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Abstract: Cu nanofoams are promising materials for a variety of applications, including anodes in
high-performance lithium-ion batteries. The high specific surface area of these materials supports
a high capacity and porous structure that helps accommodate volume expansion which occurs as
batteries are charged. One of the most efficient methods to produce Cu nanofoams is the dealloying
of Cu alloy precursors. This process often yields nanofoams that have low strength, thus requiring
additional heat treatment to improve the mechanical properties of Cu foams. This paper provides
the effects of heat treatment on the microstructures, mechanical properties, and electrochemical
performance of Cu nanofoams. Annealing was conducted under both inert and oxidizing atmo-
spheres. These studies ultimately reveal the underlying mechanisms of ligament coarsening during
heat treatment.
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1. Introduction

Nanofoams are foams with pore sizes that range from several to hundreds of nanome-
ters [1]. These materials have several important applications, including catalysts, fuel cells,
substrates for heat-exchanger applications, sensors, actuators, dye-sensitized solar cells,
microfluidic flow controllers and anodes in high-performance lithium-ion batteries [2—6].
In the latter case, the very high specific surface area of nanofoams can promote high battery
capacities. Moreover, the pores in nanofoam materials can help to accommodate the volume
changes that occur during the charging cycle of batteries, as one of the fundamental reasons
for the electrode material’s volume change, fracture/cracking and capacity degradation
could be the diffusion-induced stresses [7-10]. Nonetheless, in some applications, such as
in gas diffusion layers [11] and electrodes in polymer electrolyte membrane fuel cells [12],
the coexistence of nano- and micron-sized pores can further improve the performance of
the foam because the micropores facilitate the flow of gas and water.

Metallic nanofoams can be processed by chemical dealloying of single-phase solid—
solution binary alloys [13]. This technique leaches minimal amounts of noble metals out of
the alloy, so more noble metal remains in the nanoporous material (selective dissolution).
For example, aluminum can be dealloyed from an Al-Cu system under either acidic (e.g.,
HCI) or alkaline (e.g., NaOH) solutions, yielding a Cu nanofoam because the standard
potential of Al is much lower than that of Cu [14]. Bulk Al-Cu intermetallic compounds
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produced by techniques such as powder metallurgy methods [15,16] or pack cementation
technique [17] serve as precursors for materials with nanosized pores. As an example,
an Al,Cu phase generated by pack cementation can be easily dissolved by an aqueous
solution of HCI [17]. By comparison, other phases (e.g., Al4Cug) cannot be dissolved.
This dissolution behavior necessitates the use of materials with chemical compositions
of around 67 at.% Al and 33 at.% Cu to process Cu nanofoams. Moreover, the pack
cementation time also has a significant bearing over the phase composition of the bulk
material and, therefore, on the pore structure of the resulting dealloyed Cu foam. During
pack cementation, a Cu plate is placed in a bed of Al powder, heated above the melting
point of aluminum, and maintained at this temperature for different periods [18]. During
this heat-treatment process, the Al particles melt, and Al atoms diffuse into the Cu to
form an Al,Cu phase. At long pack cementation times (>12 h), an Al phase also forms in
addition to and alongside the Al,Cu intermetallic compound [18]. Subsequent dissolution
of such aluminum products yields materials with micron-sized pores in place of the Al
phases, resulting in a hierarchical pore structure comprising both micro- and nano-pores.

Furthermore, the internal surfaces of dealloyed Cu foams can be replete with an
“active” layer that stores Li-ions, which is beneficial for battery applications. These coatings
can be composed of different materials such as tin or copper-oxide [17,19,20]. Annealing
processes under oxidizing environments at different temperatures can tailor the struc-
tures (e.g., CuO versus Cu,O), morphologies, and thicknesses of the surface oxide layer,
thereby influencing the electrochemical performances of the nanofoam materials [21]. Heat
treatments conducted under inert atmospheres do not modify surface oxides but can sub-
stantially improve the mechanical strengths of the dealloyed Cu foams [22]. This enhanced
mechanical reliability of the Cu nanofoam can then allow it to be used in the form of a
thin, large-area sheet, thus providing a considerably wider range of practical applications.
For example, the strengthened Cu nanofoam can then be used as an advanced functional
material for battery electrodes, catalysts, heat exchangers, and filters by enabling efficient
and rapid electrochemical reactions owing to their high specific surface area [23].

In this study, the effects of thermal annealing under inert and oxidizing atmospheres
are investigated. The ligament coarsening, and the change of the mechanical and electro-
chemical performances due to the heat treatments, are discussed. Moreover, this study
presents a summary of literature data in this field, including recent research results.

