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Abstract: A metamodeling technique based on Bivariate Cut High Dimensional Model Represen-
tation (Bivariate Cut HDMR) is implemented for a semiconductor packaging design problem with
10 design variables. Bivariate Cut-HDMR constructs a metamodel by considering only up to second-
order interactions. The implementation uses three uniformly distributed sample points (s = 3) with
quadratic spline interpolation to construct the component functions of Bivariate Cut-HDMR, which
can be used to make a direct comparison with a metamodel based on Central Composite Design
(CCD). The performance of Bivariate Cut-HDMR is evaluated by two well-known error metrics:
R-squared and Relative Average Absolute Error (RAAE). The results are compared with the perfor-
mance of CCD. Bivariate Cut HDMR does not compromise the accuracy compared to CCD, although
the former uses only one-fifth of sample points (201 sample points) required by the latter (1045 sample
points). The sampling schemes and the predictions of cut-planes and boundary-planes are discussed
to explain possible reasons for the outstanding performance of Bivariate Cut HDMR.

Keywords: bivariate cut-HDMR; semiconductor packaging; central composite design; R-squared;
relative average absolute error

1. Introduction

Numerous metamodeling techniques (also known as response surface methods, sur-
rogate models, or reduced-order models) have been developed and implemented for
engineering design optimization [1]. Metamodeling includes two parts: generation of
discrete sample points and connection of the discrete sample points. Each metamodeling
technique possesses its own characteristics that can be suited for certain applications.

For a typical engineering system, a metamodel considering up to second-order inter-
actions is often sufficient to describe system responses [2,3]. For example, a metamodeling
technique called central composite design (CCD) has been implemented widely in the
field of semiconductor packaging design community, which uses quadratic polynomial
functions for fitting sample points [4–6]. It was implemented for commercial software
such as optiSLang [7], Design-Expert [8], etc. The CCD metamodeling technique requires
P number of sample points to produce the metamodel for N number of input variables,
defined as [3]:

P = 1 + 2N + 2N (1)

As the number of input variables increases, the computational cost may become
prohibitively high due to an extremely large number of sample points required (this is
the well-known “curse of dimensionality”). This situation will be exacerbated when the
modeling requires a computationally expensive analysis such as time-dependent and
nonlinear analysis that is routinely encountered in complex semiconductor packaging
architectures [9–11].

Materials 2021, 14, 4619. https://doi.org/10.3390/ma14164619 https://www.mdpi.com/journal/materials

https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-9670-8315
https://orcid.org/0000-0003-3721-9738
https://doi.org/10.3390/ma14164619
https://doi.org/10.3390/ma14164619
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma14164619
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma14164619?type=check_update&version=2


Materials 2021, 14, 4619 2 of 16

In order to build accurate and efficient metamodels for high dimensional input-output
systems, numerous advanced metamodeling techniques such as the high-dimensional
model representation (HDMR) technique [12–14], reduced dimensional polynomial chaos
expansion [15], and active and rank-adaptive tensor regression [16] have been developed
to enhance the efficiency of metamodeling in various engineering fields.

Among these techniques, one family of HDMR, called Cut-HDMR, possesses two
unique practical features: (1) it involves function evaluations only at sample points, and,
more importantly, (2) it determines the number of sample points from a pre-defined func-
tion of the number of input variables regardless of the nature of engineering applications,
i.e., selection of sample points is simple and straightforward [14,17,18]. Based on these
features, numerous metamodeling techniques based on Cut-HDMR have been developed
such as RBF-HDMR [19], Adaptive MLS-HDMR [20], and Kriging-HDMR [21].

HDMR decomposes a multivariate function into multiple lower-order component
functions, based on the hierarchical structure of interaction effects of the input variables.
The high performance of some of the metamodeling techniques based on Cut-HDMR
considering up to second-order component functions (this will be referred to as Bivari-
ate Cut-HDMR) has been confirmed for nonlinear numerical test functions [19,20] and
statistical analysis of multiconductor transmission line networks [22].

