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Abstract: This paper discusses a choice of the most rational reinforcement details for frame corners
subjected to opening bending moment. Frame corners formed from elements of both the same and
different cross section heights are considered. The case of corners formed of elements of different
cross section is not considered in Eurocode 2 and is very rarely described in handbooks. Several
reinforcement details with both the same and different cross section heights are presented. The
authors introduce a new reinforcement detail for the different cross section heights. The considered
details are comprised of the primary reinforcement in the form of straight bars and loops and the
additional reinforcement in the form of diagonal bars or stirrups or a combination of both diagonal
stirrups and bars. Two methods of static analysis, strut-and-tie method (S&T) and finite element
method (FEM), are used in the research. FEM calculations are performed with Abaqus software using
the Concrete Damaged Plasticity model (CDP) for concrete and the classical metal plasticity model for
reinforcing steel. The crucial CDP parameters, relaxation time and dilatation angle, were calibrated
in numerical tests in Abaqus. The analysis of results from the S&T and FE methods allowed for the
determination of the most rational reinforcement details.

Keywords: concrete; material model; Concrete Damaged Plasticity model; opening bending moment;
reinforced concrete frame corners; strut-and-tie method; FEM; Abaqus

1. Introduction

A frame corner under opening bending moment is considered to be a so-called ”D”
region in which the distribution of stresses and strains is complicated. While detailing this
kind of region, the structural engineer has a few recommendations presented in codes and
handbooks and often relies on intuition. The situation is even more complicated in the case
of different cross section heights of elements meeting in the corner, as this is not covered
in most codes, for example, Eurocode 2 [1]. There are still too few literary studies on the
choice of reinforcement in the case of different cross section heights and the article is an
attempt to close the gap. Moreover, some of the recommended reinforcement details have
a relatively low efficiency factor. A proper choice of the reinforcement of such a region
should be based on more sophisticated methods than the handbook recommendations and
the authors of this paper suggest using a combination of strut-and-tie and FE methods.
This kind of approach has been presented in, for example, the PhD thesis of Akkermann [2],
in which a combination of laboratory tests and advanced non-linear FEM calculations was
used to analyze reinforced concrete (RC) frame corners under both closing and opening
bending moment.
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Some researchers [3–12] performed laboratory tests on RC specimens with various
reinforcement details obtaining the corner efficiency factor for specific details. The efficiency
factor in the case of laboratory tests can be calculated as (Equation (1)):

η =
M f ailure

Mcapacity
(1)

where Mfailure denotes the opening bending moment causing failure of the corner and
Mcapacity is a theoretical capacity of an adjacent member, computed as for a RC beam in pure
bending. Some chosen results of the laboratory tests of frame corners with different rein-
forcement details are presented in Table 1. It is worth noting that the laboratory tests were
only performed for corners joining elements with the same cross section heights. Example
distributions of cracks and failure forms are presented in the works of Johansson [13] and
Starosolski [14]. Some recent results concerning reinforced concrete corners are presented
in the works of Marzec [15], Wang [16], Berglund and Holström [17], Getachew [18], Haris
and Roszevak [19], Abdelwahed [20], and Abdelwahed et al. [21]. They describe laboratory
tests, strut-and-tie method approaches, and numerical simulations in various FEM software
(e.g., Athena, VecTor2, LS-Dyna).

Table 1. Corner efficiency factors obtained in the laboratory tests of various authors.
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Eurocode 2 [1] in Appendix J.2.3 gives information only on frame corners joining
elements with the same cross section heights. The authors’ aim is to supplement Eurocode
2 (2004) recommendations and investigate the case of the different cross section heights.
The authors chose two methods:

(1) Strut-and-tie method (S&T)—to calculate the required reinforcement and to calculate
the efficiency factor.

(2) Finite element method (FEM) in Abaqus software using the Concrete Damaged
Plasticity (CDP) model for concrete—to calculate the efficiency factor and to recreate
the history of loading, the yielding of steel and crack development.
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The primary goal of the analysis was to calculate the efficiency factor and crack width
for all the details and then to conclude which detail is the most preferable. The secondary,
but also important issue of the research was to calibrate some important CDP model pa-
rameters. The main motivation to perform all these analyses was to supplement Eurocode
2 [1] and the handbook recommendations with the case of different cross section heights.
For this purpose, the authors used the two abovementioned methods and compared the
obtained results with the laboratory tests of other researchers (see Section 5).

The reinforcement details taken into considerations are presented in Table 2. Note
that details No. 1–7 were used for the cases of both the same and different cross section
heights, but details No. 8 and 9 are solely designed for the case of the different cross section
heights. Detail No. 1 contains no additional stirrups and diagonal bars, details No. 2
and 3 are two different variations of the type with an additional diagonal bar, and details
No. 4–6 are equipped with diagonal stirrups—one or three, those three arranged parallel
or “fan-shaped”. The final three details are combinations of diagonal bars and stirrups.
Details No. 1–7 and No. 9 are known from handbooks and laboratory tests and detail No. 8
is a new one introduced by the authors.

Table 2. Reinforcement details analyzed in the research.
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2. Methodology
2.1. Strut-and-Tie Method

The S&T method is a modification of a truss analogy (Mörsch [22]). According to
Schlaich et al. [23] this modification relies on the application of methods of the theory of
plasticity and the redistribution of forces from reinforcing bars to concrete. Compressive
stresses are transferred by concrete struts while tensile stresses are transferred by reinforcing
bars. The S&T method requires the verification of compressive stresses in struts and nodes.
The required reinforcement is calculated from tensile axial forces. Also, it is important to
check if compressive stresses in nodes are less than or equal to the ultimate compressive
strength. There are three types of S&T nodes. In the CCC node, only compressive struts
are connected. In the CCT node, there is also one tensile strut and in the CTT node, there
are two tensile struts. The ultimate compressive strength value can be assumed according
to different recommendations, e.g., Eurocode 2 [1], Schlaich et al. [23], ACI 318 [24], fib
Model Code [25]. The authors decided to assume the ultimate compressive stress σRd,max
according to Eurocode 2 [1] as follows:

• In struts: σRd,max = fcd, where fcd denotes the design compressive strength if a strut
is under compression only and 0.6ν’fcd if a strut is also in tension in a perpendicular
direction, where (Equation (2)):

ν′ = 1− fck
250

(2)

• In nodes: CCC node—σRd,max = ν’fcd, CCT node—σRd,max = 0.85ν’fcd, CTT node—
σRd,max = 0.75ν’fcd.

