with a error of the order of 40%. The DD model for a cutting
speed of 60 m/min and feed of 0.15 predicts the cutting force with an error of 6.3% and the feed force
with an error of 0.4%. For a smaller feed, the error in the cutting force and DD model increase up to
27.1%. The JC with material properties number 1 and the DD model better predict the feed forces.
The differences between the numerical results and experiments can be related to the fact that the no
strain softening or damage was included and that the friction at the tool chip interface was modeled
using a regularized Coulomb friction law [86–88]. The average error for experiment 3 with the JC
model for the cutting force is 37.4% and for the feed force is 16.1%, meanwhile for the same experiment
the error in the cutting with the DD model is 27.1% and for the feed force is 2.1%. For experiment 4,
the average error in experiment 3 with the JC model in the prediction of the cutting forces is 31.2%
and the error in the feed force is 11.7%, meanwhile the error for the DD model are 6.3% and 0.4%,
respectively. The above results show that the DD model when compared with the JC model with 7
sets of materials properties is better in the prediction of the cutting and feed forces. Figures 11 and 12
present the predicted chip shapes for the JC model and the DD model for experiments number 2 and 4.
In comparison with other numerical simulations, the least similar chip is the one predicted with JC
model and properties number 5. The predicted chip with the DD roll faster in comparison with the
other predicted chips. One possible explanation of the predicted chip with the DD model is that DD
model predict a higher thermal softening of the material in the primary and the secondary shear zone
(the strain rates and strain in the primary shear zone are higher than the maximum values with which
the DD model was calibrated).

In Table 8, a comparison of the predicted chip thickness and predicted shear angle for the JC
with 7 different sets of parameters and the DD model is presented. The predicted results shows that
the JC with materials properties number 5 predict the larger chip thickness and the DD predict the
smaller value of chip thickness. The results in Table 8 present that the JC with material properties
5 predict the smaller shear angle, the other simulations predict a shear angle close to 28◦. The predicted
chip thickness with JC and materials properties 5 is out the order in comparison with the predicted
values from other simulations. The predicted chip thickness and shear show the same tendency seen
previously with the predicted cutting forces and chip shapes.

Figures 13 and 14 show that an increase in the cutting speed results in a chip that roll faster,
the same tendency is predicted both by the JC model and the DD model.

The results in Reference [89] show that errors below 10% indicate a good fit between numerical
simulations and experiments. In this work, a good precision is obtained and the errors predicted with
the DD for Ti6Al4V are similar to the ones presented for AISI 316 L steel using FEM in References [31,32]
and using PFEM [90]. Furthermore, in terms of implementation inside a PFEM code, the DD is more
difficult to implement because it need to solve an extra set of coupled ordinary differential equations at
elementary level that describe the evolution of dislocations density and vacancy concentration. Also,
the JC model needs 5 parameters meanwhile the DD model needs all the set of parameters presented
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in Tables A1 and A2. At the same time, according to Reference [40] the DD is more difficult to calibrate
because it involves a set of coupled differential equations meanwhile the JC is a power law. In the
opinion of the authors of this work, the DD model should be used when a detailed and accurate
estimation of the process of chip formation is required, while the JC can be used when a gross estimate
is required. In addition, one advantage of DD models over the JC models is that if different users
calibrate the model with the same set of experimental stress-strain curves, the parameters of the DD
model obtained will be the same [40]; this is due to the fact that in the DD model the evolution of the
strain-stress curve is described by means of an ordinary differential equation (ODE).

The prediction of dislocation density allows for the study of the material hardening/softening
taking place due to the increase/decrease of the long-range component of the flow stress. Having
access to the value of the short-range and the drag components of the flow stress allows us to identity
which mechanics of hardening/softening are active in the material. In the JC model it is only possible
to know if the material is in hardening or softening. Another comparison is possible when the
evolution of dislocation density field is measured; it can be contrasted with the prediction of numerical
results. This allows the identification of which one of the mechanisms has a major contribution to the
increase/decrease of the flow stress.

