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Abstract: This study aimed to investigate the cytotoxicity and bioactivity of a novel nanocomposite
containing nanoparticles of bioactive glass (nBGs) on human dental pulp stem cells (hDPSCs). nBGs
were synthesized by the sol–gel method. Biodentine (BD) nanocomposites (nBG/BD) were prepared
with 2 and 5% wt of nBG content; unmodified BD and glass ionomer cement were used as references.
Cell viability and attachment were evaluated after 3, 7 and 14 days. Odontogenic differentiation was
assessed with alkaline phosphatase (ALP) activity after 7 and 14 days of exposure. Cells success-
fully adhered and proliferated on nBG/BD nanocomposites, cell viability of nanocomposites was
comparable with unmodified BD and higher than GIC. nBG/BD nanocomposites were, particularly,
more active to promote odontogenic differentiation, expressed as higher ALP activity of hDPSCs
after 7 days of exposure, than neat BD or GIC. This novel nanocomposite biomaterial, nBG/BD,
allowed hDPSC attachment and proliferation and increased the expression of ALP, upregulated in
mineral-producing cells. These findings open opportunities to use nBG/BD in vital pulp therapies.

Keywords: apatite-forming ability; bioactive glass; bioactivity; nanocomposites

1. Introduction

Current scientific evidence has provided support to treat pulpal exposures caused by
dental trauma injuries or caries lesions with vital pulp therapies (VPTs) [1–4]. According to
the recently published guidelines for dental trauma management, every effort should be
made to preserve the vitality of this tissue in immature and mature teeth, recommending
conservative pulpal therapy approaches [5]. Meanwhile, the European Society of Endodon-
tology has opened the door for this paradigm shift, also recommending VPTs such as pulp
capping and pulpotomy (partial and full) for cariously exposed pulps [6].

VPT aims to remove the microbial irritation and protect the exposed tissues from
external stimuli by placing a well-sealing dental material. Ideally, this material should
not be toxic to the pulp cells, but it should also be bioactive towards the tissues by stimu-
lating migration, proliferation and odontogenic differentiation of the cells. Traditionally,
materials based on calcium hydroxide or calcium silicate have been used for this pur-
pose [7–9]. Calcium hydroxide, due to its alkaline pH, exhibits an antibacterial effect
and induces superficial necrosis in the pulpal tissues. This is thought to promote odon-
toblast differentiation and the formation of a dentin bridge [9,10]. However, its main
drawbacks are its dissolution over time, its lack of bonding to the dentin, leading to sus-
ceptibility to leakage, and the tunnel defects in the dentin bridge formed [7,11,12]. In
the 1990s, mineral trioxide aggregate (MTA) appeared, a calcium silicate-based cement
(CSC) commercially available as ProRoot MTA (Tulsa Dental Products, Tulsa, OK, USA),
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composed mainly of Portland cement and bismuth oxide [13,14]. MTA has proven ex-
cellent biocompatibility, with the ability to induce mineralization, showing high clinical
success rates for VPT, generally inducing bridge formation [7,11,15,16]. However, its long
setting time [17], tooth discoloration [18], high cost and difficult handling characteristics
are considered its main disadvantages [8,11]. Subsequently, several other CSCs have been
developed, which, depending on the purpose, can be classified into restorative cements
used in VPT (BiodentineTM, MTA Angelus, RetroMTA and TheraCal LC) and endodontic
sealers (BioRoot RCS) [8]. BiodentineTM (Septodont, St. Maur-des-Fossés, France) has
been manufactured to overcome the disadvantages of MTA [19], exhibiting reduced setting
time [20], enhanced handling and mechanical properties [21] and adequate radiopacity [22].
It has also shown good clinical success in VPT, inducing complete dentinal bridge forma-
tion in exposed pulps of asymptomatic and symptomatic vital permanent teeth [8,23–26].
Moreover, evidence from in vitro and animal studies showed the capacity of Biodentine to
promote greater mineralized tissue deposition than other CSCs [27,28]

