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Abstract: This paper gives a comprehensive overview of the state-of-the-art machine learning
methods that can be used for estimating self-compacting rubberized concrete (SCRC) compressive
strength, including multilayered perceptron artificial neural network (MLP-ANN), ensembles of MLP-
ANNs, regression tree ensembles (random forests, boosted and bagged regression trees), support
vector regression (SVR) and Gaussian process regression (GPR). As a basis for the development of the
forecast model, a database was obtained from an experimental study containing a total of 166 samples
of SCRC. Ensembles of MLP-ANNs showed the best performance in forecasting with a mean absolute
error (MAE) of 2.81 MPa and Pearson’s linear correlation coefficient (R) of 0.96. The significantly
simpler GPR model had almost the same accuracy criterion values as the most accurate model;
furthermore, feature reduction is easy to combine with GPR using automatic relevance determination
(ARD), leading to models with better performance and lower complexity.

Keywords: self-compacting rubberized concrete; compressive strength; machine learning; artificial
neural networks; regression tree ensembles; support vector regression; Gaussian process regression

1. Introduction

The European Union has prohibited all types of waste tire disposal since 2006 because
the long process of tire deterioration affects the environment and wildlife. As natural
resources are becoming increasingly scarce in the concrete industry, more emphasis is being
placed on the utilization of waste products from other industries, such as the replacement
of recycled aggregates with recycled rubber [1]. Waste rubber has a major impact on the
properties of fresh concrete. The use of recycled rubber decreases the entry of aggressive
substances into the material, guaranteeing that the concrete has less permeability and
thus is more durable. It enhances impact, wear resistance and durability as well as other
mechanical characteristics. It decreases compressive strength; shrinkage; and thermal con-
ductivity coefficient, while increasing freezing resistance and sound absorption coefficient,
depending on the amount and size of the rubber portion.

Self-compacting concrete (SCC) is utilized to enhance productivity, which means faster
construction, reduced noise level, and improved surface finish, which eliminates the need
for patching. SCC is a special type of concrete that does not need to use concrete compacting
devices during casting [2,3]. Its self-buildability and self-leveling feature has eliminated
the need of expensive vibrating equipment, reduced the cost of time of construction and
the number of workers on site and increased safety at the site.

Unlike ordinary concrete, SCC contains a higher proportion of fine aggregate particles,
and the water-binding ratio is lower, which affects the required force for the flow of concrete.
Such a composition results in a decrease in the viscosity that is resolved by the addition
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of superplasticizers. Large amounts of recycled rubber particles in the material reduce
the possibility of filling the formwork without additional vibration. In order to ensure
the same properties or approximate properties of self-compacting rubberized concrete
(SCRC) as in the reference mixture, it is necessary to modify and adjust the proportion of
admixtures to the concrete. In this way, the concrete behavior with rubber in the fresh state
is ensured. Even when the content of rubber particles is limited to a maximum of 20–30%,
mechanical properties must be improved by adding higher content of cement and lower
water to binder ratio or adding supplementary cementing materials, such as slag, silica
fume or/and fly ash.

Moreover, the key indicator, commonly used for assessing the strength, the compres-
sive strength of SCRC, generally decreases with the increase in content of rubber in SCRC.
There are no expressions in building codes (for example, Eurocode 2 [4], or ACI Commit-
tee 209 [5]) for the prediction of compressive strength of rubberized concrete, especially
of SCRC. Models from literature for predicting the compressive strength of rubberized
concrete given by researchers are based on a reduction coefficient with respect to the ref-
erent mixture of concrete without recycled rubber particles. This implies that it is always
necessary to make a reference mixture of concrete without the addition of crumb rubber
particles. Therefore, in this article, an effort was made to model the compressive strength of
SCRC by adopting one of several machine learning methods. So far, metaheuristic methods,
and especially neural networks, have been successfully applied in various fields, such as in
the control and optimization of processes, economics, medicine, and engineering [6–10].
They have also been used to model the properties of concrete in fresh or solid state [11–15],
but much less in concrete with the addition of rubber [16–18].

Various researchers used different methods to model the compressive strength of
rubberized concrete and SCRC. Some of the studies are summarized in Table 1. However,
this field, especially when SCRC is in question, still requires further exploration.

Table 1. Algorithm used in modelling the compressive strength of rubberized concrete and SCRC.

Type of Concrete Algorithm Data Points Authors Reference

Rubberized concrete ANN, fuzzy logic (FL) 36 Topçu et al. [19]

Rubberized concrete ANN, gene-expression programming (GEP) 70 Gesoglu et al. [20]

Rubberized concrete ANN 287 El-Khoja et al. [21]

Rubberized concrete ANN, k-nearest neighbor (KNN), regression
trees (RT) and random forests (RF) 457 Hadzima-Nyarko et al. [22]

Rubberized concrete GPR, SVM 89 Gregori et al. [23]

Rubberized concrete ANN 129 Dat et al. [24]

Rubberized concrete ANN 353 Huang et al. [25]

Rubberized concrete RF 138 Sun et al. [26]

Rubberized concrete ANN 122 Bachir et al. [27]

Rubberized concrete Self-adaptive fuzzy least squares support
vector machines inference model (SFLSIM) 70 Cheng and Hoang [28]

SCRC Gaussian process regression (GPR) 144 Hadzima-Nyarko et al. [2]

SCRC Beetle antennae search
(BAS)-algorithm-based random forest (RF) 131 Zhang et al. [29]

Apart from ANN models, some other machine learning methods, such as k-nearest
neighbor (KNN) and RF, have also been applied to estimate the compressive strength of
concrete. KNN assigns unknown data values using the distances to the k-nearest data
points. RF, on the other hand, is an ensemble learning method that generates a large number
of decision trees during training. Unknown data values are assigned by RF based on the
average prediction of the individual trees. For example, Ahmadi-Nedushan [30] developed
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a KNN model to predict the compressive strength of concrete with 104 experimental data,
while Chopra et al. [31] estimated the compressive strength of concrete using an RF model
with 49 data points.

The outcomes of the above studies are certainly encouraging, especially considering
the fact that applications of ML models to estimate the compressive strength of SCRC are
still at an early stage.

The aim of this article is to estimate the compressive strength of SCRC specimens using
multilayered perceptron artificial neural network (MLP-ANN), ensembles of MLP-ANNs,
regression tree ensembles (random forests, boosted and bagged regression trees), support
vector regression (SVR) and Gaussian process regression (GPR). To the best knowledge of
the authors, GPR with automatic relevance determination (ARD) has not been previously
used for estimating SCRC compressive strength.