2. Materials and Methods
2.1. Processing of Cu Foams and the Annealing Conditions

The influence of heat treatments on ligament sizes in Cu nanofoams prepared by
dealloying was investigated in samples processed by three distinct routes (routes A—C). For
all specimens, the bulk precursor materials were obtained by pack cementation. In route
A, ablend of Al, Al;0O3, and NH4Cl powders were mixed and stacked on a Cu disk with
a diameter of 11 mm (which is a common size for a 2032-type coin cell) and thickness of
0.25 mm in a stainless-steel container. This powder blend with the Cu plate was heat-treated
at 800 °C for 6 h (the pack-cementation step) in a box furnace (Korea Furnace Development
Co., Yangju, South Korea). During the pack cementation process, Al atoms diffused into
the Cu plate as a result of the NH4Cl powder serving as a chemical reaction activator at
elevated temperatures. The result of this process is an Al,Cu phase [17]. The Al,O; filler in
the powder blend slows the process and enables control over the uniformity of Al layer
on Cu by decreasing the effective surface of the Cu disk [17]. After the pack-cementation
process, the material was annealed at 700 °C for 9 h and subsequently at 500 °C for an
additional 6 h under an Ar atmosphere, which ensured a homogeneous distribution of Al
in the Al,Cu phase. The pack-cemented bulk sample was mechanically ground by using
abrasive grinding SiC papers (with 1000, 2500, and 4000 grit sizes) and polished by using
a1 um Al,O3 suspension. After surface treatment, the pack-cemented bulk sample was
cut into pieces, dealloyed and used for additional annealing. For samples prepared by
route A, dealloying was conducted by etching in an aqueous solution of 2 wt.% HCl at
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45 °C for 12 h. The dealloyed sample was further annealed at 400 °C for 6 h. For samples
prepared by route B, the conditions of pack cementation were similar to those of route A
except that the pack cementation time was increased to 15 h. The longer pack-cementation
time promotes higher Al content, so an additional Al phase forms in tandem with Al,Cu.
The presence of the Al phase is significant because its dissolution during the dealloying
process provides large pores in the resulting Cu foam (5-6 um) in addition to the nanopores,
which have sizes of less than 100 nm [18]. Thus, such materials have hierarchical pore
structures. In route B, dealloying was conducted in an aqueous solution of 5 wt.% HCI at
90 °C for 12 h. The Cu foams processed by route B were heat-treated under two different
conditions, namely 300 °C for 70 h and 800 °C for 5 h. In route C, all pack cementation and
dealloying conditions were identical to route B; however, the concentration of HCI was
10 wt.% instead of 5 wt.%. The Cu foams processed by route C were heat-treated under
three different conditions: 300 °C for 70 h, 600 °C for 5.5 h, and 800 °C for 5 h.

The effect of annealing under oxidizing atmospheres on the microstructure and elec-
trochemical behaviors of Cu foams processed by dealloying was also investigated. In these
experiments, the initial sample was processed by route A. Subsequent annealing in air was
conducted at 110, 140, 170, and 200 °C for 30 min to grow oxidation layers that were used
as an anode active material in Li-ion batteries.

2.2. Study of the Microstructure

The ligament sizes of the dealloyed and annealed Cu foams were determined by
scanning electron microscopy (SEM) using an FEI Quanta 3D electron microscope (manu-
facturer: Thermo Fisher Scientific, Waltham, MA, USA). The acceleration voltage and the
vacuum were 20 kV and 10~# Pa, respectively. The average ligament size was obtained
using a standard metallographic method in which straight lines were placed randomly
on the images, and the average length of the segments of the straight lines lying inside
the ligaments was determined. The measurement for ligament size was carried out for
as many ligaments as possible. Depending on the ligament size and the amount of SEM
figures taken, the number of ligaments used to determine the ligament size was between
20 and 180.

The microstructure inside the Cu ligaments was studied by X-ray line profile analysis
(XLPA) which is a non-destructive method to determine the density of dislocations and twin
faults [24]. Moreover, XLPA interrogates much larger volumes than microscopic methods,
such as transmission electron microscopy (TEM), and thereby provides a complementary
and quantitative bulk characterization of the lattice defect structures. The X-ray line profiles
were measured with a RA MultiMax-9 high-resolution rotating anode diffractometer
(manufacturer: Rigaku, Tokyo, Japan) using CuK«; radiation (wavelength: 0.15406 nm).
One pattern was taken for each foam. A quantitative evaluation of diffraction peaks
was performed by applying the convolutional multiple whole profile (CMWP) fitting
method [25]. In this procedure, the measured X-ray data are approximated by the sum
of a background spline and subsequently fit to theoretical diffraction profiles of model
microstructures, which contains the various defining parameters of the microstructure
such as the average crystallite size, dislocation density, and twin fault probability. The twin
fault probability in face-centered cubic (fcc) crystals is defined as the fraction of twin faults
among the {111} lattice planes. It should be noted that the phrase “crystallite” refers to the
underlying crystalline structure inside the ligament, while the word “ligament” refers to
the morphological features of the foam.