The most important issue of the S&T method is the proper choice of a truss model
replacing a considered ”D” region. There are various design codes and handbooks that help
a designer pick an appropriate scheme, e.g., Schlaich et al. [23], Reineck [26], El-Metwally
and Chen [27], but there are few recommendations concerning corners under opening
bending moment, see e.g., in Eurocode 2 [1].

2.2. Concrete Damaged Plasticity Model for Concrete in FEM Analysis

As mentioned before, FEM calculations were performed with Abaqus software [28]
using the Concrete Damaged Plasticity model (CDP) for concrete. There are many other
alternative models, e.g., presented in the work Marzec et al. [15] or Cichoń and Win-
nicki [29,30]. The CDP model for monotonic loading was mathematically formulated by
Lubliner et al. [31] and enhanced by Lee and Fenves [32,33] for dynamic and cyclic loading.
This model is a combination of the plasticity theory and damage mechanics.

The stress–strain relationship is defined with Equation (3):

σ = (1− d)Del
o :
(
ε− εpl

)
(3)

where d is a damage parameter and Del
o is an initial stiffness matrix in the elastic state. The

damage parameter is given according to Equation (4):

1− d = (1− stdc)(1− scdt) (4)

where dc and dt are damage parameters and sc and st are stiffness recovery functions in
compression and tension, respectively. The yield function in the CDP model is defined
according to Equation (5):

F =
1

1− α

(
q− 3αp + β

(
εpl

)〈
σ̂max

〉
− γ

〈
−σ̂max

〉)
− σc

(
εpl

)
(5)
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where α, β and γ are parameters, p denotes the effective hydrostatic pressure stress, q is
von Mises equivalent effective stress and 〈〉 is Macaulay’s bracket. The effective stress is
assumed according to Equation (6):

σ̂ =
σ

1− d
(6)

The parameter α depends on the ratio of the uniaxial compressive strength fc0 to the
biaxial compressive strength fb0—see Equation (7):

α =
fb0 − fc0

2 fb0 − fc0
(7)

The typical values of the ratio fb0 to fc0 are in the range of 1.10 to 1.16 (Kupfer [34],
Lubliner et al. [31]). Parameters β and γ are calculated as (Equations (8) and (9)):

β =
3(1− KT)

2KT − 1
(8)

γ =
3(1− KC)

2KC − 1
(9)

The parameters KT and KC define the shape of the yield surface. Typical values of
these parameters vary from 0.56 to 0.61 for KT and from 0.66 to 0.80 for KC (Szwed and
Kamińska [35]). The yield surface can be presented in the meridian plane—see Figure 1.
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As proposed in [28], the plastic flow potential G is assumed as a non-associated
potential of the Drucker-Prager hyperbolic type according to Equation (10):

G =

√
(eσt0tanψ)2 + q2 − ptanψ (10)

where e is an eccentricity parameter and ψ denotes a dilatation angle. The graph of the
function G and a graphical interpretation of e and ψ are presented in Figure 2.
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The viscoplastic regularization can also be applied in the CDP model according to the
Duvaut–Lions approach [36] (Equation (11)):

.
ε

pl
v =

1
µ

(
εpl − ε

pl
v

)
(11)

where µ denotes the relaxation time (the so-called viscosity parameter in Abaqus code) and
the bottom index ν refers to the viscous part of plastic strains. The viscoplastic behavior of
concrete is taken into consideration in the CDP model only if the relaxation time is larger
than zero.

A full definition of the CDP model needs a specification of a few parameters, namely:

(1) The stress–strain relationship defining a compressive behavior of concrete, usually in
a form of a set of points;

(2) The dilatation angle ψ in the p− q plane;
(3) The flow potential eccentricity e;
(4) The ratio f b0/f c0 of the biaxial compressive strength to the uniaxial compressive

strength;
(5) The ratio K of the second stress invariant on the tensile meridian to that on the

compressive meridian for the yield function;
(6) The tension behavior of concrete in the post-critical range in Abaqus can be defined

in three different ways (see Figure 3), namely, as coordinates of points on σ–εin curve
in a tabular form called STRA in Abaqus code (Figure 3a), σ–ucr curve called DISP
(Figure 3b), or the fracture energy Gf called GFTEN (Figure 3c).
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The option GFTEN is equivalent to the option DISP with a linear σ–ucr relation and
ucr,m = 2Gf/ft. Because the model formulation is a continuous one and defined in terms of
the stress–strain relation rather than stress–displacement, in the numerical implementation
the options DISP and GFTEN are transformed to the σ–εin relation depending on the size of
the given finite element based on the so-called crack band approach (Bažant and Oh [37]).

There are also two optional CDP model parameters: the relaxation time and the
damage conditions, the latter defined separately for compression and tension.

The proper choice of the dilatation angle and relaxation time is still an open scientific
issue. The proper values of both parameters are crucial for obtaining reasonable results from
FEM computations (Szczecina and Winnicki [38]). Different values of the dilatation angle
for concrete were suggested by the researchers listed in Table 3. The role of the dilatation
angle in plasticity-based models was discussed in depth in a paper by Wosatko et al. [39].
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The range of the proposed values is very wide, and this is why the authors decided to
perform a calibration and validation of the dilatation angle for concrete. A similar situation
occurs for the relaxation time—some researchers (e.g., Genikomsou and Polak [40,41] and
Pereira et al. [42]) proposed values from 10−5 s to 10−4 s. The calibration and validation of
the dilatation angle and relaxation time are described in the next section.