The objectives of this paper are (1) to introduce the cut-HDMR to the semiconductor
packaging design community and to help implement the Bivariate Cut-HDMR for those
who are not familiar with the HDMR, and (2) to investigate the performance of Bivariate
Cut-HDMR for a complex semiconductor packaging problem (10 design input valuables).
The result is compared with the performance of CCD, which has been utilized widely in
the semiconductor packaging industry.

2. Background: Bivariate Cut-HDMR

The fundamentals of HDMR are described first. A specific HDMR that uses the
Dirac measure located at a cut center, called Cut-HDMR, is presented together with its
approximated version, Bivariate Cut-HDMR, which considers up to second-order compo-
nent functions.

2.1. High-Dimensional Model Representation (HDMR)

The concept of high-dimensional expansion was implemented originally to estimate
the sensitivity of a function with respect to arbitrary groups of variables [23]. Later, the
term, HDMR, was first introduced by Rabitz and Alis [12]. They detailed and completed
the general foundations of HDMR.

The HDMR expansion is performed based on the interaction effects of input variables.
The term “interaction” employed here means that more than one variable act together to
affect the performance function. This is distinctly different from the term “correlation”
employed in statistics, which represents whether and how strongly a pair of random
variables are related.

A general form of HDMR is defined as [12]:

y(x) = y(x1, x2, . . . , xN)

≡ y0 +
N
∑

i=1
yi(xi) + ∑

1≤i<j≤N
yij
(
xi, xj

)
+ · · · + ∑

1≤i1<···<il≤N
yi1i2 ...il

(
xi1 , xi2 , . . . , xil

)
+ · · · + y12...N(x1, x2, . . . , xN)

(2)

where y(x) and the bold letter, x, represent the performance function and the vector of
input variables, (x1, x2, . . . , xN), respectively; y0 is a constant representing the mean of the
performance function, which is called zeroth-order effect or mean effect; yi(xi) represents
the effect when the variable xi acts independently on y(x), which is called first-order effect
or main effect; yij

(
xi, xj

)
is the effect on y(x) when the variables xi and xj act together,

which is called second-order effect or bivariate interaction effect. It should be noted that
yij
(

xi, xj
)

excludes the main effects of xi and xj as well as the mean effect. The subsequent
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terms indicate the higher order interaction effects of more variables acting together on y(x).
The last term y12...N(x1, x2, . . . , xN) represents the residual influence.

Each effect in the general form of HDMR is called a component function. The general
form of component functions can be expressed as [12]:

y0 ≡ My(x)
yi(xi) ≡ Miy(x)− y0

yij
(

xi, xj
)
≡ Mijy(x)− yi(xi)− yj

(
xj
)
− y0

...
y12...n(x) ≡ y(x)− y0 −∑

i
yi(xi)−∑

ij
yij
(
xi, xj

)
− . . .− ∑

12...N
y12...N(x1, x2, . . . , xN)

(3)

The functions in the above equation are defined as:

My(x) =
∫

Kn y(x)dγ(x)

Mi1i2 ...il y(x) =
∫

Kn−l y(x)

[
∏

j/∈{i1,...,il}
dγj
(
xj
)] (4)

where Kn = {(x1, x2, . . . , xn): 0 ≤ xi ≤ 1, i = 1, 2, . . . , n} is an n-dimensional unit cube and
γ is a measure [24]. A measure is a function that quantifies the size of sets. A measure
assigns a non-negative real number or +∞ to subsets of a certain set. Each distinct measure
embodies a different way to assess how big a set is.

There is no unique decomposition of the model output y(x1, x2, . . . , xN); all HDMR
expansions follow the general form in Equation (2). The choice of a particular HDMR
expansion depends on the application and the nature of any constraints in sampling input
variables. For example, for the uncertainty analysis of a model output (e.g., an analysis
of the variance of an output), the component functions in the HDMR should be chosen to
represent the independent contributions of input variables to the overall uncertainty of the
output. It is known as ANOVA-HDMR [12,25].

The ANOVA-HDMR is typically carried out by multi-dimensional Monte Carlo inte-
gration due to its complexity. The Monte Carlo integration needs a large number of sample
points to attain good accuracy. It is impractical for the advanced semiconductor packaging
applications where computational cost of each sample point is high. However, another
approach of HDMR, Cut-HDMR, can tackle the challenge.