2.3. Characterization of the Mechanical Behavior by Nanoindentation

The influence of annealing on the mechanical behaviors of Cu foams processed by
route C was investigated using nanoindentation. Approximately 20 Vickers tests were
conducted on each foam sample before and after annealing at 600 °C for 5.5 h. A UMIS
nanoindentation device with Vickers indenter tip was used (manufacturer: CSIRO, West
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Lindfield, Australia), applying a maximum load of 2 mN. The hardness and the elastic
modulus values were determined by applying the Oliver-Pharr method [26].

2.4. Study of the Electrochemical Performance of the Cu Foams Annealed under Oxidizing
Atmospheres

To demonstrate the performance of the synthesized Cu nanofoam as a LIB anode
current collector, a Cu oxide layer, a high-capacity anode active material, was thermally
grown on the surface of Cu nanofoam in an air tube furnace (DBP-6P, Dong-Jin Machine,
South Korea). All of the Cu/Cu oxide nanofoam electrodes were prepared with a dimension
of 11 mm in diameter and 250 pum in thickness. CR2032-type coin-cells were assembled in a
glove box in a dry Ar atmosphere using the Cu/Cu oxide nanofoam anode coupon as the
working electrode and a Li metal foil for both the counter and reference electrodes. The
electrolyte was a traditional 1 M LiPFg solution of ethylene carbonate (EC) and diethylene
carbonate (DEC) in a 3:7 volume ratio. Galvanostatic tests (WBCS3000 cycler, WonATech,
South Korea) were carried out on the assembled coin cells containing the Cu/Cu oxide
nanofoam anode at a current density of 1 mA /cm? in the voltage range of 3.0 V to 0.01 V
(vs. Li-ion/Li) at 25 °C.

3. Results and Discussion

3.1. Effects of Annealing under Inert Gas Atmospheres on the Microstructural and Mechanical
Properties

3.1.1. Ligament Coarsening Due to Heat Treatment

Figure 1a shows the SEM image of the Cu nanofoam prepared using route B, demon-
strating an average ligament size of approximately 640 nm. Annealing at 300 °C for 70 h
and 800 °C for 5 h resulted in ligament coarsening, as revealed in the SEM images in Figs.
1b and c. The average ligament sizes for materials annealed at 300 °C for 70 h and at 800 °C
for 5 h were ~770 and ~5180 nm, respectively (see also Table 1). Similar ligament size was
obtained for route C; the initial ligament size for the dealloyed foams varied between 540
and 740 nm. This demonstrated that changing the HCI concentration from 5 to 10 wt.%
did not influence the ligament size significantly (see Figure 2a and Table 1). It is noted that
for route C the ligament sizes after dealloying differ slightly in different samples (540 and
740 nm). This observation can be explained by the fact that the samples with the ligament
sizes of 540 and 740 nm were prepared from two different pack cemented disks. X-ray
diffraction revealed that the phase composition (the fractions of Al and Al,Cu phases) and
the crystallographic texture of the main Al,Cu phase were different in the two disks. This
effect can cause the difference between the ligaments’ sizes after dealloying. Annealing
at 300 °C for 70 h, 600 °C for 5.5 h, and 800 °C for 5 h produced materials with ligament
sizes of ~980, ~1620, and ~4220 nm, respectively, as shown in Figure 2b—d and Table 1. The
shorter pack cementation time and the lower temperature of dealloying used for route
A resulted in much smaller ligament sizes of ~105 nm, which increased to ~125 nm in
materials prepared using heat treatment at 400 °C for 6 h (the corresponding SEM images
are shown in [22]).
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Figure 1. Scanning electron microscopy (SEM) images for Cu foams (a) processed by using route B and annealed at
(b) 300 °C for 70 h and (c) 800 °C for 5 h.

Table 1. Ligament sizes of Cu foams processed and heat-treated under different conditions before and after thermal

annealing.
Processing Conditions Heat Treatment Conditions Ligament §1ze before ngament. Size after
Annealing [nm] Annealing [nm]
Route A * 400°Cfor6h 105+ 6 125+ 6
Route B ** 300 °C for 70 h 640 £ 60 770 £ 50
Route B 800 °Cfor5h 640 + 60 5180 & 880
Route C *** 300 °C for 70 h 740 £+ 50 980 + 60
Route C 600 °C for 5.5 h 540 £ 20 1620 + 80
Route C 800 °Cfor5h 740 £ 50 4220 + 360

* Route A: Pack cementation at 800 °C for 6 h, homogenization at 700 °C for 9 h, and then at 500 °C for 6 h under an Ar atmosphere,
dealloying in an aqueous solution of 2 wt.% HCl at 45 °C for 12 h [22]. ** Route B: Pack cementation at 800 °C for 15 h, homogenization
at 700 °C for 9 h, and then at 500 °C for 6 h under an Ar atmosphere, dealloying in an aqueous solution of 5 wt.% HCl at 90 °C for 12 h.
*** Route C: Pack cementation at 800 °C for 15 h, homogenization at 700 °C for 9 h, and then at 500 °C for 6 h under an Ar atmosphere,
dealloying in an aqueous solution of 10 wt.% HCl at 90 °C for 12 h.