Table 3. Values of dilatation angle as suggested by other authors.

Source Dilatation Angle ψ [◦]

Jankowiak [43] 49
Genikomsou and Polak [40] 38

Mostafiz et al. [44] 38
Kmiecik and Kamiński [45] 36

Malm [46] 25–38
Menetrey [47] 10

Mostofinejad and Saadatmand [48] 0
Marzec [49] 8 or 10

Rodriguez et al. [50] 30
Urbański and Łabuda [51] 15

3. Calibration and Validation of CDP Model Parameters
3.1. Uniaxial and Biaxial Compression Tests

The dilatation angle was calibrated in uniaxial and biaxial tests performed numeri-
cally with Abaqus code. The geometry and boundary conditions of the specimen under
compression are shown in Figure 4. The loading regime is defined as uniaxial or biaxial
compression. The stress–strain curve in uniaxial compression was calibrated to match the
experimental results of Kupfer [34].
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Figure 4. Setup for compression test: mesh (a) and boundary conditions (b).

The material properties of concrete are as follows: compressive strength fc = 34.30
MPa; tensile strength ft = 3.5 MPa; elastic modulus Ec = 35 GPa; Poisson’s ratio νc = 0.167;
fracture energy Gf = 146.5 N/m. Four values of the dilatation angle were tested, namely 0,
5, 15, and 30 degrees. The relationship between the volumetric strain εv and linear strain
ε11 is shown in Figures 5 and 6. For relatively small values of the dilatation angle (0 to
15 degrees) the volumetric strains obtained in numerical computations were similar to
those of Kupfer [34]. In the laboratory tests the volumetric strains were negative, which
means the compaction of concrete. In the numerical simulations they remained negative
when the dilatation angle was in the range of 0 to 15 degrees. In the case of 30 degrees,
large positive volumetric strains in the post-critical range occurred. For that reason, the
authors suggest using relatively low values of the dilatation angle in the range of 0 to
15 degrees. If the higher values are used the stiffness and bearing capacity of concrete
elements can be overestimated in the case of confinement, e.g., in the plane strain case.
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3.2. Uniaxial Tension Test

The geometry of a specimen under tension is presented in Figure 7. Two-dimensional
elements in the plane stress state were used in the FE model of the specimen. The notches
force crack localization in the middle cross section of the specimen. The properties and
geometry of the specimen were taken from Woliński’s research [52]. A displacement is
imposed at the right edge and the left edge is fixed. The material properties of concrete
are as follows: compressive strength fc = 34.30 MPa; tensile strength ft = 3.5 MPa; elastic
modulus Ec = 35 GPa; Poisson’s ratio νc = 0.167. The tensile behavior of concrete is defined
as a set of points on the σ–ucr curve taken from Woliński’s research—see Figure 8.
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Figure 8. Crack width vs. stress relationship assumed in the uniaxial tension test.

The relationship between stress and displacement obtained in FEM analysis for various
relaxation time values is presented in Figure 9 and compared with Woliński’s experimental
curve. These results are obtained for different values of the relaxation time µ, namely 0,
0.0001, 0.001, and 0.01 s keeping a fixed loading time value of 1 s. In turn, Figure 10 shows
the results of the same experiment for different values of the loading time t keeping a
fixed relaxation time value of 0.0001 s. A comparison of Figures 9 and 10 demonstrates
that the same results are obtained for the same values of the ratio µ/t. Therefore, it can be
concluded that a key factor in viscoplastic regularization is not the value of the relaxation
time itself but the ratio µ/t. In order to obtain results that are close enough to reality the
authors recommend using a value of µ/t equal to 0.0001 or less.

Figure 11 presents crack patterns (i.e., values of the plastic equivalent strains in tension
PEEQT in Abaqus code) for the numerical analyses with a fixed value of loading time equal
to 1 s and different relaxation times (the viscosity parameter) equal to 0, 0.0001, and 0.001 s
leading to the ratios µ/t of 0, 0.0001, and 0.001, respectively, using a FE mesh size of 1 mm
(Szczecina and Winnicki [53]). The stress–displacement curves pertinent to these numerical
analyses are shown in Figure 9.
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Figure 10. Displacement vs. stress relationship obtained for different relaxation time values.

For the zero value of the viscosity parameter when the regularization is not taken into
account, a distinct crack along the whole cross section in the notched area occurs. As the
crack is localized in one row of finite elements, the width of the damaged region clearly
depends on FE discretization assumed in the model. A clear damage location is indicated
by the approximately vertical crack. The crack and damage zone change with the growth
of the viscosity parameter. A constant damage zone (around 5 mm width) can be observed.
Larger values of the parameter can cause the spread of the damaged zone outside the
notched cross section. This observation confirms the authors’ opinion that the ratio µ/t
should not exceed a value of 0.0001.
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Figure 11. (a) Crack pattern, relaxation time equal to 0. (b) Crack pattern, relaxation time equal to 0.0001 s. (c) Crack pattern,
relaxation time equal to 0.001 s.

4. Strut-and-Tie and FEM Analysis of Corners under Opening Bending Moment

The general geometry and main reinforcement of the corners are presented in Figures
12 and 13, where dimensions are given in (mm). Two different cases are taken into account:
when cross section heights of elements joining in the corner are the same and when they
are different, where the properties of the specimen in the first case are comparable to those
applied by Mayfield et al. [4]. The analyzed corners have the same common properties,
which are listed below. All the corners are made of concrete C50/60 and reinforced with
steel B500SP. Material constants are taken as the design values according to Eurocode 2 [1]:

• Concrete: fc = 34.30 MPa, Ec = 35 GPa, ν = 0.167, ft = 3.5 MPa, Gf = 146.5 N/m;
• Reinforcing steel: fy = 434.8 MPa, Es = 200 GPa, ν = 0.3.
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heights; dimension in (mm).