2. Methods
2.1. Multilayered Perceptron Artificial Neural Network (MLP-ANN)

Artificial neural networks are based on the parallel processing of various types of
information similar to the human brain. They contain artificial neurons that are intercon-
nected into a single parallel structure. A multilayer perceptron is a neural network with
forward signal propagation that consists of at least three layers of neurons: input, hidden,
and output layers.

In the general case, each neuron of one layer is connected to each neuron of the next
layer, as shown in Figure 1 for the example of a three-layer MLP network with n inputs
and one output. The properties of the network depend on the number of neurons and the
type of activation function, so if the network is to be used as a universal approximator,
it must use nonlinear activation functions in the hidden layer to be able to approximate
nonlinear relationships between input and output variables [32]. A model with one hidden
layer having neurons with a sigmoid activation function and output layer neurons with a
linear activation function can approximate an arbitrary function when there is a sufficient
number of neurons in the hidden layer [32].

Figure 1. (a) Multilayer perceptron artificial neural network; (b) an ensemble of neural networks formed by the Bootstrap
Aggregating (Bagging) approach [33,34].

As the number of input neurons is determined by the dimensions of the input vector
and the number of output neurons by the dimension of the output vector, determining the
network structure is reduced to determining the optimal number of hidden layer neurons
if MLP architecture with the property of universal approximator is used.

The method for precise and reliable determination of the minimum required number
of neurons has not been determined yet. What can be determined to some extent is the
upper limit, i.e., the maximum number of hidden layer neurons, which can be used to
model a system represented by a specific set of data. It is proposed to take into account a
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smaller amount of NH from the set of inequalities (1) and (2), where Ni denotes the number
of neural network inputs and Ns denotes the number of training samples [33,34].

NH ≤ 2× Ni (1)

NH ≤
Ns

Ni + 1
(2)

In order to improve the generalization of the model, when there is a small data with
inherent noise, it is possible to train a larger number of neural networks and find the mean
value of their outputs. In this way, ensemble models are created, while the individual
models that make up the structure of the ensemble are called base models or submodels.
The data set upon which the ensemble models were trained in each iteration is formed
by the Bootstrap method [35]. The Bootstrap method forms a set of the same size as the
original data set.

2.2. Regression Tree Ensembles
2.2.1. Bagging

Methods based on classification trees (Classification and Regression Trees-CART)
use the segmentation of the space of input variables in multidimensional rectangles or
so-called boxes and then apply a model where multidimensional rectangles are assigned
the appropriate value [35–37]. The lines that segment the input space are of the form Xi = t,
with the remark that binary segmentation of the space is applied. Depending on the value
of the input variables, the regression model (Figure 2) assigns a constant value of cm to
each of the mentioned regions, which is equal to the mean value of the output variable for
that region Rm, i.e., in this case:

f̂ (X) =
8

∑
m=1

cm I{(X1, X2) ∈ Rm}. (3)

Figure 2. Space segmentation into regions and 3D regression surface in regression tree.

With the above procedure of forming a regression tree model, there is a possibility
that the formed regression tree has good performance on the training set but poor gener-
alization on the test data set. The Bootstrap aggregation-Bagging method allows for the
aforementioned problem to be solved.

In order to practically carry out the mentioned procedure, it is necessary to have more
training sets to reduce the variance by averaging. The mentioned problem of generating
a more significant number of training sets can be overcome by the bootstrap method of
sampling, i.e., by repeating sampling within the same training data set. The bagging
method applies sampling with replacement [35]. If the model trained on the b-th bootstrap
training set has the prediction function f̂ ∗b(x) at the point x, then by averaging all B
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models, a model (Figure 3) whose predictive function will be determined by the following
expression can be obtained:

f̂bag(x) =
1
B

B

∑
b=1

f̂ ∗b(x). (4)

Figure 3. Bootstrap aggregation–Bagging in regression tree ensembles [34].

2.2.2. Random Forests

The RF method differs from the Bagging method in that it does not use all the variables
in generating the model. In the process of generating the ensemble, the method tries to
form regression trees that are decorrelated, which leads to reduced variance when the
ensemble results are averaged for all the trees within the ensemble [35].

Suppose that training dataset D is composed of l observations and n features. First,
a sample from the training dataset is taken randomly with replacement and bootstrap
is created. Before each split, m ≤ n features are randomly selected as candidates for
splitting. Typical values for m are approximately m/3 [35,38]. The RF model is obtained by
aggregating individual tree models obtained in this way.

2.2.3. Boosting Trees

The Boosting method uses sequential model training, where each new regression tree
added to the ensemble has the function of improving the performance of the previous tree
collection. In this part of the paper, the application of the Gradient Boosting method in
regression trees will be discussed [35,39–41].

In the case of a quadratic error function (Figure 4), a new submodel is added to the
basic model in each subsequent step, which best estimates the residuals of the previous
model. In this way, by adding a model through the application of an iterative procedure, a
definite model is obtained that represents an ensemble of previously obtained models.
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Figure 4. Gradient boosting in regression tree ensembles [34].

Estimating the relative influence of the predictor variable in this method is based on the
number of times a variable is selected for splitting, weighted by the squared improvement
to the model as a result of each split, and averaged over all trees [42].

2.3. Support Vector Regression (SVR)

Suppose a training dataset {(x1, y1), (x2, y2), . . . , (xl , yl)} ∈ Rn × R is given, where
xi ∈ Rn is the n-dimenzional vector denoting the model’s inputs and yi are the observed
responses to these inputs.

The approximation function has the following form:

f (x) =
l

∑
i=1

(αi
∗ − αi)K(xi, x) + b. (5)

In Equation (5), K denotes the kernel function, and αi, αi
∗ and b are the parameters

obtained by minimizing the error function.
In order for SVR regression to be applied, the empirical risk function is introduced:

Rε
emp(w, b) =

1
l

l

∑
i=1
|yi − f (xi, w)|ε. (6)

With the SVR algorithm, the goal is to minimize the empirical risk Rε
emp as well as

the w2 value simultaneously. The so-called Vapnik’s linear loss function (Figure 5) with
ε-insensitivity zone is introduced, defined by the following expression [43,44]:

|y− f (x, w)|ε =


0 i f |y− f (x, w)| ≤ ε

|y− f (x, w)| − ε otherwise.
(7)

Figure 5. Nonlinear SVR with ε-insensitivity zone.
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Considering the above expression, the problem can be reduced to minimizing the
following function:

R =
1
2
||w ||2 + C

l

∑
i=1
|yi − f (xi, w)|ε. (8)

The constant C has the role of balancing between the approximation error and the
norm of the weight vector w. Minimizing R is equivalent to minimizing:

Rw,ξ,ξ∗ =
1
2

[
||w ||2 + C

(
l

∑
i=1

ξ +
l

∑
i=1

ξ∗

)]
, (9)

where ξ and ξ∗ are the slack variables, which are shown in Figure 5.
Linear, RBF and sigmoid kernels used in this paper are defined as [45]:

Kxi, x = xi, x (10)

Kxi, x = exp
(
−γxi − x2

)
, γ > 0 (11)

Kxi, x = tanh(γxi, x + r), γ > 0 (12)

In this paper, LIBSVM software with SMO optimization algorithm was used [46,47].
The LIBSVM software was used within the MATLAB program [47].