2.2. Cut-HDMR and Bivariate Cut-HDMR

Cut-HDMR uses the Dirac measure [26] located at a point m = (m1, m2, . . . , mn) (also
known as cut center):

dγ(x) =
n

∏
i=1

δ(xi −mi)dxi (5)

By combining it with Equations (3) and (4), the component functions of Cut-HDMR
can be expressed as:

y0 ≡ M f (x) = y(m)

yi(xi) ≡ Miy(x)− y0 = y(m1, . . . , mi−1, xi, mi+1, . . . , mn)− y0
yij
(

xi, xj
)
≡ Mijy(x)− yi(xi)− yj

(
xj
)
− y0 = y

(
m1, . . . , xi, . . . , xj, . . . , mn

)
− yi(xi)− yj

(
xj
)
− y0

...
y12...n(x) ≡ y(x)− y0 −∑

i
yi(xi)−∑

ij
yij
(

xi, xj
)
− . . .− ∑

12...N
y12...N(x1, x2, . . . , xN)

(6)

where y(m1, . . . , mi−1, xi, mi+1, . . . , mn) is a 1D performance function along the xi direction
that passes through m; y

(
m1, . . . , xi, . . . , xj, . . . , mn

)
is a 2D performance function of the(

xi, xj
)

plane that passes through m, and so on.
Equation (6) shows that Cut-HDMR is an expression as a superposition of its values

on lines, planes, and hyperplanes of higher orders passing through the cut center, m. The
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expansions of Cut-HDMR do not contain any integral. Cut-HDMR uses only arithmetic
computation to determine the component functions, and thus it requires the least amount
of computational cost compared to other HDMRs [12,27].

For most well-defined physical systems, the high-order interactions are negligible [14,28],
and thus the multivariate performance function of such a physical system can be approx-
imated well by the sum of low-order component functions. Experience shows that an
HDMR expansion up to the second-order often provides a satisfactory description of
the function for many high-dimensional systems when the input variables are properly
chosen [14].

It has been proven that the mean values of input variables, µ, are the optimal cut
center m when only the terms up to the second-order are considered [25]. Accordingly, the
metamodel based on Bivariate Cut-HDMR can be obtained by substituting Equation (6) into
Equation (2) with the cut center being the mean values of input variables. This Bivariate
Cut-HDMR metamodel is written as [29]:

y(x) ∼= ∑
1≤i<j≤N

y
(

xi, xj, µ∼ij
)
− (N − 2)

N

∑
i=1

y
(

xi, µ∼i
)

+
(N − 1)(N − 2)

2
y0 (7)

where y0 = µ = [µ1, µ2, . . . , µN ]
T is the vector of the mean values of N input variables

(cut center); µ∼i is µ without the element µi; µ∼ij is µ without the elements µi and µj;
y
(

xi, µ∼i) is the 1D performance function along the xi direction that passes through µ
(cut-line); and y

(
xi, xj, µ∼ij) is a 2D performance function on the (xi, xj) plane that passes

through µ (cut-plane).
Figure 1 illustrates the concept of Bivariate Cut-HDMR using an arbitrary 2D function,

which is decomposed into four component functions. Figure 1a shows the 2D function,
x2 + y2 + xy− 14x− 16y + 122 = 0, as the black meshed surface, and the dot in the figure
represents the zeroth-order effect (i.e., a constant). In Figure 1b, the blue curve is the 1D
performance function along the x1 direction, in which x2 is kept as µ2. The green line is the
zeroth-order effect along the x1 direction. The main effect of x1 is the red curve, obtained
by subtracting the green line from the blue curve.

The same procedure can be applied to obtain the main effect of x2, as shown in
Figure 1c. In Figure 1d, the blue surface is obtained by the superposition of the red curves
in Figure 1b,c, which represents the performance function without any interaction effects.
The green plane is the zeroth-order effect. By subtracting the blue surface and the green
plane from the black surface, the interaction effect of the (x1, x2) pair is obtained, which is
shown as the red surface.
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Figure 1. Illustration of Bivariate Cut-HDMR using an arbitrary 2D function; (a) 2D function and the
effect of zeroth-order, (b) the main effect of x1, (c) the main effect of x2, and (d) the interaction effect
of x1 and x2.