Since the sealing capability of materials used in VPT is key, materials that bond to
dentin, stimulate odontogenic differentiation of pulpal cells and induce rapid formation of
a dentin bridge are ideal to allow a reliable sealing. For this purpose, bioceramic-based
materials have mainly been explored, including traditional bioceramics such as hydroxya-
patite [29], calcium phosphate [30], gelatine/hydroxyapatite/tricalcium phosphate com-
posites [31] or novel sol–gel SiO2/ZrO2 ceramic composites [32]. In addition, bioactive
glass (BG) is a bioceramic that exhibits advanced bioactive properties for VPT applications.
The original BG, developed by Hench, is composed of 46.1 mol.% SiO2, 24.4 mol.% Na2O,
26.9 mol.% CaO and 2.6 mol.% P2O5, and it is known as 45S5 and Bioglass [33]. BG was ini-
tially used for medical applications due to its ability to bond to bone through the formation
of an apatite layer on its surface [34,35]. However, it has also since been used in dentistry,
incorporated into toothpaste for enamel remineralization and used for the treatment of
dentin hypersensitivity [33]. In addition, BG incorporation into other dental materials,
such as endodontic sealers [36,37], resin adhesives [38,39] and resin composites [40–43],
has been explored. This was the topic of a recent critical review, which concludes that
the addition of BG into dental composites is promising, presenting multiple benefits, es-
pecially its capacity to promote the precipitation of apatite [44]. When incorporated to
an endodontic sealer, it has demonstrated in vitro capacity to promote differentiation of
human periodontal ligament stem cells into cementoblast-like cells, enhancing the expres-
sion of genes related to the production of mineralized tissues [36]. Additionally, when
this material was tested in a subcutaneous implantation model, it evidenced an adequate
tissue reaction [37]. BG incorporated to resin adhesives showed the ability to bond and
remineralize dentin [38]. It also promoted the precipitation of hydroxyapatite and calcium
carbonate, improving the hybrid layer stability [39]. Similarly, experimental resin compos-
ites with BG have demonstrated multiple advantages, including the remineralization of
adjacent demineralized dentin [40], acid-neutralizing properties [45], a local antimicrobial
effect [41], reduction of biofilm penetration into marginal gaps [42] and enhancement of
their mechanical properties [46,47].

The use of nanoparticles of BG (nBGs) with a high surface-to-volume ratio is of
tremendous interest because of their larger specific surface area and enhanced bioactivity
compared to the micrometric-sized particles of BG [48,49]. In addition, nBGs exhibit a
higher remineralization rate of dentin [50] and an antimicrobial effect [51] when compared
to microsized BG. Furthermore, resin composites containing nBGs promote the formation
of a more uniform apatite layer and improve their capability to increase pH when compared
to resin composites containing microsized BG [52]. nBGs form apatite in contact with the
physiological fluids and they have been proven capable of inducing differentiation into
a mineralizing lineage of stem cells [49,53,54]. In rat dental pulp stem cells, they increase
the expression of odontogenic-related genes and the capacity for mineralization [54], and
in hDPSC, they increase ALP activity, osteocalcin (OC) and dentin sialophosphoprotein
(DSPP) production, and the formation of mineralized nodules [53].
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The specific use of BG in VPT has been explored in animal models, showing the
formation of reparative dentin and only mild inflammatory response in pulp capping
procedures [55–57]. More recently, in a clinical trial on primary teeth, it demonstrated
the formation of a dentin bridge [58]. However, there are no commercially available
materials with BG currently, nor with nBGs for VPT application. For more practical reasons,
this material in its powder form is not convenient to be applied as a VPT material. The
materials for VPT should have good handling properties to allow the correct placement in
the constricted space where pulpal exposure may occur [8]. Therefore, in general, materials
used for this application are applied when recently mixed, before setting, to later achieve
higher mechanical properties [8,59].