2.4. Gaussian Proces Regression

A Gaussian process model is a probability distribution over possible functions that fit
a set of points. Consider a problem of nonlinear regression:

y = f (x) + ε, ε ∼ N
(

0, σ2
)

. (13)

where the function f (·) : Rn → R is unknown and needs to be estimated, yi is target
variable, x are input variables and ε is normaly distributed additive noise. Gaussian
process regression [48] assumes that f (·) follows a Gaussian distribution with mean func-
tion µ(·) and covariance function k(· , ·). The n observations in an arbitrary data set
y = {y1, . . . , yn} can always be imagined as a sample from some multivariate (n variate)
Gaussian distribution:

(y1, . . . , yn)
T ∼ N(µ, K), (14)

where µ = (µ(x1), . . . , µ(xn))T is the mean vector and K is n × n covariance matrix of
which the (i, j) th element Kij = k

(
xi, xj

)
+ σ2δij. Here, δij is Kronecker delta function.

Let x∗ be any test point and y∗ be corresponding response value. The joint distribution of
(y1 . . . , yn, y∗) is an (n + 1) variate normal distribution (y1, . . . , yn, y∗) ∼ N(µ∗, ∑), where
µ∗ = (µ(x1), . . . , µ(xn), µ(x∗))T and covariance matrix:

∑ =


K11 K12 ··· K1n K1∗
K21 K22 ··· K2n K2∗
··· ··· ··· ··· ···

Kn1 Kn2 ··· Knn Kn∗
K∗1 K∗2 ··· K∗n K∗∗

 =

[
K K∗

K∗T K∗∗

]
(15)

where K∗ = (K(x∗, x1), . . . , K(x∗, xn))
T and K∗∗ = K(x∗, x∗).

The conditional distribution of y∗, given y = (y1, . . . , yn)
T is then N

(
ŷ∗, σ̂∗2) with

ŷ∗ = µ(x∗) + K∗T K−1(y− µ), (16)

σ̂∗2 = K∗∗ + σ2 − K∗T K−1K∗. (17)
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For some covariance functions, hyperparameters can be used to determine which
inputs (variables) are more relevant than the others, using the automatic relevance deter-
mination (ARD). For example, consider the squared exponential covariance function with
different length scale parameters for each input (ARD SE):

k
(
xp, xq

)
= v2exp

−1
2

n

∑
i=1

(
xi

p − xi
q

ri

)2
. (18)

where ri denotes the length scale of the covariance function along the input dimension i. If ri
is very large, the relative importance of the i-th input is smaller [48]. The hyperparameters
{v, r1, . . . , rn} and the noise variance σ2 can be estimated by the maximum likelihood
method. The log-likelihood of the training data is given by:

L
(

v, r1, . . . , rn, σ2
)
= −1

2
log det K− 1

2
yT K−1y− n

2
log 2π. (19)

3. Evaluation and Performance Measures

The aim of defining the procedure for forming a model is to divide the whole pro-
cess of forming a model into a certain number of steps (Figure 6) so that each time a
model is formed, the same procedure is applied and all models are formed under the
same conditions. The same criteria for accuracy assessment were defined and applied to
the models.

The root mean square error (RMSE), mean absolute error (MAE), Pearson’s Linear
Correlation Coefficient (R) and mean absolute percentage error (MAPE) were used to assess
the quality of the model.

The RMSE criterion for evaluating the accuracy of a model is a measure of the general
accuracy of the model and is expressed in the same units as the quantity to be modeled:

RMSE =

√√√√ 1
N

N

∑
k=1

(dk − ok )
2, (20)

where:
dk—actual value (target value),
ok—output or forecast given by the model,
N—number of training samples.
The MAE criterion is a measure of the absolute accuracy of the model and is used to

represent the mean absolute error of the model:

MAE =
1
N

N

∑
k=1
|dk − ok | (21)

Pearson’s linear correlation coefficient R represents a relative criterion for evaluating
the accuracy of the model:

R =

√√√√[ N

∑
k=1

(dk − d)(ok − o)

]2

×
[

N

∑
k=1

(
dk − d

)2
(ok − o)2

]−1

(22)

where o represents the mean value of the prediction obtained by the corresponding model
and d represents the mean target value. Correlation coefficient values greater than 0.75
indicate a good correlation between the variables [49].
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The mean absolute percentage error (MAPE), defined by Equation (23), represents a
relative criterion for evaluating the accuracy of the model,

MAPE =
100
N

N

∑
k=1

∣∣∣∣dk − ok
dk

∣∣∣∣ (23)

The paper uses the procedure with ten-fold cross-validation of the model.

Figure 6. Systematic approach in forming prediction models.

4. Dataset

A systematic search for papers examining the properties of SCRC in fresh and solid
state was performed in April 2020.

Based on papers published regarding the modelling of compressive strength of self-
compacting rubberized concrete, input parameters were selected (Table 2) and all data
that were incomplete or that did not include any of the selected input parameters were
removed from the database.

With the aim of improving the mechanical properties of SCRC, various supplementary
cementing materials, such as slag, silica fume or/and fly ash, which are used in concrete
mixtures, have also been reported in the literature. Therefore, the SCRC mixtures containing
supplementary cementing material, such as slag, silica fume and fly ash, are included in
the database. The data collected by searching through research papers contain the results
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of 166 SCRC samples (Table 3). An overview of some of the data sources is provided
as follows.

Emiroglu et al. [50] provided experiments with the aim of investigating the bonding
performances of crumb rubber and reinforced bars in SCRC. The authors prepared four
different R-SCC mixtures with the replacement of crumb rubber by volume with the natural
aggregate in percentages of 15%, 30%, 45% and 60%. In the database, only mixtures with
15% of crumb rubber replacement were considered.

In order to investigate durability properties, Yung et al. [51] replaced part of the fine
aggregate with waste tire rubber powder in volume ratios of 5%, 10%, 15% and 20%. They
concluded that the best level of replacement achieved was with the addition of 5% waste
tire rubber powder (that had been passed through a #50 sieve).