Each corner is subjected to an opening bending moment with a reference value
of Mref = 30 kNm modeled as a pair of forces—see Figures 14 and 15. Seven different
reinforcement details taken into consideration are listed in Table 2. In this section, corners
are subjected to a pure bending moment, but in the Section 5.2. there is an example of a
calculation where the moment is accompanied with normal and shear forces, which is a
very important case in practice.
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Figure 15. Loading scheme for the case of elements with different cross section heights; dimensions
in (mm).

4.1. Calculations in the Strut-and-Tie Method
4.1.1. The Case of Elements with the Same Cross Section Heights

The assumed truss schemes for each reinforcement detail are presented in Figure 16.
It is appropriate to stress that the presented schemes have been devised and developed
by the authors of this paper rather than merely being adapted from schemes taken from
the literature. An S&T analysis was performed for each corner detail using the reference
value of the bending moment Mref = 30 kNm. The main reinforcement of the elements
joined in the corner was chosen as a pair of 2φ20, top and bottom (the reinforcement ratio
calculated for the 200-mm-high elements joined in the corner equal to 0.0262). For the main
reinforcement, the carrying capacity of the RC cross section was computed according to
Eurocode 2 [1] (for cross section dimensions—see Figure 12, section A-A and Figure 14,
section B-B) leading to Mcapacity = 32.7 kNm and the ratio (Equation (12)):

ω =
Mcapacity

Mre f
=

32.7kNm
30.0kNm

= 1.09 (12)

The corner efficiency ratio was computed using Equation (1), leading to Equation (13):

η =
M f ailure

Mcapacity
=

M f ailure

Mre f
·

Mre f

Mcapacity
=

M f ailure

Mre f
· 1

ω
(13)

For any strut, tie, or node of the given S&T scheme a linear relation according to
Equation (14) holds:

σi = ai ·Mre f (14)

where ai is the proportionality factor and the subscript i denotes a number of the S&T
scheme element (i = 1, 2, 3 . . . N, where N is a number of the elements). Because, by
definition, the S&T method is linear, for the bending moment at the point of failure the
same relation is valid (Equation (15)):

σRd,max,i = ai ·M f ailure (15)

where, this time, i is the number of the weakest strut/tie/node at the corner. Combining
Equations (14) and (15), Equation (16) is obtained:

M f ailure

Mre f
= min

i = 1...N

(
σRd,max,i

σi

)
(16)

In Equation (16), the operator “min” is used to find the weakest strut/tie/node i in the
whole set i = 1, 2, 3 . . . N. Inserting Equation (16) in Equation (13), a formula is eventually
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found which enables one to compute the corner efficiency ratio using the stress values σi
obtained in the S&T analysis for Mref = 30 kNm (Equation (17)):

η = min
i = 1...N

(
σRd,max,i

σi

)
· 1

ω
(17)

In Table 4, the corner efficiency factors obtained with the S&T method for all the
reinforcement details are presented. The efficiency factor was calculated according to
Formula (17). For all the details and all the cross-section heights the required reinforcement
is calculated, and then the proper reinforcement is provided in FEM models in Abaqus.
The results listed in Table 4 show that the use of at least one diagonal stirrup allows for
obtaining relatively high efficiency factors. If there are no diagonal stirrups in the corner
(detail No. 1) or only a diagonal bar is provided (details No. 2 and 3), no significant
improvement to the efficiency factor is seen. The highest efficiency factor is obtained using
reinforcement detail No. 7.
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Table 4. Efficiency factors and provided reinforcement for each reinforcement detail—the case of
elements with the same cross section heights (maximal value in bold).

Detail
No.

Efficiency Factor
Obtained in S&T

Decisive Element (No.
of Strut or Node)

Provided Reinforcement,
Diameters Given in (mm)

1. 0.70 Strut No. 5 main reinforcement: 2φ20 top and
2φ20 bottom, no loops

2. 0.64 Strut No. 9 2 diagonal bars φ8 each, no loops
3. 0.66 Strut No. 5 2 diagonal bars φ8 each, no loops

4. 0.94 Strut No. 5 diagonal stirrup φ16, looped main
bars

5. 1.21 Nodes N1, N2, N4, N5 central diagonal stirrup φ16, outside
stirrups φ10, looped main bars

6. 1.25 Nodes N2, N3, N4, N5 central diagonal stirrup φ16, outside
stirrups φ12, looped main bars

7. 1.31 Struts No. 14 and 15
2 diagonal bars φ16 each, central

diagonal stirrup φ12, outside
stirrups φ16, looped main bars
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4.1.2. The Case of Elements with Different Cross Section Heights

The authors’ truss schemes for this case are presented in Figure 17. Please note that
this time, nine different reinforcement details were taken into consideration. Seven of these
are comparable to those analyzed for the case of corners with elements of the same cross
section heights and the two last details are only for the case of elements with different cross
section heights. The efficiency factors and provided reinforcement are presented in Table 5.
Some similar conclusions can be drawn as those drawn in the case of elements with the
same cross section heights. The use of at least one diagonal stirrup causes a significant
growth of the efficiency factor, wherein the best result is obtained for detail No. 4. However,
the efficiency factor for detail No. 9 is lower than 1 and so far, only the details from No. 4
to 8 can be recommended for practical use.
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Table 5. Efficiency factors and provided reinforcement for each reinforcement detail—the case of
elements with different cross section heights (maximal value in bold).

Detail
No.