3. Implementation for Semiconductor Packaging Application

The Bivariate Cut-HDMR technique is implemented to construct a metamodel for a
semiconductor packaging application. The application involves warpage prediction of a
thin flat ball grid array (TFBGA) package with 10 design input variables.

3.1. Description of TFBGA Package

Figure 2 shows the schematic diagram of a TFBGA package. The first chip is attached
to a substrate by the first die attach film (DAF). The second chip is attached to the first chip
by the second DAF. Then, they were encapsulated by epoxy molding compound (EMC).
A stacked die TFBGA package is often used as the top package of a Package-on-Package
(PoP). Warpage at solder pad areas is one of the most critical factors to high PoP stacking
yield [30].
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Figure 2. TFBGA package: (a) cross-sectional view and (b) bottom view.

A finite element (FE) model was constructed for warpage prediction. Figure 3 shows
details of the FE model built by a commercial FE analysis package (ANSYS®). The quarter
symmetry model of boundary conditions and the die stack configuration are shown in (a)
and (b); and the enlarged view of cross-section is shown in (c). The material properties and
the nominal dimensions used in the model are summarized in Tables 1 and 2. The nominal
dimensions of the TFBGA package are adopted from the design in Refs. [10,31].



Materials 2021, 14, 4619 6 of 16

Materials 2021, 14, x FOR PEER REVIEW 6 of 17 
 

 

 

 

(a) (b) 

Figure 2. TFBGA package: (a) cross-sectional view and (b) bottom view. 

A finite element (FE) model was constructed for warpage prediction. Figure 3 shows 

details of the FE model built by a commercial FE analysis package (ANSYS® ). The quarter 

symmetry model of boundary conditions and the die stack configuration are shown in (a) 

and (b); and the enlarged view of cross-section is shown in (c). The material properties 

and the nominal dimensions used in the model are summarized in Tables 1 and 2. The 

nominal dimensions of the TFBGA package are adopted from the design in Refs. [10,31]. 

  

(a) (b) 

 

(c) 

Figure 3. Quarter FE model of TFBGA package: (a) boundary conditions; (b) die stack configuration; 

and (c) enlarged view of cross-section. 

The TFBGA package was subjected to the EMC molding process at 175 °C, which was 

used as a stress-free temperature. The conventional lead-free solder reflow profile with 

the peak temperature of 260 °C was considered [32]. 

In this implementation, 10 design variables were considered for the warpage predic-

tion of solder pad areas. The details of design variables are summarized in Table 3. The 

design spaces of the package dimensions and the material properties were defined by the 

values found in the literature: package dimensions in [31,33–39] and material properties 

in [40–45]. 

  

EMC

Substrate

chip

chip

DAF

Figure 3. Quarter FE model of TFBGA package: (a) boundary conditions; (b) die stack configuration;
and (c) enlarged view of cross-section.

Table 1. Properties of materials used in the TFBGA package.

Material Young’s Modulus
(GPa)

Poisson’s
Ratio

CTE (ppm/◦C)
Tg (◦C)

A1 (<Tg) A2 (>Tg)

Silicon die 130 0.23 2.8 –

DAF
2.2 @ 25 ◦C

0.3 65.3 162.9 1380.98 @ 100 ◦C
0.008 @ 200 ◦C

Substrate 17.5 0.3
15 (in-plane) –

61.5 (out-of-plane)

EMC

29.237 @ 25 ◦C

0.21 9.12 36 137.5
14.030 @ 125 ◦C
1.932 @ 175 ◦C
1.498 @ 235 ◦C

Table 2. Dimensions of TFBGA package.

Structure Length ×Width × Thickness

1st Die (mm) 13 × 11 × 0.575

1st DAF (mm) 13 × 11 × 0.025

2nd Die (mm) 11 × 9 × 0.575

2nd DAF (mm) 11 × 9 × 0.025

Substrate (mm) 15 × 15 × 0.13

EMC (mm) 15 × 15 × 0.55

The TFBGA package was subjected to the EMC molding process at 175 ◦C, which was
used as a stress-free temperature. The conventional lead-free solder reflow profile with the
peak temperature of 260 ◦C was considered [32].
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In this implementation, 10 design variables were considered for the warpage predic-
tion of solder pad areas. The details of design variables are summarized in Table 3. The
design spaces of the package dimensions and the material properties were defined by the
values found in the literature: package dimensions in [31,33–39] and material properties
in [40–45].