The results obtained by Li et al. [52] indicated that an SCC with adequate workability
can be successfully created with partial replacement of sand or coarse aggregate with rubber
particles of the same volume. When the replacement rate of sand with rubber particles
was 30%, the value of loss of compressive strength of SCC was about 30%. Therefore, this
mixture with 30% replacement rate was not considered.

Khalil et al. [53] prepared SCC specimens with different ratios of crumb rubber (10%,
20%, 30% and 40% of volume replacement of sand), but the last two mixtures (with 30%
and 40% of sand replacement) were not added in the database.

Yu [54] conducted a study on the effect of changing regularity of waste rubber on
deformation performance of SCRC. The results showed that the rubber particles in a more
uniform distribution reduced the maximum compressive strength.

Zaoiai et al. [55] compared the rheological and mechanical performance between
different mixtures formulations in order to obtain the optimum dose for rubber particles.
The results of experimental testing showed that the compressive strength of SCC slightly
decreased by replacing natural aggregate with rubber granulates.

Ismail and Hassan [56] investigated the mechanical properties and impact resistance
of SCRC mixtures in which steel fibers were added in order to reinforce SCRC. However,
all mixtures with steel fibers were removed from the database. The results showed that the
addition of crumb rubber to concrete improved impact energy absorption and ductility,
while the mechanical properties decreased with increasing content of crumb rubber.

Table 2. Average, minimum and maximum values of input and output variables used for modelling.

Variable Average Value Minimum Value Maximum Value

Water (kg/m3) 197.15 170.00 246.00

Cement (kg/m3) 402.39 180.00 550.00

Fine nat. aggregate (kg/m3) 764.32 375.20 1192.00

Coarse nat. aggregate (kg/m3) 744.45 364.00 898.00

Fine rubber (kg/m3) 41.33 0 198.73

Coarse rubber (kg/m3) 18.20 0 355.80

Superplasticizer (kg/m3) 4.71 1.06 22.00

Slag (kg/m3) 23.08 0 175.00

Silica fume (kg/m3) 9.97 0 60.00

Fly ash (kg/m3) 74.26 0 330.00

SCRC compr. Strength (MPa) 74.26 0 330.00
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Table 3. Statistical analysis of the properties of the database of SCRC specimens.

Year Author(s) Ref. Type of Aggregate
Replaced by Rubber

No. of
Specimens SCM 1 No. of SCM

2008 Turatsinze and Garros [57] Coarse 5 - -

2010 Guneyisi [58] Coarse 16 FA 2 12

2012 Emiroglu et al. [50] Coarse 3 S 3 3

2012 Long et al. [59] Fine 6 SF 4 + FA 6

2013 Ganesan et al. [60] Fine 3 FA 3

2013 Yung et al. [51] Fine 5 S + FA 5

2014 Li et al. [52] Fine 7 SF + FA 7

2015 Ismail et al. [61] Fine 5 - -

2015 Khalil et al. [53] Fine 5 - -

2015 Mishra and Panda [62] Coarse 5 - -

2016 Guneyisi et al. [63] Fine and Coarse 21 FA 21

2017 Ismail and Hassan [56] Fine 16
FA 3

S 3

2016 Padhi and Panda [64] Fine 4 - -

2016 Yu [54] Fine 6 FA 6

2016 Zaoiai et al. [55] Fine and Coarse 5 - -

2017 Bideci et al. [65] Coarse 4 S 4

2018 AbdelAleem and Hassan [66] Fine 12

S 1

FA 1

SF 10

2018 Aslani et al. [67] Fine and Coarse 13 S + FA + SF 13

2018 Hamza et al. [68] Fine 4 - -

2019 Yang et al. [69] Fine 4 SF + FA 4

2020 Bušić et al. [70] Fine 17 SF 10

- - - Total 166 - -
1 Supplementary cementing material; 2 FA—Fly Ash; 3 S—Slag; 4 SF—Silica Fume.

5. Results and Discussion

MLP-ANN with one hidden layer was trained using Levenberg-Marquardt algo-
rithm [71]. The criterion to stop the training was either the maximum number of epochs
(set to 1000), the minimum gradient magnitude (set to 10−5) or the network performance
(measured as the mean square error and set to 0). All input data were normalized in the
range [−1, 1] prior to training. The following variables are defined as input variables of the
model: water, cement, fine natural aggregate, coarse natural aggregate, fine rubber, coarse
rubber, superplasticizer, slag, silica fume and fly ash, and these input variables determine
the number of neurons in the input layer (i.e., the variable water corresponds to the first
neuron, the variable cement the second neuron of the input layer, etc.) of the ANN model.
There are ten input variables, and the number of input layer neurons is ten. The number
of neurons in the output layer in the regression problem is one, and the output of this
neuron corresponds to the prediction of the compressive strength of concrete. The sigmoid
activation function is used in the hidden layer, while the linear activation function is used
in the output layer.

The maximum number of neurons in the hidden layer was determined experimentally
using Equations (1) and (2) and equals 16.
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Figure 7a shows the obtained performance using RMSE and MAE as absolute mea-
sures, while Figure 7b presents results using R and MAPE as relative measures. By ana-
lyzing models with different numbers of neurons in the hidden layer, it was concluded
that the configuration with eight neurons in the hidden layer was optimal considering all
four criteria.

Figure 7. Comparison of performance measures using MLP-ANNs with different configurations:
(a) RMSE and MAE, (b) R and MAPE.

In order to improve the generalization of the model, ensemble models were created.
The use of base models of neural networks having up to 16 neurons in their hidden layer
were analyzed, where each of the base models in the ensemble could have a different
number of neurons in the hidden layer. The optimal base model in the current iteration
was defined based on the minimum RMSE value of the 16 generated models in the current
iteration. After that, the procedure continues until a total number of 100 base models of the
ensemble were generated.

The bootstrap method formed a sample of the same size as the original sample. Since
the evaluation used a ten-fold cross-validation procedure, sampling was performed within
nine folds. The remaining fold was used to test the ensemble. The procedure was repeated
10 times so that the whole set of data was used for testing the ensemble, and the evaluation
of the prediction of the ensemble was represented by the mean value of all base models in
terms of the considered model performance.

In Figure 8, there is no trend in terms of accuracy to which an ANN model with a
certain number of neurons in the hidden layer stands out. Figure 8 shows 100 ANN models
generated on different samples obtained by bootstrap aggregation, where the optimal
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number of hidden layer neurons varies, as well as the achieved accuracy with respect to
RMSE which is generally unsatisfactory in all models. The accuracy of individual ANN
models varies mainly between 4 and 8. By including these individual models in the ensem-
ble, although the complexity increases, the accuracy in terms of RMSE criteria becomes
significantly higher (the red circle in Figure 8a represents the RMSE value for the ensemble).
There is also a significant increase in accuracy with regard to other accuracy criteria.