Figure 2. SEM images of (a) Cu foam materials processed by route C and subsequently annealed at
(b) 300 °C for 70 h, (c) 600 °C for 5.5 h (d) and 800 °C for 5 h.



Materials 2021, 14, 2691

6 of 18

The kinetics of microstructure coarsening during annealing of foams has been de-
scribed by the following relationship [27-29]:

d" —d} = t-K(T) (1)

where d is the ligament size after heat treatment, dy is the size before heat treatment, T is
temperature, f is time, and exponent n may vary between 3 and 4 [29], depending on the
mechanism of coarsening. K(T) can be expressed by the following Equation:

K(T) = K g-qurr )
T
where k is a constant, Q is the activation energy of the mechanism of coarsening, and R
is the universal gas constant. The formulas presented above are also used to describe
Ostwald ripening in bulk materials [30]. It is well understood [31-35] that the exponent
n allows discrimination between a coarsening operated by surface diffusion (n = 4) and
lattice diffusion (n = 3). A previous study on Au foams showed [35] that # was closer to
4, indicating that the surface diffusion tends to dominate over lattice diffusion. On the
other hand, the experimentally determined activation energy (Q) for an Au foam suggests
that lattice diffusion might also be a dominant coarsening mechanism if the annealing
is performed in a vacuum [33]. The activation energy of the underlying mechanism of
ligament growth can be obtained from the slope of the straight line fitted to the plot of
In{[d" —d}]T/t} versus 1/T. A former study [29] also shows that the accuracy of fitting
is similar either for n = 3 or 4 in the case of Au nanofoams. Herein, we thus carried out the
analysis for both exponents.
As an example, Figure 3 shows a plot of In{[d" —d{|T/t} versus 1/T for the six
Cu foams listed in Table 1 using n = 3. The data can be fitted well by a straight line for
the samples processed by routes B and C, while the datum point related to the specimen
produced by route A does not follow this trend. The same observation was found for
n =4 (not shown here). This deviation can be explained by the much smaller ligament
size for the foam processed by route A. Indeed, routes B and C resulted in initial ligament
sizes between 540 and 740 nm, while the foam processed by route A had a much smaller
ligament size (about 105 nm). Unlike in bulk samples, in the case of foams, the material for
coarsening is supplied by diffusion along the ligaments. Therefore, the diffusion rate is
influenced by the thickness of ligaments since their interior and/or surface serve as paths
for material flow. Namely, the larger the ligament size, the faster the diffusion. Thus, for
smaller ligament size the coarsening is less pronounced under the same heat treatment
conditions (time and temperature). This is the reason why the foam having an initial
ligament size of about 105 nm does not follow the trend suggested by the samples with the
ligament sizes between 540 and 740 nm (see Figure 3).
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Figure 3. A plot of [n{[d® — d3]T/t} versus 1/T used to determine the activation energy of the
mechanism behind ligament coarsening in Cu foams processed by dealloying and subsequently
annealed under an inert atmosphere. The plotting was performed based on Equation (3). The grain
sizes (d and dy) were taken in nanometres, while the units of t and T were hours and Kelvin degrees,
respectively.

The accuracy of fitting for the plot of In{ [d" — dl]T/t} versus 1/T was similar for
n =3 and 4 as shown from the correlation coefficients listed in Table 2. The fitting on the
datum points related to dealloyed Cu foams having initial ligament sizes of 540-740 nm
yields an activation energy of about 89 £ 5 and 103 £ 11 k] /mol for n = 3 and 4, respec-
tively. Thus, both evaluations gave practically the same activation energy. This value is
approximately half of the activation energy of the self-diffusion of Cu (210 kJ/mol [36]),
being close to the activation energy of Cu diffusion along grain boundaries and dislocations.
Indeed, the activation energy of diffusion varies with the nature of the grain boundaries,
assuming the values between 81 and 104 kJ/mol [37-39]. It should be noted that the rate of
diffusion along dislocations is similar to that in the grain boundaries and in the next section
it will be revealed that the dealloyed Cu foams contain dislocations with a large density.
However, it is worth noting that the activation energy values determined experimentally
in this study fall within the range determined for surface diffusion in Cu. Indeed, former
investigations revealed that the migration of Cu atoms on the surface of Cu can occur by
either bridge diffusion of adatoms or a vacancy exchange mechanism. For the adatom
and vacancy migration processes, the activation energy values are in the ranges of 3-124
and 27-114 kJ /mol, respectively [40-42]. Therefore, both diffusions along the defects (e.g.,
boundaries and dislocations) inside the ligaments and on the surface can contribute to
ligament coarsening in the Cu foams investigated in this study. Our conclusion is that the
growth of ligaments is controlled by a diffusion that is faster than bulk diffusion. The SEM
image in Figure 4 shows several ligaments grown in the material processed by route C and
annealed at 800 °C for 5 h. Arrows indicate boundaries between the ligaments, which may
serve as paths for fast diffusion occurring during coarsening.
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Table 2. The activation energy and the correlation coefficient obtained for fitting of In{ [d" — di| T/}
versus 1/T with the exponent values of n = 3 and 4. In the analysis, the Cu foams with the ligament
sizes between 540 and 740 nm were used (see Table 1).