Table 3. Design variables of the TFBGA package.

Variable Physical Meaning Range of Design Space Mean

x1 EMC thickness (mm) 0.25–0.85 0.55

x2 Substrate thickness (mm) 0.12–0.34 0.23

x3 1st chip thickness (mm) 0.050–0.075 0.0625

x4 2nd chip thickness (mm) 0.050–0.075 0.0625

x5 1st DAF thickness (mm) 0.02–0.025 0.0225

x6 2nd DAF thickness (mm) 0.01–0.02 0.015

x7 EMC CTE above Tg (ppm/◦C) 25–47 36

x8 Substrate CTE (ppm/◦C) 12–18 15

x9 Substrate modulus (GPa) 7.5–27.5 17.5

x10 Half of PKG width and length (mm) 7–8 7.5

3.2. Sample Points

The number of sample points to construct a Bivariate Cut-HDMR metamodel can be
generally expressed as [12]:

R = 1 + N(s− 1) +
N(N − 1)

2
(s− 1)2 (8)

where N is the number of input variables and s is the number of sample points taken
along the direction of each input variable. N(s− 1) points are used to construct 1D perfor-
mance functions, and N(N − 1)(s− 1)2/2 points are used to construct the 2D performance
functions.

For the univariate terms (i.e., s number of sample points distributed along each input
variable), the center becomes the reference point, and the remaining (s− 1) sample points
are evenly distributed on two sides with respect to the reference point. For the bivariate
terms, the sample points form a uniform gird on a plane with the center as a reference point.

Cut-HDMR, in its original form [14], states that a set of sample points can be selected
to calculate the values of corresponding component functions and to form a look-up table
that can be used to interpolate component functions at an arbitrary point in the design
domain. There has been no universally accepted sampling strategy and interpolation
algorithm. The implementation of this study uses three uniformly distributed sample
points (s = 3) with quadratic spline interpolation to construct the component functions of
Bivariate Cut-HDMR. In this way, the Bivariate Cut-HDMR metamodel can be compared
directly with the CCD metamodel.

Figure 4 and Table 4 show the number of sample points required for the CCD and
Bivariate Cut-HDMR metamodels. After N = 7, the number of sample points for CCD
becomes more than double the number of sample points for Bivariate Cut-HDMR. Consid-
ering only the number of sample points, Bivariate Cut-HDMR has a significant advantage
over CCD when a metamodeling problem has a large number of input variables.
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Figure 4. Numbers of sample points required by Bivariate Cut-HDMR and CCD as a function of the
number of variables.

Table 4. Number of sample points required for Central composite design (CCD) and Bivariate Cut
HDMR with s = 3.

Number of Sample Points
Ratio of Two Numbers
of Sample Points R/PN s CCD

P=1+2N+2N
Bivariate Cut-HDMR
R=1+2N+ N(N−1)

2 (2)2

2 3 9 9 100%

3 3 15 19 127%

4 3 25 33 132%

5 3 43 51 119%

6 3 77 73 95%

7 3 143 99 69%

8 3 273 129 47%

9 3 531 163 31%

10 3 1045 201 19%

11 3 2071 243 12%

12 3 4121 289 7%

13 3 8219 339 4%

3.3. Construction of Bivariate Cut-HDMR Metamodel
3.3.1. Obtain Sample Points

For s = 3, a total of 201 sample points (Equation (8)) are required to construct the
Bivariate Cut-HDMR metamodel. The sample points consist of one mean sample point
(cut center), 20 univariate sample points, and 180 bivariate sample points.