Figure 8. (a) RMSE value for each of the iterations and the corresponding architecture; (b) the optimal
number of neurons in the hidden layer in each iteration.

It can be seen in Figures 9 and 10 that the model of an ensemble composed of individual
neural networks contributes to a significant improvement in generalization. Comparative
values in terms of defined criteria for model evaluation for the optimal individual neural
network model and ensemble model are shown in Table 4, and the regression plot of the
modelled and target values for the ensemble model is shown in Figure 11.

Table 4. Comparison of the optimal individual neural network and ensemble model.

Model RMSE MAE MAPE/100 R

NN-10-8-1 * 7.4424 5.5434 0.1768 0.8481

Ensemble 3.6888 2.8099 0.0854 0.9610
* NN-10-8-1 is a model of an artificial neural network that is optimal according to four defined criteria RMSE,
MAE, MAPE and R (Figure 7) that has 10 neurons in the input layer, 8 neurons in the hidden layer, and 1 neuron
in the output layer.
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Figure 9. Comparison of performance measures using ensembles of MLP-ANNs with different number of base models:
(a) RMSE and MAE, (b) R and MAPE.

Figure 10. Prediction of individual neural networks (yellow color), ensemble model prediction (dark blue color) and target
values (red color) of compressive strength.

Figure 11. Regression plot for modelled and target values for optimal ensemble model.
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The application of models based on decision trees was also analyzed. MSE values
were used as a criterion in model training, and numerical values of MSE of the base models
of the generated ensemble were presented cumulatively. The parameters of the optimal
models were determined by the grid-search method.

The analysis was performed using the following methods:

1. Bagging method (TreeBagger),
2. RF method,
3. Boosted Trees method.

The data used for training (in bag data) in the TreeBagger model are extracted from
the entire data set by sampling with replacement. Data that are not extracted from the
whole set (out of bag data) represent test data. During the model building process, an
out-of-bag error is calculated by finding the difference between the out-of-bag sample and
the prediction for that same sample, and it is stored. The procedure is repeated for all trees
within the ensemble.

During the implementation of the Bagging method, different values of model parame-
ters were analyzed, as follows:

1. Number of generated trees B. Within this analysis, the maximum number of generated
trees was limited to 500.

2. The minimum number of data or samples assigned to the leaf (min leaf size) within
the tree. Values from 2 to 15 samples with a step size of 1 per tree leaf were considered.

The lowest value of MSE (Figure 12) of the analyzed models has a model that has a
minimum number of data per tree leaf 2, marked in darker blue. The saturation of the
learning curve occurs after 269 trees in the ensemble.

Figure 12. MSE vs. number of trees in the ensemble for different minimum leaf sizes using regression
tree ensembles realized with bootstrap aggregation (bagging).

In order to determine the significance of the j-th variable, it is necessary that after
training the model, the values of the j-th variable be permuted within the training data
and that the out of bag error for such permutated data be recalculated. The significance
of the variable (Figure 13) is determined by calculating the mean value of the difference
before and after permutation for all trees within the ensemble. This value is then divided
by the standard deviation of these differences. The variable for which a higher value was
obtained in relation to the others is ranked as more significant in relation to the variables in
which smaller values were obtained [36].
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Figure 13. Significance of individual variables in the ensemble model when applying the Bag-
ging method.

During the implementation of the RF method, different values of the adaptive param-
eters of the model were analyzed, as follows:

1. Number of generated trees B. Within this analysis, the maximum number of generated
trees was limited to 500.

2. The number of variables that are used for splitting in the tree. In the paper Random
Forests by L. Breiman [38], it is recommended that the subset m of variables on which
splitting is performed is p/3 of the predictor. In this paper, the values of m from 2 to 9
(Figure 14) are examined.

3. The minimum number of data or samples assigned to a leaf (min leaf size) within a
tree. Values from 2 to 10 samples per tree leaf were considered.

Figure 14. Influence of the number of variables on which is performed splitting on the accuracy of
the model in the RF method.

The application of a narrowed set of splitting variables in this case did not yield results.
Figure 14 shows the values of the accuracy criteria of the ensemble of 500 basic models,
from which one can see the tendency to increase the number of variables upon which
the splitting is performed to increase the accuracy of the model in terms of all defined
criteria. When 2 variables, upon which the potential splitting of the tree is considered,
are randomly selected from a set of 10 input variables, the model of least accuracy is
obtained (RMSE = 11.16, MAE = 8.4493, MAPE/100 = 0.2732, R = 0.5769). On the other
hand, randomly selecting a large number of variables for potential splitting increases the
accuracy of the model and is greatest when using a set of 9 randomly selected variables
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from a set of 10 input variables (RMSE = 7.7321, MAE = 5.7174, MAPE/100 = 0.1785,
R = 0.8425). An analysis that takes into account all 10 input variables when creating trees
of the ensemble has already been done with the TreeBagger model.

The analysis showed greater accuracy in tree models in which the number of data per
leaf is equal to 2. The relevance of individual variables for RF model is shown in Figure 13.

With Boosting Trees method, the following model parameters were considered:

1. Number of generated trees B. With the Gradient Boosting method, there is a possibility
of overtraining the model when forming too many trees. Due to the large number of
analyzed models in the research, the number of base models within the ensemble was
limited to a maximum of 100.

2. Learning rate λ. This parameter determines the training speed of the model. The paper
investigates a number of values, as follows: 0.001; 0.01; 0.1; 0.25; 0.5; 0.75 and 1.0.

3. Number of splits in the tree d. Models of trees with a maximum number of splits of
20 = 1, 21, 22, 23, 24, 25, 26, 27 = 128 were generated.

The optimal model obtained (marked in yellow in the Figure 15) had 100 generated
trees, a reduction parameter value of 0.10 and a maximum number of splits of 64. As in
other tree-based models, the relevance of individual model variables is determined and
shown in Figure 13. A comparison of all tree-based models (Bagging, RF and Boosted Trees
methods) is given in Table 5.

Figure 15. Dependence of MSE values on learning rate and number of base models in Boosted
Trees method.

Table 5. Comparative analysis of results in Bagging, RF and Boosted Trees methods.

Method RMSE MAE MAPE/100 R

TreeBager 8.1890 6.0546 0.1881 0.8214

RF 7.7321 5.7174 0.1785 0.8425

Boosted Trees 7.4821 5.4248 0.1573 0.8432

In order to obtain a good regression model using the support vector method, it is
necessary to select the appropriate kernel function. For the selected kernel functions, it is
necessary to determine their parameters, as well as the value of the penalty parameter C
(Figure 16).
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Figure 16. RMSE vs. hyperparameters C and γ for ε = 2−6 using SVR with RBF kernel in rough
grid search.