Exponent n Activation Energy [k]/mol] Correlation Coefficient

of Fitting
3 89 £5 0.99496
4 103 £ 11 0.99458

Figure 4. SEM image illustrates several ligaments grown in the material processed by route C
and subsequently annealed at 800 °C for 5 h. The yellow arrows indicate boundaries between the
coalesced ligaments.

3.1.2. Changes in Defect Density during Annealing

Former studies show that the ligaments in dealloyed Cu foams contain a considerable
density of lattice defects, such as dislocations and twin faults [18,22]. These defects are
grown during foam processing. Post-processing annealing significantly influences the
defect density. Qualitative effects of annealing on the microstructure can be obtained by
inspecting the XRD peak breadth. Figure 5a shows the classical Williamson-Hall plots
for the Cu foam processed by route C and its counterpart that was annealed at 600 °C
for 5.5 h after dealloying. This graph shows the full width at half maximum (FWHM)
values of the diffraction peaks plotted against a function of the magnitude of the diffraction
vector, which is denoted as g [24]. The FWHM and g are obtained using cosf-A(26)/A and
2-sinfl/ A, respectively, where 0 is the Bragg angle, A(20) is the peak breadth, and A is the
wavelength of the X-ray. Analyses of Figure 5a reveal that the heat treatment at 600 °C
for 5.5 h produced a significant reduction in the peak breadth for the Cu foams processed
by route C. Notably, the widths of the diffraction peaks were larger than instrumental
broadening even after annealing at 600 °C for 5.5 h, which indicates the presence of a
significant defect density in the microstructure.
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Figure 5. (a) Williamson—-Hall plots for Cu foam processed by route C and the counterpart of this material, which was
annealed at 600 °C for 5.5 h after dealloying. FWHM: full width at half maximum, g: magnitude of the diffraction vector
(see text). (b) A section of the diffraction pattern evaluated by the CMWP fitting method using data obtained from a Cu
foam processed by route C. The open circles represent the measured data, and the solid line reflects the fitted pattern. The

difference between the data and the calculated pattern is shown as a black line at the bottom of the figure.

Figure 5b illustrates the CMWP fitting on the diffraction pattern acquired from Cu
foam processed by route C. Only a section of the diffractogram is shown in this figure to
provide better visibility of the coincidence between the measured and calculated patterns.
The crystallite size, dislocation density, and twin fault probability obtained by XLPA for
two dealloyed Cu foams processed by routes A and C are listed in Table 3. While the
processing route affects the microstructural parameters of the resulting foam, the values of
these parameters are on the same order of magnitude. For example, the crystallite sizes
are a few tens of nanometers for both materials, and the twin fault probability is 1-2%
different across the two materials, while the dislocation densities for both materials are
10" — 10'® m~2. Differences between the defect structures can also be observed for Cu
foams processed under the same nominal pack cementation and dealloying conditions. The
dislocations and twin faults in the Cu foams are as-synthesized defects that form during
the development of Cu ligaments over the course of the dealloying process.

Table 3. Changes in the crystallite size and defect densities during annealing of Cu foams processed by dealloying under

different conditions.

Processing Conditions Crystallite Size [nm] DlslocatL(l)n lz)ensﬁy Twin Faul(t)Probablhty
[10'* m* ] [%]
Route A * 18+4 4+1 21+02
Route A + annealing at 400 °C for 5.5 h 142 + 17 6+1 1.0£0.1
Route C ** 60 +7 11+2 1.1+0.1
Route C + annealing at 600 °C for 5.5 h 90 £+ 10 0.5+0.2 0.1+£0.1

* Route A: Pack cementation at 800 °C for 6 h, homogenization at 700 °C for 9 h, and then at 500 °C for 6 h, etching in an aqueous solution
of 2 wt.% HCl at 45 °C for 12 h [22]. ** Route C: Pack cementation at 800 °C for 15 h, homogenization at 700 °C for 9 h, and then at 500 °C
for 6 h in an Ar atmosphere, etching in an aqueous solution of 10 wt.% HCl at 90 °C for 12 h.

