

Supplementary Material

Direct Exposure of Dry Enzymes to Atmospheric Pressure Non-Equilibrium Plasmas: The Case of Tyrosinase

Figure S1. Voltage and current signals of (**a**) a pure He DBD and (**b**) a He/1% O₂ fed DBD (f = 20 kHz, $V_a = 1.1 \text{ kV}_{rms}$).

Figure S2. Voltage and current signals of He/C₂H₄ fed DBDs generated at 20 kHz under different experimental conditions (Table 1): (a) $[C_2H_4] = 0.3\%$, V_a = 0.85 kV_{rms}; (b) $[C_2H_4] = 0.3\%$, V_a = 1.1 kV_{rms}; (c) $[C_2H_4] = 1\%$, V_a = 1.1 kV_{rms}.

Figure S3. Residual activity of tyrosinase (2 and 5 μ g) exposed to DBDs fed with He and He/1% O₂ mixture as a function of the exposure time (f = 20 kHz, V_a = 1.1 kV_{rms}).

Figure S4. High-resolution XPS C 1s, O 1s and N 1s spectra of a 5 μ g Tyr deposit (**a**)-(**c**)-(**e**) before and (**b**)-(**d**)-(**f**) after exposure to a DBD fed with He/1% O₂ mixture for 30 min (f = 20 kHz, V_a = 1.1 kV_{rms}).

Table S1. Curve fitting results of high-resolution C 1s, O 1s and N 1s XPS spectra of the a 5 μ g Tyr deposit before and after 30 min exposure to a DBD fed with He/1% O₂ mixture (f = 20 kHz, V_a = 1.1 kV_{rms}).

		Pristine Tyr - Control	Tyr - He/1% O2 DBD	
Component Assignment	Position (eV)	Component Peak Area %	Component Peak Area %	
С-С/С-Н	284.8 ± 0.2	37	32	
C-N/C-O	286.3 ± 0.2	46	41	
C=O/N-C=O/O-C-O	288.1 ± 0.2	17	20	
COO	289.0 ± 0.2	-	7	
O=C	531.4 ± 0.2	31	45	
O-C	532.8 ± 0.2	69	55	
N=C	398.4 ± 0.2	5	9	
N-C	400.0 ± 0.2	90	79	
Protonated amine groups	401.5 ± 0.2	5	12	

Feed	f	Va	Ps	$\mathbf{\Phi}_{ ext{He}}$	[C ₂ H ₄]	DBD	DR
Mixture	(kHz)	(kVrms)	(W·cm ⁻²)	(slm)	(%)	Regime	(nm·min ⁻¹)
He/C ₂ H ₄	20	0.85	0.25 ± 0.05	8	0.1	Homogeneous	23.0 ± 1.0
He/C ₂ H ₄	20	0.85	0.25 ± 0.05	8	0.3	Homogeneous	27 ± 2
He-C ₂ H ₄	20	0.85	0.25 ± 0.05	8	0.5	Homogeneous	31 ± 2
He/C ₂ H ₄	20	1.10	0.40 ± 0.04	8	0.3	Homogeneous	30 ± 3
He/C ₂ H ₄	20	1.10	0.40 ± 0.04	8	0.5	Homogeneous	34 ± 3
He-C ₂ H ₄	20	1.10	0.40 ± 0.04	8	1.0	Filamentary	43 ± 2

Table S2. Deposition rate (DR) of the polyethylene-like coating under the PECVD conditions investigated in the present work.

Figure S5. High-resolution XPS C 1s spectrum of the polyethylene-like coating deposited on Tyr (5 μ g) by using a He/0.1% C₂H₄ fed DBD (f = 20 kHz, V_a = 0.85 kV_{rms}, t = 10 min, thickness of the coating = 230 ± 10 nm).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).