The mean sample point is the design point, which is the mean values of each design
variables. The 20 univariate sample points are the sample points, where one of the design
variables takes either maximum or minimum value in its design space while other design
variables keep the mean values. The 180 bivariate sample points are the sample points,
where two of the design variables take either maximum or minimum value in their de-
sign spaces while other design variables keep the mean values. The warpage values of
201 (=1 + 20 + 180) sample points were obtained by the FE model. Since the dimensions of
the FE model varies with sample points, the FE model must regenerate different meshes
for each sample point. The Supplementary Materials includes: (1) the warpage values of
201 sample points that were used to construct the Bivariate Cut-HDMR metamodel; (2) the
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warpage values of 1045 sample points that were used to construct the CCD metamodel;
and (3) the Monte Carlo simulation sample points used in Section 4.

3.3.2. Construct Performance Functions

After the warpage values at the 201 sample points are obtained, the metamodel
can be constructed by applying Equation (7). The quadratic spline interpolation scheme
was adopted with all sample points to form the 1D performance functions (cut-lines),
y
(

xi, µ∼i), and the 2D performance functions (cut-planes), y
(

xi, xj, µ∼ij) by following the
procedures below:

• 1D performance functions:

1. Select a design variable.
2. Find the three sample points along the design variable that was obtained earlier,

i.e., high, mid, and low values of the design variable and other design variables
keep the mean values.

3. Construct the 1D function of the design variable with the three sample points
using quadratic spline interpolation. This can be done by using the built-in
function that is available in commercial software (e.g., MATLAB).

4. Select another design variable and repeat steps 2–3 until all 1D performance
functions along each design variable are built.

• 2D performance functions:

1. Select a pair of design variables.
2. Find the nine sample points along two design variables that were obtained earlier

(other design variables keep the mean values) as shown in the figure.
3. Construct the 2D function of the design variable with the nine sample points

using quadratic spline interpolation. This can be done by using the built-in
function that is available in commercial software (e.g., MATLAB).

4. Select another pair of design variables and repeat steps 2–3 until all 2D perfor-
mance functions of each pair of design variables are built.

The performance functions are illustrated in Figures 5 and 6. Figure 5 shows the 1D
performance functions of EMC thickness and substrate thickness, and Figure 6 shows the
2D performance functions of two pairs of design variables. The pair of substrate thickness
and EMC CTE has the strongest second-order interaction effect among other pairs. In
contrast, the pair of package width and length and 1st chip thickness has the weakest
second-order interaction effect. Red dots indicate the sample points used to construct the
cut-lines and the cut-planes.
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Following is the example of determining the response of a random input by using the
constructed metamodel. Assuming that a random input x is (0.81, 0.25, 0.050, 0.064, 0.023,
0.013, 15.3, 10.2, 28.2, 7.69). Equation (7) can be written as:

y
(

0.81, 0.25, 0.050, 0.064, 0.023,
0.013, 15.3, 10.2, 28.2, 7.69

)
= ∑

1≤i<j≤10
y
(

xi, xj, µ∼ij
)
− (10− 2)

10

∑
i=1

y
(

xi, µ∼i
)

+
(10− 1)(10− 2)

2
y0 (9)

where the warpage at the cut center, y0 = µ = [µ1, µ2, . . . , µ11]
T, is 0.9 µm; y

(
xi, µ∼i)

and y
(

xi, xj, µ∼ij) are the values of x on all known 1D performance functions and 2D
performance functions that were constructed earlier. Thus, the warpage value at the
random input x can be calculated; it was −49.2 µm.

The above Bivariate Cut-HDMR procedure was integrated in MATLAB (R2020b) codes,
and they are available at https://www.mathworks.com/matlabcentral/fileexchange/9289
0-bivariate-cut-hdmr (accessed on 25 May 2021). Those who are interested in implementing
Bivariate Cut-HDMR metamodeling can run the script readily by following the instructions.

4. Performance Evaluation

The performance of Bivariate Cut-HDMR is evaluated using two well-known error
metrics. The performance of CCD is also evaluated for comparison.

4.1. Error Metrics

Two error metrics employed to evaluate the performance are: [46]

• Metric 1: R-squared

R2 = 1− ∑m
i=1[y(xi)− ŷ(xi)]

2

∑m
i=1[y(xi)− y(xi)]

2 (10)

where m is the number of total test sample points; y(xi) is a performance function at the ith
new sample point used for validity check; ŷ(xi) is an approximated performance function
at the ith new sample point; and y(xi) is the mean of all y(xi). R-squared indicates the
overall accuracy of a metamodel, and its maximum value is 1.