The incorporation of nBGs into BD (nBG/BD) is a possible new nanocomposite
material that could integrate the handling properties and the ability to set of BD, together
with its mechanical, biocompatible and bioactive characteristics, with further increased
bioactivity provided by the incorporation of the nBGs. It has been previously shown
that this nanocomposite presents enhanced bioactive properties in simulated body fluid,
allowing a faster deposition of apatite on the surface of the material [60]. However, its
ability to sustain human dental pulp stem cell (hDPSC) viability and differentiation remains
largely unknown. The cellular response to the material is particularly relevant, especially
its ability to induce cellular differentiation into a mineralizing lineage, since the formation
of dentin in the injured area is clinically desirable. In this context, the development of this
bioactive material, for dentin–pulp complex regeneration, is an interesting perspective.
Therefore, the aims of this work are:

• to assess the cytocompatibility, in terms of viability, adhesion and morphology of
hDPSCs, on direct contact with nBG/BD.

• to assess the ability of nBG/BD to stimulate the differentiation of hDPSCs into a
mineralizing lineage.

The null hypothesis was that there would be no difference in cytocompatibility and
ability to stimulate differentiation of hDPSCs into a mineralizing lineage between nBG/BD
nanocomposites and BD.

2. Materials and Methods
2.1. Bioactive Glass Nanoparticle Synthesis and Nanocomposite Preparation

nBG particles (size ca. 40–70 nm) were synthesized by the sol–gel method, using the
following molar composition: 58SiO2:40CaO:5P2O5 [61]. Briefly, a calcium-based solution
was prepared by dissolving appropriate amounts of Ca(NO3)2·4H2O (Merck, Darmstadt,
Germany) in 120 mL of distilled water at room temperature. A second solution was
prepared by diluting tetraethylorthosilicate (TEOS 98%; Sigma, Saint Louis, MO, USA)
in 60 mL of ethanol, which was added to the calcium nitrate solution, and the pH of the
resulting solution was adjusted to 2.0 with nitric acid. This transparent solution was slowly
dropped under vigorous stirring into a solution of NH4H2PO4 (May & Baker, Dagenham,
England) in 1200 mL of distilled water. During the dripping process, the pH was kept
at around 10 with aqueous ammonia. The reaction mixture was subjected to constant
stirring for 48 h at 60 ◦C and allowed to stand for 24 h at room temperature. In this way, a
precipitate was obtained, which was separated by centrifugation for 20 min at 12,000 rpm.
This precipitate was washed through 3 cycles of centrifugation and redispersion of 40 min
each. The solid obtained was frozen at −80 ◦C for 12 h, then lyophilized for 48 h and finally
calcined at 700 ◦C for 3 h, producing a fine white powder of nBGs.

Nanocomposites based on nBG nanoparticles combined with BD (Septodont, Saint
Maur des Fosses, France) were prepared. The 2% nBG/BD and 5% nBG/BD nanocompos-
ites were obtained by adding 15 and 39 mg of nBG powder to the amount of BD existing in
the commercial capsule, respectively. The resulting nBG/BD powders were then dry mixed
within the BD capsule by using an amalgamator (Ultramat 2, SDI, Bayswater, Victoria,
Australia) for 30 s. Five drops of BD liquid phase were then added to the capsule before
mixing, according to the BD manufacturer’s instructions. Neat BD and GIC (Fuji II, GC
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America Inc, Alsip, IL, USA) were used as reference materials and they were prepared
following the manufacturer’s instructions. Discs of the materials, measuring 6 mm in
diameter and 1.5 mm thick, were prepared and allowed to fully set during incubation at
37 ◦C and 100% humidity for 24 h.

2.2. Nanocomposite Characterization

Discs of the nanocomposite materials (2% and 5% nBG/BD), BD and GIC were de-
hydrated, mounted on aluminum stubs and gold coated. Specimens were examined
using scanning electron microscopy (SEM) in a JSM-IT300LV microscope (JEOL USA Inc.,
Peabody, MA, USA) equipped with an energy dispersive X-ray detector (EDX) and Aztec
EDS software (Oxford Instruments, Abingdon, UK) for elemental analysis. SEM represen-
tative images at 1000× were obtained and EDX analysis of the surfaces of the materials
was performed.