While there are variations in the microstructural parameters of foams prepared by
different processing routes, heat treatment causes significant changes in the defect structure
of both dealloyed Cu foams, as shown in Table 3. Namely, the crystallite size increased while
the twin fault probability decreased during annealing. Moreover, the dislocation density
of the foam processed by route C decreased by more than one order of magnitude during
heat treatment at 600 °C for 5.5 h. By comparison, considerable changes in the dislocation
density did not occur in the Cu foam processed by route A when the sample was annealed
at 400 °C for 5.5 h. Dislocations most likely form at the interfaces between ligaments where
the mismatch stresses between the Cu crystallites are reduced by developing dislocations.
The different structures and morphologies of the ligaments in the foams processed by
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the two routes cause the dislocation densities in the as-processed samples to be different.
For materials prepared by route A, the dislocation density is lower and did not change
during heat treatment, most likely due to the relatively low temperature of annealing. For
samples processed by route C, the comparatively higher annealing temperature resulted in a
pronounced reduction of lattice defects, as shown in Table 3. Changes in the microstructural
parameters for this sample are also presented in Figure 6a. Importantly, the ligament size
determined by SEM differs from the crystallite size obtained by XLPA. This discrepancy
arises because the latter method is very sensitive to small misorientations. Thus, the fact
that the crystallite size is considerably smaller than the ligament size suggests that the
ligaments fragment into smaller regions with various crystallographic misorientations. The
decrease of the defect density during annealing of the dealloyed Cu foams certainly softens
the ligaments. However, the coalescence of the ligaments during heat treatment produces
a strengthening effect. Thus, understanding the overall result of these two opposing effects
during annealing is an important objective for future studies.
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Figure 6. Comparison of (a) microstructural parameters and (b) hardness and elastic modulus obtained via indentation
measurements for Cu foams processed by route C, as well as its counterpart material that was annealed at 600 °C for 5.5 h

after dealloying.

3.1.3. Effect of Heat Treatment on the Mechanical Properties of Cu Foams

The influence of annealing on the mechanical behaviors of Cu foams processed by
route C was investigated by using nanoindentation. Approximately 20 Vickers tests were
conducted on each foam before and after annealing at 600 °C for 5.5 h. Representative
force-penetration depth curves for the as-processed and heat-treated materials are shown in
Figure 7a,b, respectively. High scattering of the load-depth curves suggests a heterogeneous
microstructure both before and after annealing. The maximum penetration depth varied
between 5 and 20 um for as-processed materials, which corresponds to a Vickers indentation
diagonal of 35-140 um. For the annealed sample, the indentation diagonals range from 7
to 35 um. While these indentation sizes are much larger than the corresponding ligament
sizes (which are 0.5 and 1.6 pm before and after annealing, respectively), the indentation
results are nonetheless scattered. The pronounced spatial variation of the indentation
behavior most likely arises from the hierarchical pore structures that form due to the
relatively long pack cementation time (15 h) of route C. This means that micropores with
an average size of approximately 6 um coexist with the nanopores, which was caused by
the multiphase structure of the pack cemented material (i.e., Al phase also forms beside
AlyCu) [18]. Such large pores can promote softer behavior for some indentations during
indentation measurements, which manifests as a higher penetration depth. Moreover, there
may be both lateral and in-depth variations in the bond strength between the ligaments,
contributing to inhomogeneous indentation behaviors.
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Figure 8 shows a plot of the distributions of hardnesses and Young’s moduli that were
established from the load-depth indentation curves for Cu foams processed by route C,
as well as its counterpart material that was annealed at 600 °C for 5.5 h after dealloying.
The hardness and Young’s modulus have broad distributions, which is in accordance with
the large variations in the load-depth curves. Even if there is a large scattering in the
mechanical behavior of the materials, the heat treatment certainly yields a substantial
increase in both hardness and Young’s modulus, as shown in Figure 6b. Namely, the mean
hardness increased from 1.5 to 45 MPa, and the Young’s modulus increased from 56 to
990 MPa as a result of thermal annealing at 600 °C for 5.5 h. This observation suggests that
the strengthening effects from ligament coalescence were greater than softening effects due

to a reduction in the defect density inside the ligaments.
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Figure 8. (a,b) Distributions of hardness and (c,d) Young’s modulus obtained by nanoindentation measurements conducted
on Cu foams processed by (a,c) route C and (b,d) its counterpart annealed at 600 °C for 5.5 h after dealloying.
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3.2. Influence of Oxidizing Heat Treatment on the Microstructure and Electrochemical Performance

Cu foams processed by dealloying were subsequently annealed under oxidizing
atmospheres to investigate changes in the microstructure and electrochemical behaviors.
The initial sample was processed by route A without annealing after dealloying. The
average ligament size in the as-processed nanoporous Cu foam was approximately 160 nm
which differs slightly from the value determined for the other sample used in the annealing
processes performed in inert atmospheres. This difference in ligament sizes may be caused
by the fact that the dealloying processes were performed in different research laboratories
in Korea and Hungary, thus slight differences between the processing conditions cannot be
excluded. In addition, the microstructures of the pack cemented disks used for dealloying in
Korea and Hungary might be slightly different. Annealing in air was conducted for 30 min
to grow oxidation layers for use as anode active material in Li-ion batteries. This additional
heat treatment resulted in the increase of ligament size ranging from 177, 183, 210, to 260 nm
sizes for 110, 140, 170, and 200 °C, respectively. The SEM images in Figures 9 and 10 show
representative examples of the microstructures of Cu foams annealed in air at different
temperatures.