Efficiency Factor
Obtained in S&T

Decisive Element (No.
of Strut or Node)

Provided Reinforcement,
Diameters Given in (mm)

1. 0.61 Strut No. 5

main reinforcement: 2φ20 top and
2φ20 bottom in a smaller cross

section (column), and 2φ12 top and
2φ12 bottom in a larger cross section

(beam), no loops
2. 0.58 Strut No. 5 2 diagonal bars φ8 each, no loops
3. 0.60 Strut No. 5 2 diagonal bars φ8 each, no loops

4. 1.44 Nodes N1, N2, N3 diagonal stirrup φ16, looped main
bars

5. 1.23 Nodes N1, N2, N5 diagonal stirrups φ12, looped main
bars

6. 1.15 Nodes N2 and N3 diagonal stirrups φ12, looped main
bars

7. 1.17 Node N7
2 diagonal bars φ16 each, central

diagonal stirrup φ16, outside
stirrups φ12, looped main bars

8. 1.07 Nodes N3 and N4 diagonal bar φ8, diagonal stirrups
φ12, looped main bars

9. 0.88 Nodes N1 and N2 2 horizontal stirrups φ8 each,
diagonal bar φ8, looped main bars

4.2. Calculations in FEM
4.2.1. The Case of Elements with the Same Cross Section Heights

FEM calculations were performed using Abaqus/CAE ver. 6-12.2 [28]. The meshing
of the concrete specimen and reinforcing steel is presented in Figure 18, where the meshing
of the reinforcing steel is pertinent to reinforcement detail No. 7. The boundary conditions
and loading of the corner are presented in Figure 19. To avoid the localization of strains
and stresses and numerical problems connected with the concentrated forces acting on the
specimen, some fragments of the main reinforcement and concrete outside the corner zone
were defined as ideally elastic. A range of the elastic fragments is shown in Figure 19. Full
bond was assumed between concrete and reinforcing steel using the “embedded region”
option in Abaqus code.
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Each corner was analyzed under the reference opening bending moment Mref = 30 kNm
modeled as a pair of forces. The reinforcement was first calculated with the S&T method
and then put in the FEM model. The corners are calculated in both the plane stress and the
plane strain states. The applied load was defined with a load parameter λ whose value of 1
represents the reference value of the opening bending moment Mref = 30 kNm. As presented
in Section 4.1 the carrying capacity value of the bending moment is Mcapacity = 32.7 kNm.
The FE analysis, on the other hand, is performed in a similar manner to the S&T analysis
using the reference value of the bending moment Mref. Therefore, the load parameter is
defined as (Equation (18)):

λ =
M

Mre f
(18)

Especially for the failure holds (Equation (19)):

λ f ailure =
M f ailure

Mre f
=

M f ailure

Mcapacity
·

Mcapacity

Mre f
= ηω (19)

Thus, the value of the efficiency factor η = 1.0 corresponds to the load parameter
λ f ailure (Equation (20)):

λ f ailure = 1.0ω = 1.09 (20)

For the purpose of material behavior modeling in Abaqus software, the CDP model for
concrete and the classical metal plasticity model for steel were assumed. The stress–strain
curve for concrete in uniaxial compression was approximated with the σ–ε curve according
to Eurocode 2 [1]. For concrete behavior in uniaxial tension the fracture energy Gf option
was set as input in Abaqus. The used values of the CDP parameters are listed in Table 6.

Table 6. CDP model parameters used in FEM calculations.

Dilatation
Angle ψ
(degree)

Flow
Potential

Eccentricity
e

Ratio fb0/fc0 Ratio K
Viscosity

Parameter µ
(s)

Fracture
Energy Gf

(N/m)

15 0.1 1.16 0.667 0.0001 146.5

A load time of 1 s and the ratio µ/t = 0.0001 were assumed. The main results obtained
directly from FEM calculations are the equivalent plastic strains in tension PEEQT and the
damage parameter in tension DAMAGET for concrete and von Mises’ stress and the yield
flag for reinforcing steel. The relationship between the chosen nodal displacement and the
load parameter λ is plotted as a graph. Moreover, crack width is calculated using values of
PEEQT and the formula given by Červenka et al. [54] (Equation (21)):

w = εcr ·
(

1 + (γmax − 1) · θ

45

)
· Lt (21)
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where Lt is a finite element width perpendicular to the direction of the crack, εcr denotes
tensile strain in the cracked element, γmax is assumed as equal to 1.5, and θ is the crack
propagation angle (given in degrees).

Maps of the PEEQT for some chosen reinforcement details in the plane stress state
are presented in Figure 20. For the sake of brevity only details No. 1, 3, 4, and 7 are
discussed. The use of at least one diagonal stirrup causes cracks to occur outside the corner
zone, which is clearly visible. A relationship between the nodal displacement and loading
parameter is presented in Figure 21.
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Analyzing the relationship presented in Figure 21 the stiffer behavior of corners
equipped with reinforcement details No. 4 to 7 is seen. Finally, the relationship of crack
width versus loading parameter presented in Figure 22 once more confirms that the use
of diagonal stirrups either alone or combined with diagonal bars is recommendable for
corners under opening bending moment. In this graph a commonly assumed value of
ultimate crack width, namely 0.3 mm [1], is marked with a vertical line. It is clearly seen
that for reinforcement details No. 4 to 7 this ultimate value is reached for relatively high
loading parameter values.
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Figure 22. Crack width vs. loading parameter in the plane stress state.

Values of the efficiency factors for all the details and both methods are listed in Table 7.
Higher values of this factor for reinforcement details No. 4 to 7 are seen, confirming that
these details are recommendable for practical use. Moreover, the results obtained with
FEM in the plane stress state are comparable with those obtained with the S&T method.
However, it should be remembered that a full analysis of a corner under opening bending
moment demands not only the calculation of the efficiency factor but also checking the
crack width.

Table 7. Efficiency factors for all reinforcement details obtained using all methods (maximal values
in bold).

Detail No. Efficiency Factor
S&T

Efficiency Factor
FEM, Plane Stress

Efficiency Factor
FEM, Plane Strain

1. 0.70 0.75 1.01
2. 0.64 0.79 1.11
3. 0.66 0.82 1.17
4. 0.94 1.23 1.26
5. 1.21 1.24 1.29
6. 1.25 1.27 1.29
7. 1.31 1.23 1.32
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To summarize this subsection the authors state that the use of at least one diagonal
stirrup significantly helps to limit crack propagation and crack width in the corner zone
and to reach relatively high values of the corner efficiency factor in the case of elements
with the same cross section heights. The best results seem to occur for reinforcement detail
No. 7. By contrast, the use of a diagonal bar without diagonal stirrups (details No. 2 and 3)
does not help at all.