2.3. hDPSC Culture

The use of human cells in this study was approved by the Ethics Committee of the
Faculty of Dentistry, University of Chile (Approval number PRI-ODO2018/06). Human
dental pulp stem cells (hDPSCs) were isolated from human third molars, which were
extracted for orthodontic reasons at the Dental Clinic, University of Chile. The extraction
protocol was described by Covarrubias et al. [62].

2.4. hDPSC Viability Assays

hDPSCs were seeded directly onto the surface of 2% and 5% nBG/BD, BD and GIC
discs (5 × 104 cells), placed in a single well of a 24-well cell culture plate and cultured
in Dulbecco’s modified Eagle medium (alpha-MEM; Invitrogen, Carlsbad, CA, USA)
containing 10% fetal bovine serum (FBS, Gibco, Grand Island, NY, USA), 10 mM HEPES
(Gibco, Grand Island, NY, USA), 100 U/mL penicillin and 100 mg/mL streptomycin
(Sigma, Saint Louis, MO, USA). Cell viability was determined at 3, 7 and 14 days of
incubation by using the CellTiter 96® Aqueous One Solution Cell Proliferation Assay
(Promega, Madison, WI, USA), which measures the reduction of [3-(4,5-dimethylthiazol-
2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H–tetrazolium] (MTS) to formazan
by mitochondria in viable cells. Samples were incubated at 37 ◦C in a humidified 5% CO2
atmosphere. The amount of soluble formazan produced by cellular reduction of MTS
was measured by a microplate reader (InfiniteM200, Tecan, Crailsheim, Germany) at a
wavelength of 490 nm.

2.5. hDPSC Morphology and Attachment

hDPSCs were directly seeded onto the material surfaces. After 7 and 14 days of
incubation, the discs with cells were fixed (2% glutaraldehyde, Sigma-Aldrich, Saint Louis,
MO, USA) and stored at 4 ◦C before starting the dehydration process. Discs were then
immersed in increasing ethanol solutions. Critical point drying of specimens using CO2
in an Autosamdri-815, Series A (Tousimis, Rockville, MD, USA) was performed. Samples
were sputter-coated with 200 Å of gold and observed under SEM (Jeol JSM-IT300LV, JEOL
USA Inc, Peabody, MA, USA). Representative micrographs of the surface of the materials
after 7 and 14 days of culture were captured at 100× and 1000×.

2.6. Alkaline Phosphate Activity of hDPSCs

The capacity of the dental materials to stimulate the differentiation of hDPSCs into a
mineralizing lineage was assessed by measuring the activity of the alkaline phosphatase
(ALP) enzyme. ALP activity of hDPSCs cultured with the discs and a control (CT, without
discs) was determined after 7 and 14 days of culture by a colorimetric dephosphorylation
assay of a p-nitrophenyl phosphate reagent (Sigma, Saint Louis, MO, USA), which was
followed by the measuring of the absorbance with a microplate reader (InfiniteM200, Tecan,
Crailsheim, Germany) at a wavelength of 405 nm.
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2.7. Statistical Analysis

Data obtained from the viability and alkaline phosphate activity assays were evaluated
using SPSS software (SPSS Inc., Chicago, IL, USA). The results obtained for all materials
were submitted to the Shapiro–Wilk normality test. After proving the normality of the
sample data distribution, the data were submitted to a one- and two-way ANOVA and
post hoc Tukey test at a 5% level of significance.

3. Results
3.1. Nanocomposite Characterization

SEM images and EDX elemental analysis of the surface of the set cements are presented
in Figure 1. The surfaces of the nanocomposite discs (2% and 5% nBG/BD) appear similar
to unmodified BD. BD, 2% nBG/BD and 5% nBG/BD are mainly composed (>10% by
weight) of oxygen, calcium and carbon and a smaller amount (1–10% by weight) of silica
and nitrogen, with traces (<1% by weight) of sodium and phosphorous. In contrast, the GIC
surface presents visible cracks and it is composed mainly of oxygen, carbon and strontium
and a smaller amount of aluminum and silica, with traces of sodium.
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Figure 1. Representative SEM images (accelerating voltage of 20 kV, working distance of 10.3–10.6 mm, magnification of
1000×) and EDX elemental analysis of BD, 2% nBG/BD, 5% nBG/BD and GIC set cement surfaces.