In this paper, therefore, the use of several different kernel functions is investigated in
order to find the best one. The use of SVR models with linear, RBF and sigmoid kernel was
analyzed. Normalization, by which all input data were transformed into the range (0, 1),
was done before training and testing the model. The optimal model was determined using
the grid search algorithm for all kernels (C = 4.22195 and ε = 0.105765 for the linear kernel;
C = 7.67645; ε = 0.0230915; γ = 1.89915 for the RBF kernel; C = 1113.70875; ε = 0.0920525;
γ = 0.000945345 for sigmoid kernel).

Comparative analysis of different SVR models shows that the models have different
accuracy depending on the adopted criteria depending on the kernel function. Models
with linear and sigmoid kernels have similar accuracy according to different criteria. The
model with the RBF kernel function (Table 6) has significantly higher accuracy with respect
to all criterion functions.

Table 6. Comparative analysis of results using linear, RBF and sigmoid kernel in SVR method.

Model RMSE MAE MAPE/100 R

Lin. kernel 8.7154 6.6468 0.2105 0.7751

RBF kernel 4.9646 3.5352 0.1171 0.9332

Sig. kernel 8.7104 6.6094 0.2073 0.7718

During the development of the Gaussian process model, covariance functions that
have one length scale parameter for all input variables (exponential, square-exponential,
Matern 3/2, Matern 5/2) and rational quadratic covariance function as well as their
equivalent ARD covariance functions that have a separate length scale for each input
variable were considered. Standardization procedure was performed using Z-score, i.e.,
the data is transformed to have a mean value of zero and a variance equal to one. Models
with constant base functions were analyzed.

Parameter values are determined (Tables 7 and 8) by maximizing the log marginal
probability. By using ARD covariance functions, it is possible to see the relevance of
individual variables or predictors in the model (Automatic Relevance Determination-
ARD). Higher parameter values for ARD covariance functions indicate less relevance of a
particular variable to which they refer.
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Table 7. Parameters of GPR ARD model covariance functions.

GP Model Covariance
Function Covariance Function Parameters

Exponential
k
((

xi, xj |Θ
))

= σ2
f exp

[
− 1

2
r
σl

2

]
σl =51.7642 σf =44.6486

Squared Exponential
k
((

xi, xj |Θ
))

= σ2
f exp

[
− 1

2
(xi−xj)

T
(xi−xj)

σl
2

]
σl =1.9621 σf =21.4682

Matern 3/2
k
((

xi, xj |Θ
))

= σ2
f

(
1 +

√
3r

σl

)
exp
[
−
√

3r
σl

]
σl =4.4183 σf = 27.5201

Matern 5/2
k
((

xi, xj |Θ
))

= σ2
f

(
1 +

√
5r

σl
+ 5r2

3σl
2

)
exp
[
−
√

5r
σl

]
σl =2.8760 σf = 23.1271

Rational Quadratic
k
((

xi, xj |Θ
))

= σ2
f

(
1 + r2

2aσl
2

)−α

σl =2.8568 a = 0.3520 σf =28.5379

where r =
√(

xi − xj
)T(xi − xj

)
.

Table 8. Parameters of GPR ARD model covariance functions.

Covariance Function Parameters

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10

ARD Exponential:

k
((

xi, xj

∣∣∣Θ)) = σ2
f exp(−r); σF=61.7884; r =

√
d
∑

m=1

(xim−xjm)
2

σm2

136.5920 34.7143 149.6719 87.1631 160.3637 137.0799 174.2748 380.2212 84.5739 42.4424

ARD Squared exponential:

k
((

xi, xj

∣∣∣Θ)) = σ2
f exp

[
− 1

2

d
∑

m=1

(xim−xjm)
2

σm2

]
;σf =24.1382

2.7611 0.8842 4.3944 3.1684 2.3792 2.6952 1.8852 4125.1386 5.6892 0.7528

ARD Matern 3/2:
k
((

xi, xj

∣∣∣Θ)) = σ2
f

(
1 +
√

3r
)

exp
[
−
√

3r
]
;σf =32.6244

6.5869 2.1073 8.8734 5.4483 6.1835 6.9731 7.1678 5445.6855 6.0925 2.0265

ARD Matern 5/2:
k
((

xi, xj

∣∣∣Θ)) = σ2
f

(
1 +
√

5r + 5r2

3

)
exp
[
−
√

5r
]
;σf =26.5499

3.8496 1.2738 6.9524 4.5500 3.5908 3.9290 2.6596 2276.2435 5.8061 1.3211

ARD Rational quadratic:

k
((

xi, xj

∣∣∣Θ)) = σ2
f

(
1 + 1

2α

d
∑

m=1

(xim−xjm)
2

σm2

)−α

; α=0.3332; σf =61.7884

3.6879 1.3166 7.3725 4.6652 3.7047 3.9596 2.6138 4383.7159 5.4661 1.4843

where r =

√
d
∑

m=1

(xim−xjm)
2

σm2 .

According to the three defined criteria, the RMSE, MAE and R, the model with ARD
Matern 3/2 covariance function (Table 9) can be considered optimal, while according to
the MAPE criterion it is second in accuracy with a difference of 0.0011 compared to the first
ranked model according to that criterion.
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Table 9. Comparative analysis of results of GPR with various covariance functions.

GP Model Covariance Function RMSE MAE MAPE/100 R

Exponential 5.0574 3.5064 0.1038 0.9316

ARD-Exponential 4.6120 3.1634 0.0947 0.9427

Squared Exponential 5.0447 3.4686 0.1133 0.9300

ARD-Squared Exponential 4.9670 3.4076 0.1101 0.9334

Matern 3/2 4.7244 3.2487 0.1021 0.9386

ARD-Matern 3/2 4.4341 3.1022 0.0958 0.9474

Matern 5/2 4.8275 3.3133 0.1061 0.9360

ARD-Matern 5/2 4.6527 3.2691 0.1037 0.9424

Rational Quadratic 4.6467 3.2022 0.0997 09407

ARD Rational quadratic 4.5937 3.1894 0.1006 0.9435

The analysis of the relevance of the variable models will be performed based on the
parameters of the covariance function on the model with the ARD Matern 3/2 function
as the most accurate model. The values of the distance scale parameters are shown in the
logarithmic scale (logarithms with base 10) in Figure 17.

Figure 17. Variable selection using ARD Matern 3/2 covariance function.