4.2.2. The Case of Elements with Different Cross Section Heights

In this case in FEM analysis, the only difference in comparison with the previous
case is the geometry of the concrete specimen and reinforcement, and the locus of a nodal
displacement—see Figure 23. The rest of the input data, including the value of bending
moment, remains unchanged.
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Figure 23. Meshing of frame corner and analyzed nodal displacement for the case of elements with
different cross section heights.

The equivalent plastic strains in tension PEEQT for the chosen reinforcement details in
the plane stress state are listed in Figure 24. This time the propagation of cracks is seriously
limited in comparison to the previous case, even for reinforcement details without diagonal
stirrups. A higher cross section height of one of the components causes a completely
different crack pattern and this time, crack extension is not as large as in the case of
elements with the same cross section heights.

The relationship between the nodal displacement and the loading parameter is pre-
sented in Figure 25. A worse performance of the details without diagonal stirrups (No. 1 to
3) and detail No. 9 in the plane stress state is observed. The most important results concern
crack width for all the details—see Figure 26. This time, only three reinforcement details in
the plane stress state reach a satisfactory loading parameter when the limit crack width of
0.3 mm is reached. Finally, the authors draw the conclusion that for the case of the different
cross section heights, details No. 7 and 8 are recommended for practical use.

Values of efficiency factors are listed in Table 8. Please note that this time the factors
obtained in the plane strain state seem to be too optimistic, especially for the details without
diagonal stirrups. A structural designer should consider this situation very carefully as
the crack width criterion is decisive in the case of elements with the different cross section
heights. From all the examined reinforcement details the original detail No. 8 proposed by
the authors seems to be the most recommendable of all the analyzed details.
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Figure 26. Crack width vs. loading parameter in the plane stress state.

Table 8. Efficiency factors for all reinforcement details obtained using all methods (maximal values
in bold).

Detail No. Efficiency Factor
S&T

Efficiency Factor
FEM, Plane Stress

Efficiency Factor
FEM, Plane Strain

1. 0.61 0.75 1.31
2. 0.58 0.78 1.36
3. 0.60 0.89 1.43
4. 1.44 1.32 1.40
5. 1.23 1.57 1.40
6. 1.15 1.34 1.38
7. 1.17 1.54 1.51
8. 1.07 1.32 1.52
9. 0.88 1.38 1.44
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4.2.3. Influence of Reinforcement Ratio on the Efficiency Factor

It is commonly known (McGregor [55], Campana et al. [56]) that the reinforcement
ratio of the adjacent elements has a large influence on the efficiency factor of the corner—as
the reinforcement ratio increases, the efficiency factor decreases. This trend is identical for
different reinforcement details and different solutions of anchorage of the main reinforce-
ment (loops, hooks or bends). The authors decided to check whether this trend is properly
reproduced by their approaches (S&T and FEM) on the example of reinforcement detail
No. 4 with the same and different cross section heights of adjacent elements. Additional
computations were conducted using 2φ12 and then 2φ16 reinforcement both top and
bottom. All the results confirm the trend reported in the literature—see Figure 27. The
largest decrease of the efficiency factor occurs in the S&T analysis.
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Figure 27. Corner efficiency factor vs. reinforcement ratio—detail No. 4, (a) the same section heights, (b) different
section heights.

4.2.4. Dependence of the Results on the Diagonal Reinforcement Area

As suggested in the work of Leonhardt [57] and in DIN 1045-1 [58], the corner effi-
ciency factor strongly depends not only on the main reinforcing bars but also on diagonal
bars applied. For this reason, the authors decided to perform a numerical study on the
impact of the diagonal reinforcement area on the corner efficiency factor.

For this purpose, in Abaqus the authors analyzed reinforcement detail No. 2 (the
case of elements with the same cross section heights) using three values of the diagonal
reinforcement area, namely 2φ8 mm (initially calculated in the S&T analysis), 2φ12 mm
and 2φ16 mm bars. Calculations were performed in both the plane stress and plane strain
states. Selected results of the calculations, namely the nodal displacement, DAMAGET
maps, and the crack width are presented in Figures 28–30.
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Figure 29. DAMAGET maps in the plane stress state for different areas of diagonal reinforcement: (a) 2ϕ8 mm, (b) 2ϕ12 

mm, (c) 2ϕ16 mm bars. 

The results obtained in this parametric study show that there is no significant differ-

ence if 2ϕ8, 2ϕ12, or 2ϕ16 mm diagonal bars are used. In the plane stress state, the curves 

presented in Figure 28 almost coincide and in the plane strain state the maximum loading 

parameter λ is only somewhat higher when using larger areas of diagonal reinforcement. 

By contrast, the results presented in Figure 30 concerning crack widths are slightly in favor 

of a smaller area of diagonal reinforcement (which is probably caused by the better bond 

between concrete and reinforcement for smaller diameters). 

Figure 28. Nodal displacement vs. loading parameter for different diagonal reinforcement areas, (a) in the plane stress state,
(b) in the plane strain state.
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Figure 29. DAMAGET maps in the plane stress state for different areas of diagonal reinforcement: (a) 2φ8 mm, (b) 2φ12
mm, (c) 2φ16 mm bars.