3.2. hDPSC Viability

MTS cell viability of hDPSCs cultured in direct contact with the materials was assessed
after 3, 7 and 14 days of incubation (Figure 2). The viability of hDPSCs cultured on 2%
and 5% nBG/BD did not present statistical differences in comparison with those grown
on unmodified BD. However, the viability of hDPCSs cultured with GIC was significantly
lower than when cultured on BD and nanocomposites.

3.3. hDPSC Morphology and Adhesion

SEM images of hDPSCs attached to the cement surfaces are shown in Figure 3. After
7 days, cells covered almost the entire surface of the BD and nBG/BD materials, exhibiting
a flattened morphology with cytoplasmic extensions projecting from the cells to adjacent
cells. After 14 days of incubation, an increased density of cells and a thicker cell layer were
observed. White and globular areas with the appearance of mineralized nodules could
be also noted. In GIC samples, after 7 days of incubation, scarce cells with low adhesion
were observed, and after 14 days, cells appeared more flattened and adhered although
with notably lower cell density when compared to the other materials.
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Figure 2. Cell viability of hDPSCSs cultured with BD, 2% nBG/BD, 5% nBG/BD and GIC at different culture times as
determined by the MTS assay. Values are combined from 2 experiments (n = 4/experiment), standard deviations are
represented by vertical bars. *: Statistically significant difference compared with BD (p < 0.05).
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Figure 3. Representative SEM images (accelerating voltage of 20 kV, working distance of 10.0–11.4 mm,
magnification 100× and 1000×) of hDPSCs cultured with BD, 2% nBG/BD, 5% nBG/BD and GIC
after 7 and 14 days of incubation.

3.4. ALP Activity of hDPSCs

The ability of the nanocomposites to stimulate differentiation of hDPSCs towards a
mineralizing lineage was assessed by quantifying the expression of ALP enzyme (Figure 4).
Statistically, significantly higher ALP activity values were measured in hDPSCs in contact
with 2 and 5% nBG/BD after 7 days of culture, when compared to hDPSCs in contact with
the control (cells without material), BD and GIC. After 14 days of culture, the nanocompos-
ites and BD presented a significantly higher ALP activity when compared to CT and GIC.
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4. Discussion

In the present study, the incorporation of nBGs to a calcium silicate cement improved
its ability to induce odontogenic differentiation, without generating significant changes in
the adhesion and cell viability of hDPSCs.

The cytocompatibility of the nanocomposite materials was evaluated with the materi-
als in direct contact with the hDPSC culture since this is the relationship that is established
in VPTs. Cell viability measured through MTS mitochondrial activity and cell adhesion
observations showed that the incorporation of nBGs in contents of 2 and 5% to BD does not
affect the viability nor the adhesion of hDPSCs. To our best knowledge, no studies about
cytocompatibility of nBG/BD composites have been reported. However, the viability of
hDPSCs in contact with nBG-modified composites has been studied by means of different
vehicles such as polymer hydrogels [63], synthetic polymers [64] and chitosan scaffolds [65].
In these studies, similarly to that observed in the current work, the presence of BG did not
affect the adhesion and proliferation of the cells, with a cytocompatibility similar to the
controls without BG.

SEM analysis of cells adhered to the materials revealed that hDPSCs behaved similarly
when in contact with nBG/BD nanocomposites and BD. The cells were flattened, forming
a well-organized layer covering the entire surface, with multiple extensions between the
cells and towards the surface of the materials, indicating an effective cellular adhesion. In
addition, the presence of nodules with a mineralizing appearance was also observed [62],
which could be coupled to the differentiation process of the cells towards a mineralizing
lineage. In contrast, the surface of the GIC was smooth and cracked, with poorly adhered
cells, isolated and with a contracted appearance [66].