It can be seen (Figure 17) that in the optimal model with ARD Matern 3/2 function
the input variables 2 (cement) and 10 (fly ash) have the greatest relevance and the greatest
impact on the model’s accuracy. Variables 1 (water), 3 (fine natural aggregate), 4 (coarse
natural aggregate), 5 (fine rubber), 6 (coarse rubber), 7 (superplasticizer) and 9 (silica
fume) have similar relevance. Input variable 8 (slag) has the least relevance and the most
negligible impact on the model’s accuracy.

In further analysis, the models that used the most relevant variables were considered
due to the possibility that the presence of irrelevant variables may reduce the accuracy of
the model. By using a narrowed set of variables in certain cases, it is possible to obtain a
model (Figures 18 and 19) of the same or higher accuracy. Additionally, in this way, the
complexity of the model is reduced, and the model training process is accelerated.
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Figure 18. Modelled and target values for reduced GPR ARD Matern 3/2 model.

Figure 19. Regression plot of modelled and target values of compressive strength for reduced GPR
ARD Matern 32 model.

In the further analysis, a comparison was made (Table 10) of the two models, as follows:

1. Model where variable 8 is excluded as less relevant (slag),
2. A model that includes all variables.

Table 10. Comparative analysis of GPR models with different sets of input variables.

Model x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 RMSE MAE MAPE/100 R

1. 1 1 1 1 1 1 1 0 1 1 4.3934 3.0583 0.0942 0.9482

2. 1 1 1 1 1 1 1 1 1 1 4.4341 3.1022 0.0958 0.9474

The application of individual models of neural networks gave models with unsatisfac-
tory accuracy in terms of all criteria. For this reason, the use of neural network ensembles
was considered. A limit is defined in terms of the maximum number of hidden layer
neurons, while the number of inputs and outputs defines the number of input and output
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layer neurons. The analysis showed that the application of ensembles gives models of
significantly higher accuracy than the optimal individual model of the neural network with
the architecture 10-8-1. The value of the ensemble correlation coefficient was increased to
the value 0.9610, which is a satisfactory value. The values of RMSE, MAE and MAPE are
approximately halved in relation to the individual optimal neural network model. With an
ensemble of 40 base models, there is convergence in terms of defined criteria, and a further
increase in the complexity of the model does not lead to an increase in accuracy.

A comparative analysis of all tree-based models shows that the model obtained by
applying Boosted Trees has the best accuracy, while models based on the Bagging and
Random Forests methods showed lower and similar values in terms of all criteria. All
models based on regression trees can determine the relevance of individual input variables
in the model. As the least relevant input variable, all models identified the variable denoting
slag. In the event of a significant expansion of the database, the complexity of the method
could be analyzed, whereby the models in the Bagging and Random Forests methods
can be processed in parallel, which is not the case with the Boosted Trees method, where
models are trained sequentially within the ensemble. In addition, it should be pointed out
that a significant number of basic models are needed to saturate the learning curve.

Comparative analysis of different SVR models shows that the models, depending on
the kernel function, have different accuracies depending on the adopted criteria. The use
of the RBF kernel function, in this case, gave satisfactory results, while the use of linear and
sigmoid kernels gave significantly worse results. Models with linear and sigmoid kernel
function have values tht are almost twice as bad in terms of the three criteria RMSE, MAE,
and MAPE. The value of the correlation coefficient R is significantly lower than the RBF
model. Training models with the RBF function are relatively simple, but these models do
not provide direct insight into the relevance of individual variables in the model.

GPR models that do not use scale parameters of different lenghts for individual input
variables in the considered problem in most cases have worse criterion values than models
that use different length scale parameters (ARD models). The best model is a model with
ARD Matern 3/2 covariance function. The values of the length scale parameters for the
optimal model can be used to assess the relevance of the predictor or variable in the model.
This model singles out fly ash and cement as the most significant variables. Slightly smaller
but of similar relevance are the variables representing coarse natural aggregate, silica fume
and fine rubber. The variables coarse rubber and superplasticizer represent the next group
of variables that have similar and lower relevance than the previous. The least relevant are
the variables fine natural aggregates and slag.

In further analysis, GPR models that used the most relevant variables were considered
due to the possibility that the presence of irrelevant variables may reduce the accuracy
of the model accuracy. It has been shown that by eliminating the variable of smaller
significance, which in this case represents the variable Slag, a model of higher accuracy is
obtained. Additionally, in this way, the complexity of the model is reduced, and the model
training process is accelerated.

6. Conclusions

This paper gives a comprehensive overview of machine learning methods that can
be used for estimating SCRC compressive strength, including MLP-ANN, ensembles of
MLP-ANNs, regression tree ensembles (random forests, boosted and bagged regression
trees), SVR and GPR, with different covariance functions.

As a basis for the development of the forecast model, a database containing a total of
166 samples of SCRC was obtained from various experimental studies.

Ensembles of neural networks and GPR models with ARD covariance function stood
out as the models of the highest accuracy. Other analyzed models are more complex,
and optimization of their parameters requires significant search efforts, but they are still
less accurate.
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The following values of accuracy criteria were obtained for the ensemble of neural
networks: RMSE = 3.6888, MAE = 2.8099, MAPE = 0.0854 and R = 0.9610, while the GPR
model with Matern 3/2 covariance function had values of RMSE = 4.3934, MAE = 3.0583,
MAPE = 0.0942 and R = 0.9482.

The application of an ensemble of neural networks has the greatest complexity, where
satisfactory accuracy is achieved only with the formation of an ensemble with a significant
number of basic models. Neural network ensembles do not allow direct consideration of
the relevance of individual input variables.

The use of the GPR method gives models of satisfactory accuracy and, at the same time,
significantly less complexity. The proposed model with the ARD Matern 3/2 covariance
function enables the ranking of the influence of individual variables on the accuracy of
the model. The complexity of this model is reduced, and the model training process
is accelerated.

Based on the proposed models for the neural network ensemble and GPR models, a
model application was developed in MATLAB and deposited on the Github website.

Author Contributions: Conceptualization, M.K., S.L., E.K.N. and M.H.-N.; methodology, M.K., S.L.,
E.K.N. and M.H.-N.; software, M.K. and E.K.N.; validation, M.K., S.L., E.K.N. and M.H.-N.; formal
analysis, M.K. and E.K.N.; investigation, S.L. and M.H.-N.; resources, S.L. and M.H.-N.; data curation,
M.K., S.L. and E.K.N.; writing—original draft preparation, M.K., S.L., E.K.N. and M.H.-N.; writing—
review and editing, M.K., S.L., E.K.N. and M.H.-N.; funding acquisition, S.L. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The research described in this paper has been fully supported by Croatian
Ministry of Science and Education and Serbian Ministry of Education, Science and Technological De-
velopment under scientific research project entitled “Microstructural and mechanical characteristics
of concrete with recycled materials” 2019–2021.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Yildirim, S.T.; Duygun, N.P. Mechanical and physical performance of concrete including waste electrical cable rubber. IOP Conf.