The results obtained in this parametric study show that there is no significant differ-
ence if 2φ8, 2φ12, or 2φ16 mm diagonal bars are used. In the plane stress state, the curves
presented in Figure 28 almost coincide and in the plane strain state the maximum loading
parameter λ is only somewhat higher when using larger areas of diagonal reinforcement.
By contrast, the results presented in Figure 30 concerning crack widths are slightly in favor
of a smaller area of diagonal reinforcement (which is probably caused by the better bond
between concrete and reinforcement for smaller diameters).
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5. Comparison of Numerical Results with Laboratory Tests
5.1. Efficiency Factors for the Case of Elements with the Same Cross Section Heights

A few other researchers mentioned in Section 1 performed laboratory tests of corners
under opening bending moment. All these tests only considered the case of elements with
the same cross section heights. Although the analyzed corners were made of different
materials and had different dimensions, the corner efficiency factor can serve as an objec-
tive criterion for the comparison of all the tests with numerical results presented in the
paper. All the efficiency factors obtained in the paper are compared with the results of
the laboratory tests for the case of elements with the same cross section heights in Table 9.
For reinforcement details No. 1 and 2, the experimental efficiency factors are even lower
than in S&T and FEM computations. Surprisingly details No. 4 and 5 did not reach the
efficiency factor of η = 1 in the laboratory tests. Finally, details No. 6 and 7 show the highest
efficiency factors in all the tests. Both these details can be recommended as rational, but it
is easier to make detail No. 7 on the construction site. The comparison is approximate and
indicative because of different dimensions, material properties and reinforcement ratios
adopted by different authors.

Table 9. Efficiency factors obtained in authors’ analyses and in laboratory tests—the case of elements
with the same cross section heights (maximal values in bold).

Detail
No.

Efficiency Factor in
Laboratory Tests

Efficiency
Factor S&T

Efficiency Factor
FEM, Plane Stress

Efficiency Factor
FEM, Plane Strain

1.

0.43 (Mayfield et al. [4])
0.66 (Kordina and
Wiedemann [7])

0.46 (Al-Khafaji et al. [11])

0.70 0.75 1.01

2. 0.59 (Mayfield et al. [4])
0.55 (Skettrup et al. [9]) 0.64 0.79 1.11

3. 1.07 (Moretti and Tassios
[12]) 0.66 0.82 1.17

4. 0.88 (Mayfield et al. [4]) 0.94 1.23 1.26
5. 0.78 (Mayfield et al. [4]) 1.21 1.24 1.29

6.
1.32 (Kordina and
Wiedemann [7])

1.13 (Skettrup et al. [9])
1.25 1.27 1.29

7. 1.12 (Moretti and Tassios
[12]) 1.31 1.23 1.32
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5.2. Comparison with Johansson’s Laboratory Tests

Johansson [13] performed laboratory tests on RC frame corners under closing and
opening bending moment. The authors numerically recreated a laboratory test of the
specimen marked RV9 in Johansson’s research. A displacement control was applied with a
displacement rate from 0.15 to 0.30 mm/min. The reinforcement in the laboratory test was
as follows: looped main bars and a diagonal bar, which makes this reinforcement detail
similar to reinforcement detail No. 2 presented in Table 2. The only difference is that in the
authors’ research, the main bars were not loop-shaped.

The RV9 specimen was modeled in Abaqus software using the CDP model for concrete
and the classical metal plasticity for reinforcing steel. The material properties were assumed
as identical to those in Johansson’s research:

• Concrete: fc = 32.2 MPa, Ec = 31 GPa, ν = 0.2, ft = 2.6 MPa, Gf = 136.4 N/m,
• Reinforcing steel: fy = 570 MPa, Es = 200 GPa, ν = 0.3.

The dilatation angle was assumed equal to 15 degrees and the relaxation time—equal
to 0.0001 s.

A general view of the specimen, the boundary conditions applied in Abaqus and
the reinforcing bars are presented in Figure 31; the yellow arrow represents the nodal
displacement, which is imposed in an identical manner as was the case in the laboratory
test. The specimen RV9 was meshed mainly using quadrilateral finite elements (the so-
called “quad-dominated” element shape control in Abaqus) with FE sizes in the range of
75 to 5 mm—see Figure 32.
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The main reinforcement of the adjacent members was 5φ16 bars with additional
diagonal bars 3φ16. The full bond between steel and concrete was assumed (the “embedded
region” option in Abaqus code). Computations were performed in the plane stress state
using the full-Newton solution technique. The parameters of the CDP model were assumed
as identical to those in the previous section—see Table 6. The authors decided to present
the results of the force–displacement relationship and PEEQT maps (propagation of cracks)
obtained in FEM calculations and compare them with the laboratory test results.
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The relationship between the horizontal reaction force and the imposed displacement
is presented in Figure 33 and compared with the same relationship obtained in Johansson’s
laboratory test (dashed line). Both curves appear to be similar whereas the curve obtained
in Abaqus has no peak and no descending part. Instead of this it has a clear plateau similar
to that presented in Figure 21. Moreover, the curve obtained in the FEM shows a higher
stiffness at the beginning of the loading process. Despite these shortcomings it can be
concluded that both curves are comparable, and the FEM analysis properly reflects the
laboratory test.
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A crack pattern obtained in the FEM analysis is presented in Figure 34 for four selected
time steps, where the time value t = 1 s is equivalent to the maximum displacement in the
displacement-control procedure (120 mm). The first figure presents a map of PEEQT at the
very beginning of the loading process. Despite not being particularly large, a clear crack
can be seen propagating from the concave angle of the corner zone. Using formula (18)
the authors calculated a maximum crack width with a value of w = 0.25 mm. Afterwards
two new concurrent cracks appear further from the concave angle as shown in the second
map of PEEQT. At this step time, the maximum crack width is w = 0.57 mm which is a very
large value in comparison to the typical values of ultimate crack widths given by codes
and handbooks. The excessive value of the crack width is in accordance with findings from
the previous section that a reinforcement detail containing only one diagonal bar is not
recommended for a corner under opening bending moment. In the third map, a new crack
propagating in the corner zone where the reinforcement is loop-shaped is apparent. The
current crack width is w = 1.84 mm. The fourth figure presents a PEEQT map from the
end of the FEM computations and some new cracks and extensions of the previous cracks
appear. Eventually the crack width reaches w = 8.10 mm. The final crack pattern can be
compared with the crack pattern obtained in Johansson’s laboratory test—see Figure 35.
There are similarities between the FEM and laboratory results—firstly, the comparable crack
propagation from the concave corner and cracks outside the corner zone perpendicular to
the axes of adjacent elements. Secondly, there is also a very similar extension of the crack
propagating from the concave corner. However, there is one clear difference—there are
cracks located along the loop-shaped fragments of the reinforcing bars and none of them
appears in the FEM analysis. Despite this, a fairly strong agreement between the FEM
simulations and laboratory test is observed and therefore the CDP model with the properly
calibrated parameters can be recommended for practical use.
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Figure 35. A sketch of the crack pattern obtained in Johansson’s laboratory tests (reprinted with
permission from Johansson [13], Copyright 2000, M. Johansson).