Cell differentiation into a mineralizing lineage was confirmed by determining the
activity of ALP, an enzyme involved in the mineralizing process. hDPSCs cultured on
the nBG/BD nanocomposites showed an early induction of ALP production after 7 days
of culture, statistically higher than those incubated with neat BD. After 14 days, cells
on nBG/BD and BD showed increased ALP activity compared to those cultured with
control and GIC. Especially, BD loaded with 2% nBG induced the highest ALP activity,
indicating that this nanoparticle content favors the stimulation of the cell differentiation
process towards a mineralizing lineage. These results can be explained by the demonstrated
capacity of nBGs to induce both osteogenic [34,67] and odontogenic differentiation [68–70].
nBGs have shown their capacity to promote the migration, adhesion and expression of
odontogenic-related proteins and genes in hDPSCs, which has been mainly attributed to
the release of Si and Ca ions [53,68,70]. In contrast with microsized particles, nBGs generate
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a faster release of soluble ions, which are capable of chemically driving hDPSCs along
a mineralization pathway [68]. In addition, the application of microsized BG in a pulp
capping procedure in primary human teeth has been shown to promote dentin bridge
formation [58].

hDPSCs were used in this study to evaluate the cytocompatibility and bioactivity of the
nanocomposite developed, since they are widely used in in vitro studies for the evaluation
of dental materials. Their isolation is not invasive (using extracted semi-included third
molars) and allows the creation of an approximation of how the cells of the dental pulp will
behave when they come into direct contact with the dental material and its components [71].
One of the relevant characteristics of hDPSCs is their differentiation potential, which can be
into odontoblasts, osteocytes/osteoblasts, adipocytes, chondrocytes and neural cells [72].
This capacity for differentiation allows the dental pulp to form dentin in response to a
stimulus such as dental caries or trauma injuries. However, for this to occur, the vitality of
the dental pulp must be preserved, hence the importance of evaluating cytocompatibility
in materials for VPT [73].

Regarding the limitations of this study, additional studies are necessary to establish
the safety and efficacy of the use of this material for clinical application. The results
provide information about the in vitro cellular responses and whether these responses
will be replicated in clinical conditions remains unknown. In addition, although the ALP
activity of hDPSCs was analyzed to explore possible cell differentiation into a mineralizing
type, the gene expression related to the formation of dentin was not studied. During
dentinogenesis, several other genes, proteins and markers are detected, such as DSPP,
dentin sialoprotein (DSP), dentin phosphoprotein (DPP), dentine matrix protein-1 (DMP-1)
and OC, whose expression would be relevant to study [73]. nBGs have been shown to
increase the expression of odontogenic genes, osteocalcin and DSPP protein production
in hDPSCs [49]. Therefore, it would be interesting to know if this effect is maintained
when they are incorporated into BD. Further investigations are also necessary to study
the inflammatory response to this material, since inflammation and regeneration are of
particular significance within the non-extensive space in the dental pulp tissue [69,74].
It would also be relevant to perform future research using animal models, which could
provide histological evidence of hard tissue deposition and sealing ability, before clinical
testing [75,76].

Within the limitations of this in vitro study, the results indicate that this nanocomposite
could be a promising material for use in direct contact with the injured dentin–pulp
complex, which could lead to faster repair. These outcomes raise the interesting possibility
of using the nanocomposite in direct contact with dental pulp tissues to contribute to the
preservation of natural dental tissue.

5. Conclusions

The incorporation of nBGs in a calcium silicate cement does not alter the cytocom-
patibility, in terms of viability, adhesion and morphology of hDPSCs, compared to the
neat cement.

The nBG/BD nanocomposite exhibited a higher capacity to stimulate the differentia-
tion of hDPSCs into a mineralizing lineage than BD.

The cellular properties of the nBG/BD nanocomposite make it a promising material
to be used in VPT, which could lead to faster dentin formation and therefore to the healing
and repair of the dentin–pulp complex.
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