• Metric 2: Relative average absolute error (RAAE)

RAAE =
1
m ∑m

i=1|y(xi)− ŷ(xi)|
STD

(11)

where STD is the standard deviation of all y(xi). Similar to R-squared, RAAE quantifies the
overall accuracy of a metamodel. The closer a value of RAAE is to zero, the more accurate
a metamodel is.

https://www.mathworks.com/matlabcentral/fileexchange/92890-bivariate-cut-hdmr
https://www.mathworks.com/matlabcentral/fileexchange/92890-bivariate-cut-hdmr
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Monte Carlo simulation (MCS) was performed to produce 1000 additional sample
points. They were used to evaluate the performance of Bivariate Cut-HDMR using the
above metrics. The results of the performance metrics are summarized in Table 5. The
values of R-squared and RAAE are 0.9855 and 0.0880, respectively.

Table 5. Performance metrics of Bivariate Cut-HDMR and CCD.

N s Method Number of Sample Points R-Squared RAAE

10 3
Bivariate Cut-HDMR 201 0.9855 0.0880

CCD 1045 0.9662 0.1472

A metamodel based on CCD was also constructed for comparison. A total of 1045 sam-
ple points were required for the CCD metamodel, which built a 10D quadratic function
to define the warpage behavior. The additional sample points obtained from MCS were
utilized again to evaluate the performance of CCD metamodel. The results are also shown
in Table 5. The values of R-squared and RAAE are 0.9662 and 0.1472, respectively.

More direct and quantitative comparisons are shown in Figure 7, where the absolute
errors of the MCS sample points are compared. The absolute errors of half the MCS sample
points of Bivariate Cut-HDMR are less than 5 µm. The outcome is remarkable. Bivariate
Cut HDMR used only one-fifth of sample points (201 sample points) required by CCD
(1045 sample points). However, Bivariate Cut-HDMR does not compromise the accuracy
when compared to CCD. The following section is intended to provide some insight into
this performance of Bivariate Cut HDMR.
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Figure 7. Absolute error of Bivariate Cut-HDMR and CCD of 1000 MCS.

4.2. Discussion: Bivariate Cut-HDMR vs. CCD Metamodel
4.2.1. Sampling Scheme

Figure 8 shows the sampling schemes of Bivariate Cut-HDMR and CCD for a three-
variable (N = 3, s = 3) example. In the figure, the red point is the mean point for both
Bivariate Cut-HDMR and CCD; the blue points are used to construct the functions of three
lines in the X-, Y- and Z-directions for Bivariate Cut-HDMR and the axial points for CCD;
and the yellow points together with the blue points are used to construct the functions
of three planes (X-Z plane, Y-Z plane, and X-Y plane) for Bivariate Cut-HDMR and the
factorial points for CCD. It also illustrates one of the cut-planes (green planes) and one of
the boundary-planes (magenta planes) of both metamodels.
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Figure 8. Illustration of sample points for N = 3: (a) Bivariate Cut-HDMR with s = 3 and (b) CCD,
where the red point is the mean point.

The sampling points of Bivariate Cut-HDMR are utilized to construct the first-order
and second-order component functions, i.e., every sample point is used to construct the 1D
and 2D performance functions (as illustrated in Figures 5 and 6). On the other hand, the
sample points of CCD are aimed to cover the boundaries of a design domain.

4.2.2. Prediction of Cut-Planes

As mentioned earlier, the sampling scheme of Bivariate Cut-HDMR is designed to
construct the cut-lines and cut-planes. The prediction on the cut-planes performed by both
metamodels are compared. As shown in Figure 8, Bivariate Cut-HDMR has more sample
points (9) than CCD (5) on the cut-planes (green planes).