Figure 9. SEM images of Cu nanofoams oxidized at (a,b) 110 °C for 30 min and (c,d) at 140 °C for 30 min.
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Figure 10. SEM images of Cu nanofoams oxidized at (a,b) 170 °C for 30 min and (c,d) 200 °C for 30 min.

Assuming that ligament coarsening under an oxidizing atmosphere can be described
by Equations (1) and (2), In{ [d" —d}| T/t} versus 1/T was plotted in Figure 11. In this
evaluation, n = 3 was used since former studies (e.g., [43]) have shown that the ligament
growth was caused mainly by the thickening of the oxide layer via Cu atom diffusion
through the oxide layer. The data in Figure 11 are reasonably fitted by a straight line, the
slope of which provides an estimate for the activation energy of the underlying mecha-
nism for ligament growth. This provided an activation energy of about 41 k] /mol that is
approximately half of the value determined for materials annealed at high temperatures
under an inert atmosphere (see Section 2.1). Similarly low activation energies were de-
termined for the growth of oxide layers on the surface of Cu in a previous study of bulk
materials [44], claiming an activation energy of 40-60 k] /mol over the temperature range
of 300 to 500 °C. The relatively low activation energy was explained by Cu migration along
the grain boundaries of the oxide layer, specifically from the bottom of the layer to the
surface, which served as the underlying process for the growth of the oxide layer. In this
study, surface oxide layer growth most likely serves as the dominant factor for ligament
coarsening in the Cu foams, thus resulting in a much lower activation energy than for
materials annealed in an inert gas atmosphere.

A previous study also investigated ligament growth in three types of dealloyed Cu
foams during oxidation for 0.5 h at temperatures of 200, 400, and 600 °C [43]. Three foams
with porosities between 65% and 80% were processed by dealloying from CuyyZngy and
CugsZngs precursor alloys by using 5 wt.% HCI at room temperature for 72 h or from
CuzpAlyg alloy using 85 wt.% H3PO, at room temperature for 72 h. Subsequent annealing
at 400 and 600 °C for 0.5 h transformed the whole ligaments from Cu to CuO. Figure 11
shows a plot of In{[d® —d3]|T/t} versus 1/T plot for these three samples. The analysis
yielded an activation energy between 8 and 37 kJ/mol. The large difference between these
activation energies can be attributed to the distinct morphologies and ligament sizes of
the dealloyed Cu foams, which may originate from different precursor compositions and
dealloying solutions [43]. For these three foams, the ligament sizes varied between 60 and
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100 nm. Moreover, the three Cu foam types may have different defect structures in the
oxide layer. Defects such as planar fault, dislocations, and voids and cracks can facilitate
diffusion. Thus, a higher defect density can result in very low (8-20 kJ/muol) activation
energies for ligament coarsening during oxidizing heat treatments.

25
O Q=20kJ/mol g
V. O .. :Q= 41 kJ/mol
‘r:: AN S [
B ¢ Q= 8 kJ/moI L
o 207 A )
S, vV
:5 Dealloying precursor:
Q= 37 kJimol "V W CuAl,
Vv Cu,Zn,
O CU3OAI70
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0.0010 0.0015 0.0020 0.0025 0.0030

1/T [1/K]

Figure 11. Plot of In{[d®> — d3]T/t} versus 1/T to estimate the activation energy of the causal
mechanism of ligament coarsening for dealloyed Cu foams annealed under an oxidizing atmosphere.
Solid squares indicate materials processed by route A from CuAly, open down triangles reflect
materials dealloyed from Cuy9Zngg by using 5 wt.% HCl at RT for 72 h, solid circles indicate materials
dealloyed from CuspAlyg by using 85 wt.% H3POy at RT for 72 h, and open circles reflect materials
dealloyed from CujzsZngs by using 5 wt.% HCl at RT for 72 h. The data for the latter three types of
precursor alloy were taken from Reference [43].

Figure 12 shows the electrochemical properties of CuO/Cu;O/Cu foam anodes at a
current density of 1 mA/ cm? over 0.01-3 V, where the Cu foam and CuQ/ Cu,O oxidation
layers act as a current collector and active materials, respectively. The typical voltage pro-
files for both anodes prepared at different oxidation temperatures of 170 °C and 200 °C are
displayed in Figure 12a,c. The discharge and charge profile shapes of both CuO/Cu,O/Cu
foam anodes are similar to those reported for other CuO or CuyO anode materials [45,46].

Figure 12b,d show the cycle performance of the CuO/CuyO/Cu foam anodes oxidized at
170 °C and 200 °C.