Ser. Mater. Sci. Eng. 2017, 245, 022054. [CrossRef]
2. Hadzima-Nyarko, M.; Nyarko, E.K.; Djikanovic, D.; Brankovic, G. Microstructural and mechanical characteristics of self-

compacting concrete with waste rubber. Struct. Eng. Mech. 2021, 78, 175–186. [CrossRef]
3. Alaloul, W.S.; Musarat, M.A.; Haruna, S.; Law, K.; Tayeh, B.A.; Rafiq, W.; Ayub, S. Mechanical properties of silica fume modified

high-volume fly ash rubberized self-compacting concrete. Sustainability 2021, 13, 5571. [CrossRef]
4. Eurocode 2: Design of Concrete Structures—Part 1-1: General Rules and Rules for Buildings; EN 1992-1-1:2004 1 AC:2010; British

Standards Institution: London, UK, 1992.
5. ACI COMMITTEE 209. Creep Shrinkage Temperature in Concrete Structures; American Concrete Institute: Detroit, MI, USA, 2008;

pp. 258–269.
6. Harirchian, E.; Kumari, V.; Jadhav, K.; Raj Das, R.; Rasulzade, S.; Lahmer, T. A machine learning framework for assessing seismic

hazard safety of reinforced concrete buildings. Appl. Sci. 2020, 10, 7153. [CrossRef]
7. Martínez-Álvarez, F.; Schmutz, A.; Asencio-Cortés, G.; Jacques, J. A novel hybrid algorithm to forecast functional time series

based on pattern sequence similarity with application to electricity demand. Energies 2019, 12, 94. [CrossRef]
8. Ahmad, M.; Hu, J.-L.; Hadzima-Nyarko, M.; Ahmad, F.; Tang, X.-W.; Rahman, Z.U.; Nawaz, A.; Abrar, M. Rockburst hazard

prediction in underground projects using two intelligent classification techniques: A comparative study. Symmetry 2021, 13, 632.
[CrossRef]

9. Zhu, S.; Lu, H.; Ptak, M.; Dai, J.; Ji, Q. Lake water-level fluctuation forecasting using machine learning models: A systematic
review. Environ. Sci. Pollut. Res. 2020, 27, 44807–44819. [CrossRef] [PubMed]

10. Naderpour, H.; Mirrashid, M. Proposed soft computing models for moment capacity prediction of reinforced concrete columns.
Soft Comput. 2020, 24, 11715–11729. [CrossRef]

http://doi.org/10.1088/1757-899X/245/2/022054
http://doi.org/10.12989/sem.2021.78.2.175
http://doi.org/10.3390/su13105571
http://doi.org/10.3390/app10207153
http://doi.org/10.3390/en12010094
http://doi.org/10.3390/sym13040632
http://doi.org/10.1007/s11356-020-10917-7
http://www.ncbi.nlm.nih.gov/pubmed/32978734
http://doi.org/10.1007/s00500-019-04634-8


Materials 2021, 14, 4346 24 of 25

11. Lin, C.-J.; Wu, N.-J. An ANN model for predicting the compressive strength of concrete. Appl. Sci. 2021, 11, 3798. [CrossRef]
12. Ahmad, M.; Hu, J.-L.; Ahmad, F.; Tang, X.-W.; Amjad, M.; Iqbal, M.J.; Asim, M.; Farooq, A. Supervised learning methods for

modeling concrete compressive strength prediction at high temperature. Materials 2021, 14, 1983. [CrossRef]
13. Aalimahmoody, N.; Bedon, C.; Hasanzadeh-Inanlou, N.; Hasanzade-Inallu, A.; Nikoo, M. BAT algorithm-based ANN to predict

the compressive strength of concrete—A comparative study. Infrastructures 2021, 6, 80. [CrossRef]
14. Sadowski, L.; Piechowka-Mielnik, M.; Widziszowski, T.; Gardynik, A.; Mackiewicz, S. Hybrid ultrasonic-neural prediction of the

compressive strength of environmentally friendly concrete screeds with high volume of waste quartz mineral dust. J. Clean. Prod.
2019, 212, 727–740. [CrossRef]

15. Nikoo, M.; Moghadam, F.T.; Sadowski, L. Prediction of concrete compressive strength by evolutionary artificial neural networks.
Adv. Mater. Sci. Eng. 2015, 2015, 849126. [CrossRef]
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70. Bušić, R.; Benšić, M.; Miličević, I.; Strukar, K. Prediction models for the mechanical properties of self-compacting concrete with
recycled rubber and silica fume. Materials 2020, 13, 1821. [CrossRef]

71. Hagan, M.T.; Demuth, H.B.; Beale, M.H.; Jesus, O.D. Neural Network Design. Martin, T.H., Ed.; Oklahoma State University:
Stillwater, OK, USA, 2014.

http://doi.org/10.1023/B:STCO.0000035301.49549.88
http://doi.org/10.1145/1961189.1961199
https://www.csie.ntu.edu.tw/~{}cjlin/libsvm/
http://doi.org/10.1016/j.conbuildmat.2012.11.019
http://doi.org/10.4028/www.scientific.net/KEM.629-630.417
http://doi.org/10.1016/j.wsj.2014.12.002
http://doi.org/10.1061/(ASCE)MT.1943-5533.0001731
http://doi.org/10.1016/j.resconrec.2008.06.012
http://doi.org/10.1617/s11527-009-9564-1
http://doi.org/10.1016/j.conbuildmat.2013.02.077
http://doi.org/10.17758/UR.U0315331
http://doi.org/10.17485/ijst/2015/v8i29/86799
http://doi.org/10.1016/j.acme.2015.09.003
http://doi.org/10.12989/acc.2016.4.1.049
http://doi.org/10.1016/j.conbuildmat.2017.05.191
http://doi.org/10.1016/j.conbuildmat.2017.11.146
http://doi.org/10.1016/j.jclepro.2017.12.003
http://doi.org/10.1051/matecconf/201814901070
http://doi.org/10.1007/s12205-019-0024-3
http://doi.org/10.3390/ma13081821

	Introduction 
	Methods 
	Multilayered Perceptron Artificial Neural Network (MLP-ANN) 
	Regression Tree Ensembles 
	Bagging 
	Random Forests 
	Boosting Trees 

	Support Vector Regression (SVR) 
	Gaussian Proces Regression 

	Evaluation and Performance Measures 
	Dataset 
	Results and Discussion 
	Conclusions 
	References