Figures 9 and 10 show the two predicted surfaces (cut-planes), which were studied in
the TFBGA application. Each figure has the identical nine dots (warpage values obtained
from the FE model) in (a) and (b). Red dots are the sample points used to construct for
each metamodel. Blank dots are the sample points that were used to construct the Bivariate
Cut-HDMR metamodel but not used to construct the CCD metamodel.
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Figure 9. 2D performance functions of design variables of (a) Bivariate Cut-HDMR and (b) CCD,
where design variables other than EMC CTE and substrate thickness are kept at their mean values.
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Figure 10. 2D performance functions of design variables of (a) Bivariate Cut HDMR and (b) CCD,
where design variables other than package width and length and 1st chip thickness are kept at their
mean values.

The surfaces (cut-planes) in Figures 9a and 10a were constructed by Bivariate Cut-
HDMR (quadratic spline interpolation) with two sets of nine sample points shown in the
figures. There is no error between warpage values obtained from FE (dots) modeling and
the predicted surfaces.

The surfaces in Figures 9b and 10b were plotted by the CCD metamodel obtained
from 1045 sample points. The five sample points shown in Figures 9b and 10b were just
a small portion of the total 1045 sample points used to construct the CCD metamodel (a
second-order polynomial function). This attempt for CCD to fit all 1045 sample points
inevitably produces the discrepancy between true warpage values (dots) and predicted
surfaces in the entire design domain, especially in the corners, as shown in Figures 9b
and 10b.

4.2.3. Prediction of Boundary-Planes

The example in Figure 8 (N = 3) shows five sample points on the boundary-planes
of both metamodels. It is important, however, to note that there are lesser or no sample
points on the boundary-planes of both metamodels when the number of input variables
(N) increases. On the boundary-planes of the TFBGA application (N = 10), there were no
sample point for Bivariate Cut-HDMR and only four sample points for CCD.

Figure 11 shows two predicted surfaces (boundary-planes) of the TFBGA application.
Variables other than the two variables shown in the plots were kept at their maximum
values, i.e., it represents one of the boundary-planes in the design domain. Red dots in
(b) are the sample points used to construct the CCD metamodel. They also appear in (a),
although they are not used for Bivariate Cut-HDMR.
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The Bivariate Cut-HDMR surface (boundary-planes) of Figure 11a are plotted by
201 sample points, while the CCD surface of Figure 11b are plotted by 1045 sample points
including the four sample points on the boundary-plane. It is noteworthy that the predicted
2D performance function of Bivariate Cut-HDMR is similar to the CCD surface, despite the
fact that CCD utilizes four sample points on the boundary-plane, but Bivariate Cut-HDMR
does not.

5. Conclusions

Bivariate Cut-High Dimensional Model Representation (Bivariate Cut-HDMR) was
implemented successfully for the warpage problem of a thin flat ball grid array package
with 10 design variables. The implementation with three uniformly distributed sample
points (s = 3) in conjunction with quadratic spline interpolation allowed for comparing its
performance with a metamodel based on Central Composite Design (CCD).

The performance of both metamodels were evaluated by two well-known error met-
rics: R-squared and Relative Average Absolute Error (RAAE). The results were compared
with the performance of CCD: the R-squared values of CCD and Cut-HDMR were 0.9662
and 0.9855, respectively; the RAAE values of CCD and Cut-HDMR were 0.1472 and 0.0880,
respectively.

The outcome was remarkable. Bivariate Cut HDMR used only one-fifth of sample
points (201 sample points) required by CCD (1045 sample points); however, Bivariate
Cut-HDMR did not compromise the accuracy in both error metrics compared to CCD,
which was confirmed by more direct and quantitative comparisons using the absolute
errors of the Monte Carlo simulation (MCS) sample points.

Two technical reasons for the outstanding performance of Bivariate Cut-HDMR
were discussed:

(1) Sampling scheme: the sample points of Bivariate Cut-HDMR were utilized to con-
struct the first-order and second-order component functions, while the sample points
of CCD were aimed to cover the boundaries of a design domain.

(2) Predictions of cut-planes and boundary-planes: Bivariate Cut-HDMR predicted cut-
planes more accurately despite the smaller number of sample points, while both
techniques produced similar accuracy for boundary-plane predictions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ma14164619/s1, Table S1: Bivariate Cut-HDMR sample points, Table S2: CCD sample points,
Table S3: MCS sample points.
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