6. Conclusions

A combination of S&T and FEM computations was carried out to find the most rational
reinforcement detail for frame corners under opening bending moment. The following
conclusions can be drawn:

(1) It is possible to choose a rational reinforcement detail for a corner under opening
moment even in the case of elements with different cross section heights using a
combination of the S&T method and FEM.

(2) The most recommendable details are detail No. 7 in the case of elements with the
same cross section heights (see Table 2) and details No. 7 and 8 in the case of elements
with different cross section heights (see Table 2).

(3) There are no significant differences in the obtained results when applying the different
areas of the diagonal bars (2φ8, 2φ12 or 2φ16 mm).

(4) The use of diagonal bars only is insufficient to obtain a satisfactory efficiency factor
and a limited crack width; these goals can only be achieved by using diagonal stirrups.

(5) The reinforcement ratio of the adjacent elements has a large influence on the efficiency
factor of the corner, namely an increase in the reinforcement ratio causes a decrease in
the efficiency factor.
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(6) It is possible to assume simpler and still appropriate S&T truss schemes than that
used in Eurocode 2 [1] and handbooks for a corner under opening bending moment,
even in the case of the use of corner elements with different cross section heights.

(7) When using the CDP model its parameters should be assumed in a careful way. The
authors recommend calibrating and validating some of these parameters. To obtain
realistic results, the authors propose the following values of CDP parameters (see the
discussion in Section 3):

- A relaxation time of 0.0001 s or less (for the loading time 1 s);
- A dilatation angle of 5 to 15 degrees.
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Szczepan Woliński for their valuable comments. The thesis was defended in public on 12 December
2018 at Kielce University of Technology, Poland.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Code, P. Eurocode 2: Design of Concrete Structures. Part 1-1: General Rules and Rules for Buildings; EN 1992-1-1; British Standard

Institution: London, UK, 2004.
2. Akkermann, J. Rotationsverhalten von Stahlbeton-Rahmenecken (Rotational Behaviour of Reinforced Concrete Frame Corners).

Ph.D. Thesis, Universität Fridericiana, Karlsruhe, Germany, 2000.
3. Balint, P.S.; Taylor, H.P.J. Reinforcement Detailing of Frame Corner Joints with Particular Reference to Opening Corners; Technical Report

42.462; Cement and Concrete Association: London, UK, 1972.
4. Mayfield, B.; Kong, F.K.; Bennison, A. Strength and stiffness of lightweight concrete corners. ACI Struct. J. 1972, 69, 420–427.
5. Nilsson, I.H.E. Reinforced Concrete Corners and Joints Subjected to Bending Moment. Design of Corners and Joints in Frame Structures;

Document D7; National Swedish Building Research: Stockholm, Sweden, 1973.
6. Nilsson, I.H.E.; Losberg, A. Reinforced concrete corners and joints subjected to bending moment. J. Struct. Div. 1976, 102,

1229–1254. [CrossRef]
7. Kordina, K.; Wiedemann, G. Forschungsvorhaben V 112. 1 A/DAfStb. Bewehrungsführung in Rahmenecken (Reinforcement in Frame

Corners); Technische Universität: Braunschweig, Germany, 1978.
8. Stroband, J.; Kolpa, J. The Behaviour of Reinforced Concrete Column-to-Beam Joints, Part 2, Corners Subjected to Positive Moments;

Report 5-81-5; TH Delft: Delft, The Netherlands, 1981.
9. Skettrup, E.; Strabo, J.; Andersen, J.H.; Brøndum-Nielsen, T. Concrete frame corners. ACI Struct. J. 1984, 81, 587–593.
10. Eibl, J.; Kreuser, K.; Cüppers, H.; Dahlhaus, F. Grenztragfähigkeit von Stahlbetonumschliessungen im Kernkraftwerksbau. Teil 1:

Behälterecke (Limit Capacity of Reinforced Concrete Casings in Nuclear Power Plant Structures. Part 1: Corners of Containers); Institut für
Massivbau und Baustofftechnologie, Universität Karlsruhe: Karlsruhe, Germany, 1993.

11. Al-Khafaji, J.M.; Al-Bayati, Z.A.; Al-Mallki, A.A.K. Experimental study of R.C. corner details. Al-Qadisiyah J. Eng. Sci. 2014, 1,
516–531.

http://doi.org/10.1061/JSDEAG.0004362


Materials 2021, 14, 3438 32 of 33

12. Moretti, M.; Tassios, T.P. Detailing of corner joints under opening moment. In Proceedings of the fib Symposium, Prague, Czech
Republic, 8–10 June 2011.

13. Johansson, M. Structural Behaviour in Concrete Frame Corners of Civil Defence Shelters: Non-linear Finite Element Analyses
and Experiments. Ph.D. Thesis, Chalmers University of Technology, Göteborg, Sweden, 2000.
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35. Szwed, A.; Kamińska, I. O Kalibracji Parametrów Modelu Konstytutywnego Betonu i Badaniach Doświadczalnych Temu Służących (On
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Gdańska, Gdańsk, Poland, 2008.

50. Rodríguez, J.; Martínez, F.; Martí, J. Concrete constitutive model, calibration and applications. In Proceedings of the 2013
SIMULIA Community Conference, Vienna, Austria, 21–24 May 2013.
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