

Supplementary Information

Role of Co in the Electrocatalytic Activity of Monolayer Ternary NiFeCo-Double Hydroxide Nanosheets for Oxygen Evolution Reaction

Ye Li¹, Dan Zhao², Yue Shi², Zhicheng Sun² and Ruping Liu^{2,*}

- ¹ Beijing Institute of Graphic Communication, School of New Media, Beijing 102600, China; liye@bigc.edu.cn
- ² Beijing Institute of Graphic Communication, School of Printing and Packaging Engineering, Beijing 102600,
- China; zhaodan_1997@163.com (D.Z.); shiyuematerials@gmail.com (Y.S.); sunzhicheng@bigc.edu.cn (Z.S.)
 - * Correspondence: liuruping@bigc.edu.cn; Tel.: +86-010-6026-1603

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1.

S1.1.Characterization

The XRD was obtained on a Rigaku UltimaIII. JEOL JEM-2010 was used for collecting HRTEM images. XAFS measurements were obtained from the BL14W1 of Shanghai SSRF. The metal concentrations were measured by inductively coupled plasma (ICP) (ICP-6300, Thermo Fisher Scientific, USA).

S1.2. Electrochemical measurements

All electrochemical measurements were performed in using a CH Instruments (CHI 660E) work station with three-electrode system (counter electrode: Platinum (Pt) electrode, reference electrode: saturated calomel electrode (SCE)) in 1.0 M KOH aqueous solution. The reversible hydrogen electrode (RHE) $E_{vs \ RHE} = E_{vs \ SCE} + E_{SCE} + 0.059 \text{ pH}$). The working electrode was obtained by loading 100 µL ethanol dispersion solution containing monolayer LDHs (6 mg of catalyst was dispersed in 1 mL of ethanol followed by sonication for ~ 30 min) on 1×1 cm² carbon-fiber paper with the following dropping 10 µL of a 0.5 wt.% Nafion solution. The scan rate was 5 mV s⁻¹ for LSV. The EIS was conducted over 1-10⁵ Hz. The Faradic efficiency of the monolayer LDH was defined as the ratio of the evolution amount of O₂ as a test by TCD to that of the theoretically expected O₂ from the water oxidation process. The theoretical amount of O₂ was then calculated by applying the Faraday law (96485.4 C causes 1 equivalent of reaction), and four mol electrons equal to 1 mol O₂ during OER process.

S1.3. Computational details

DFT + U calculations were utilized using CASTEP module in Material Studio (The values of U – J (U_{eff}) was 3.87 eV for Ni, and 4.3 eV for Fe and 3.52 for Co) [1]. The GGA with PBE functional was employed and 340 eV of cutoff was assigned to the plane-wave basis set. The SCF tolerance was 1×10^{-6} eV with $1 \times 1 \times 1$ k-points for Brillouin zone, and ultrasoft pseudo-potentials for the core electrons.

Citation: Li, Y.; Zhao, D.; Shi, Y.; Sun, Z.; Liu, R. Role of Co in the Electrocatalytic Activity of Monolayer Ternary NiFeCo-Double Hydroxide Nanosheets for Oxygen Evolution Reaction. *Materials* **2020**, *14*, x. https://doi.org/10.3390/xxxx

Received: 22 October 2020 Accepted: 14 December 2020 Published:

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

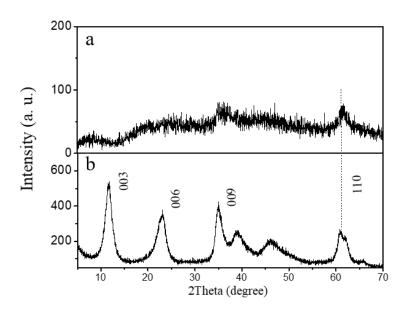
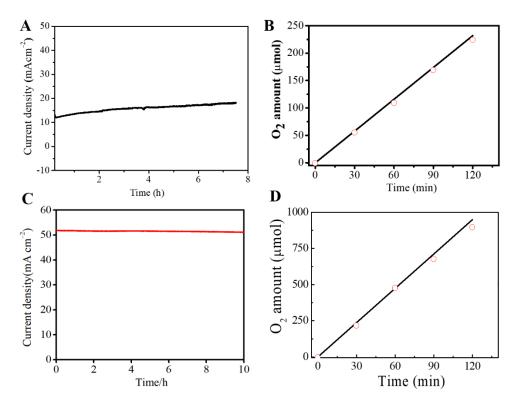



Figure S1. XRD patterns of (A) the wet NiFeCo-mono colloid sample, and (B) the NiFeCo-mono after drying at 100 degree, respectively.

The disappeared (00l) peaks of NiFeCo-mono colloid sample (Figure S1a) indicated the monolayer LDH nanosheets without stacking along *c*-axis. The (110) peak at ~61° indicated the formation of 2D LDH nanosheets. After drying the colloid NiFeCo-mono samples at 100 degree, the obtained NiFeCo-mono powder showed the appearance of (00l) peaks, suggesting the stacking LDH structure.

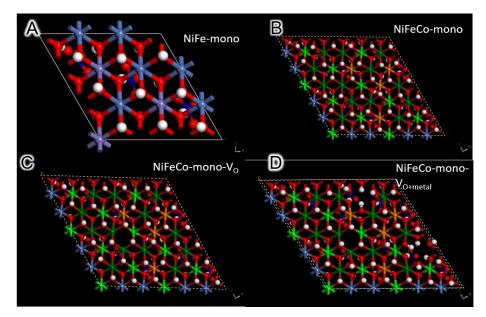

Based on the ICP results, we can obtained the LDH structure with the ratio of Ni:Fe:Co = 2.00 : 1.00 : 0.40

Figure S2. I-t curve and the electrocatalytic efficiency of electrode loaded with NiFeCo-mono at (**A**, **B**) 1.436 V *vs*. RHE and at (**C**, **D**) 1.540 V *vs*. RHE, respectively. (The solid line in (**B**, **D**) means the theoretically expected O_2 , and the circle respends to the experimentally tested O_2 from GC with TCD detector).

The Faradic efficiency of the monolayer LDH was defined as the ratio of the evolution amount of O₂ as tested using TCD to that of the theoretically expected O₂ from the water oxidation process. The theoretical amount of O₂ was then calculated by applying the Faraday law, 96485.4 C causes 1 equivalent of reaction, and four mol electrons equal to 1 mol O₂ during OER process.

Figure S3. The models of **(A)** NiFe-mono, **(B)** NiFeCo-mono, **(C)** NiFeCo-mono-Vo and **(D)** Ni-FeCo-mono-Vo+metal.

Sample	Shell	N^{a}	R[Å]⁵	σ² [10⁻³ Ų]¢	S 0 ²	R-Factor (10 ⁻²)
NiFe-mono	Fe–O	5.7	2.00	4.7	1	0.74
	Fe-M	5.3	3.10	6.6		
-			_		_	_
-	Fe–O	5.4	2.00	5.9	0.81	0.54
NiFeCo-mono	Fe-Ni	4.7	3.10	8.5		

 Table S1. Fitting results from the EAXFS data of NiFe-mono and NiFeCo-mono.

 ^{a}N = coordination number; ^{b}R = distance between absorber and backscatter atoms; $^{c}\sigma^{2}$ = Debye-Waller factor.

References

1. Xu, S.-M.; Yan, H.; Wei, M., J.; Band structure engineering of transition-metal-based layered double hydroxides toward photocatalytic oxygen evolution from water: a theoretical–experimental combination study. *Phys. Chem. C* **2017**, *121*, 2683-2695. doi: 10.1021/acs.jpcc.6b10159