8. Conclusions

Two constitutive models of Ti6Al4V were implemented within a PFEM framework and were
compared for the simulation of a metal cutting process. The constitutive models were the DD and
the JC with a 7 sets of parameters available in the literature. We believe that the DD model is more
physically correct than the JC model, not only because it accurately predicts closely cutting and feed
forces, but because the DD model is based on the underlying physics of deformation. Furthermore,
the DD model is not a power law that try to fit the complex stress-strain behaviour of Ti6Al4V at high
strain, high strain rates and high temperatures. These findings place the PFEM in combination with a
DD model as an excellent candidate for modeling machining problems.

The results presented in this work show how the PFEM solves the problems of mesh distortion
and diffusion, typical of standard FEM, placing the PFEM in a competitive position with the FEM.
Also, the PFEM has not only shown that it solves the numerical problems of the FEM, it has shown that
it allows us to obtain precise, accurate and robust results in industrial applications of metal cutting.
A literature review allows us to conclude that, among the new numerical methods developed to
simulate realistic cutting, the only one that is capable of modeling cutting with dislocation-based
models is the PFEM. The other numerical methods need extra development and improvement.
A detailed explanation of why the PFEM is the only new method to model realistic cutting processes
with a DD model is presented in References [6,7]. Among the main limitations of the new methods is
that they usually consider rigid and isothermal tools, and often neglect the friction between the chip
and the tool.
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Appendix A. Dislocation Density Constitutive Model

Table A1. Constant parameters of the dislocation density model.

Parameter Units Value Reference

m - 3.06 Lindgren et al. [67]
b m 2.95× 10−10 Babu et al. [39]
k JK−1 1.38× 10−23 Babu et al. [39]

ε̇re f s−1 106 Babu et al. [39]
p - 0.3 Babu et al. [39]
q - 1.8 Babu et al. [39]
g0 m 2× 10−6 Babu et al. [39]

Qvm J 2.49× 10−19 Babu et al. [39]
Qv f J 1.90× 10−19 Babu et al. [39]
Qv J 4.39× 10−19 Qv = Qvm + Qv f

Dvm0
m2

s 1.37× 101 Lindgren et al. [67]
ρeq m−2 1.×1010 Babu et al. [39]
χ - 0.1 Lindgren et al. [67]

Ω0 m3 1.76× 10−29 Babu et al. [39]
ζ0 - 10 Lindgren et al. [67]
Be
Bp

- 0.19 Babu [40]

Cdrag - 1.16× 107 Babu [40]
np

a - 2 Babu [40]
Nl

a m−2 1× 1019 Babu [40]

Table A2. Temperature-dependant parameters of the dislocation density model (Taken from
Babu (2018)).

Parameter at T [◦C] (units) 20 200 400 600 800 900 1000

α − 2.30 1.90 2.10 1.7 1.00 1.15 1.20
Ω [10] − 3.80 4.00 4.70 4.00 4.00 4.00 3.60

cγ

[
10−1

]
− 0.00 0.00 0.00 4.00 5.00 0.50 1.00

Kc

[
102
]

− 0.40 0.40 0.40 0.40 1.20 1.20 1.20

τ0

[
10−1

]
− 0.19 0.21 0.20 0.75 2.13 1.54 1.34

∆ f0 − 0.44 0.38 0.45 0.59 1.36 1.93 1.90
ρinit

i

[
1014

]
m−2 1.00 1.00 1.00 0.70 0.10 0.10 0.01

ρcrit
i

[
1014

]
m−2 5.00 5.00 2.20 1.50 0.20 0.20 0.10

B − 1.00 1.00 0.50 0.50 0.50 0.10 0.01
kp − 2.00 2.00 2.00 1.00 2.00 2.00 2.00

M
[
102
]

− 0.00 0.00 0.00 6.00 6.00 6.00 6.00
ψ − 0.00 0.00 0.05 0.60 8.00 1.00 1.00

K
[
10−19

]
m3/h 0.00 0.00 0.00 0.25 8.00 8.00 8.00
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