Materials 2021, 14, 2691 15 of 18
(a) (b)
3.0 8
= 2.5 L .
s 5 6l
= 20 =
g —a— Discharge E
2 154 —o— Charge 2 4- R
E g ° o= o——p——0——0
t Q
§ 1.0 8 ,
o s 21
0.5 g
0.0+ T T T - 0 T T T T T
0 1 2 3 4 5 0 2 4 6 8 10
(C) Areal capacity (mAh cm?) (d) Cycle number
3.0 5
25 &
3 §4 -
5 20 £
;; —a— Discharge E 34
‘;’ 15 —o— Charge %, -
s 8 24 o,
S 1.0 2 e m
o o
3 ©
° S 1-
o 05 g
0.0+ T T T 0 T T T T T
0 1 2 3 4 0 2 4 6 8 10
Areal capacity(mAh cm™) Cycle number

Figure 12. Voltage profiles of Cu foams oxidized at (a) 170 °C and (c) 200 °C, as well as a comparison
of the areal capacity of Cu foam anodes that were oxidized at (b) 170 °C and (d) 200 °C at 1 mA/ cm?
in 0.01-3.0 V.

Despite the general importance of evaluating the gravimetric or volumetric capacity,
this study focused on the areal capacity of the CuO/Cu,O/Cu foam anode because of
the difficulties in accurately measuring the surface area of nanoporous Cu foams and
the corresponding mass of each active material in the CuO/Cu;O/Cu foam anode. The
CuO/CuyO/Cu foam anode that was oxidized at 170 °C has far superior cyclic performance
and considerably higher stability than those of CuO/CuyO/Cu foam anodes that were
oxidized at 200 °C. Specifically, cells with CuO/Cu;O/Cu foam anode oxidized at 200 °C
occasionally have voltage and capacity drops during cycling. This behavior arises from the
decrease of the specific surface area due to ligament coarsening and the fact that higher
temperatures are more favorable for CuO formation, which proceeds through the following
reactions [47]:

4Cu+ O; — 2CuO 3)

2Cu,0 + O, — 4CuO @)

Thus, the formation of CuO reduces the Cu,O layer, making these oxide active materi-
als unstable during cycling. These electrochemical results demonstrate the need to further
develop Cu nanofoams to enable the controlled, stable growth and formation of a Cu oxide
layer on the Cu nanofoam surface, which would ultimately advance Cu nanofoams for
practical uses in Li-ion battery applications.

4. Conclusions and Future Research Directions

This study provides new insights into the influence of heat treatment on the mi-
crostructure, defect density, mechanical behavior, and electrochemical performance of
Cu nanofoams processed by dealloying, based on data available in the literature. More-
over, new results are presented and analyzed to reveal the processes during the thermal
annealing of Cu foams. The following conclusions are drawn:
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1.  Heat treatment under inert atmospheres at temperatures between 300 and 800 °C
results in significant ligament coarsening. Annealing at the lowest temperature of
300 °C increased the ligament size by only 20-30% versus non-annealed samples,
even after 70 h of annealing time. Nonetheless, samples annealed at 800 °C had
700% greater ligament sizes even if the duration of heat treatment was only 5 h. The
activation energy of ligament size growth was about 89-103 kJ/mol, suggesting that
coarsening is controlled by fast diffusion either on the surface or along lattice defects.

2. The density of in-grown lattice defects, such as dislocations and twin faults, in the
ligaments decreased significantly during annealing at 600 °C. Softening effects arising
from the defect structures were overwhelmed by strengthening caused by the coales-
cence of the ligaments. Thus, heat treatments considerably improved the hardness
and elastic modulus of materials.

3.  Annealing at low temperatures (110-200 °C) for short (0.5 h) times under oxidizing
atmospheres also moderately increased the ligament size. The activation energy of
this coarsening process was only about 41 kJ/mol, which is close to the activation
energy value of Cu diffusion along the grain boundaries in surface oxide layers. This
mechanism is necessary for the growth of the oxide layer.

4.  Electrochemical analyses demonstrated that oxidized Cu nanofoams can be consid-
ered a potential candidate as the anode material in high-performance Li-ion batteries.
The CuO/Cuy0/Cu foam anode that was oxidized at 170 °C showed superior cycling
stability than the CuO/Cu;O/Cu foam anode oxidized at 200 °C. Furthermore, the
discharge and charge behaviors of both the CuO/Cu,;O/Cu foam anodes are similar
to those reported for other CuO or CuyO anode materials.

To the best of our knowledge, a quantitative description of the effects of porosity on
the yield strength, hardness, and elastic modulus of Cu nanofoams prepared by dealloying
is not available. This might be due to the small sizes and weak mechanical strengths of sam-
ples that hinder conventional mechanical testing. By comparison, this study demonstrated
that annealing is a suitable method to significantly improve the hardness of dealloyed
foams. Thus, we recommend that future studies should generate foams with different
porosities by using a combination of dealloying and heat treatments to establish corre-
lations among the pore volume fraction and mechanical properties of Cu nanofoams.
Moreover, we also recommend studying the microstructural coarsening in dealloyed Cu
foams in which the active surface layer is not Cu oxide but another material, such as tin or
silicon. Finally, it is also worth studying the effects of annealing on the microstructure and
performance of dealloyed foams of composition other than Cu.
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