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Abstract: Pristine graphene is one of the strongest materials known in the world, and may play
important roles in structural and functional materials. In order to utilize the extraordinary mechani-
cal properties in practical engineering structures, graphene should be assembled into macroscopic
structures such as graphene-based papers, fibers, foams, etc. However, the mechanical properties of
graphene-based materials such as Young’s modulus and strength are 1-2 orders lower than those
of pristine monolayer graphene. Many efforts have been made to unveil the multi-scale structure—
property relations of graphene-based materials with hierarchical structures spanning the nanoscale to
macroscale, and significant achievements have been obtained to improve the mechanical performance
of graphene-based materials through composition and structure optimization across multi-scale.
This review aims at summarizing the currently theoretical, simulation, and experimental efforts
devoted to the multi-scale structure—property relation of graphene-based layer materials includ-
ing defective monolayer graphene, nacre-like and laminar nanostructures of multilayer graphene,
graphene-based papers, fibers, aerogels, and graphene/polymer composites. The mechanisms of me-
chanical property degradation across the multi-scale are discussed, based on which some multi-scale
optimization strategies are presented to further improve the mechanical properties of graphene-
based layer materials. We expect that this review can provide useful insights into the continuous
improvement of mechanical properties of graphene-based layer materials.

Keywords: graphene-based layer materials; multi-scale structure—property relations; mechanical
behaviors; hierarchical structures; multi-scale optimization

1. Introduction

Graphene [1] has triggered great interest in two-dimensional (2D) materials in the past
two decades. As the first discovered 2D material, graphene is the thinnest, strongest, and
most flexible material known to exist. Accompanied by its large specific surface area, excel-
lent thermal [2] and electrical [3] conductivities, graphene has been regarded as the ideal
material for various advanced applications including flexible electronics [4], sensors [5,6],
biomedicine [7], etc. In order to utilize the extraordinary mechanical properties of graphene
in practical engineering structures, graphene is usually assembled into macroscopic struc-
tures. However, among the existing works, the mechanical properties have decreased
about two orders from monolayer graphene to macroscopic graphene assemblies such as
graphene-based papers and fibers, indicating multi-scale mechanical degradation mech-
anisms from the nanoscale to millimeter scale. Thus, bringing the excellent mechanical
properties of monolayer graphene into its macroscopic assemblies across different length
scales is extremely important for the practical applications of graphene-based materials and
has attracted wide research interests, as shown in Figure 1. Many theoretical, simulation,
and experimental works have been conducted to unveil the multi-scale structure—property
relations of graphene-based materials for further improving their mechanical properties.
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Figure 1. Multi-scale structures of graphene-based materials and the key loading bearing structures in each scale. Reprinted
with permission from [8-14].

Monolayer graphene is the smallest building unit of graphene-based materials. In
general, graphene can be fabricated by two approaches, that is “top-down” (i.e., mechanical
cleavage [1,15], liquid exfoliation [16], and ion intercalation [17]) and “bottom-up” (i.e.,
chemical vapor deposition (CVD) [18] and wet chemical synthesis [19]). In these fabricating
processes, defects are inevitably introduced, which cannot be ignored in determining the
mechanical properties of graphene. On the other hand, the sixfold symmetry of graphene
indicates isotropic mechanical properties in the basal plane, but under finite deformation,
the mechanical properties of graphene are anisotropic. Therefore, some works have fo-
cused on revealing the structure—property relations of monolayer graphene. For example,
continuum models have been developed to predict the elastic and failure behaviors of
monolayer graphene mediated by defects. Furthermore, more attention has been played to
investigate the mechanical behaviors of defective graphene based on molecule dynamic
(MD) simulations. In general, defect is one of the major sources of the mechanical degra-
dation of monolayer graphene. However, for some special cases, defects can increase the
failure strain, fracture toughness, and out-of-plane deformation. Counterintuitively, in
experiments, defects have been found to increase the Young’s modulus to almost twice
with a vacancy content of ~0.2% [20]. Up until now, it is still a big challenge to accurately
control the type and distribution of defects in monolayer graphene as well as to predict the
mechanical properties of graphene with arbitrary defects.

Graphene layered nanostructures (GLNs)—the nanoscale building blocks of graphene-
based materials—can be formed by assembling monolayer graphene in a layer-by-layer
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manner. According to the continuity of the graphene sheet in GLNs, we classify GLNs
into two types, that is, the nacre-like structure and laminar structure. In general, the in-
plane mechanical behaviors of the nacre-like structure as well as out-of-plane mechanical
behaviors of the laminar structure have been studied. For the nacre-like structure subjected
to in-plane tensile load, the in-plane stress in one graphene sheet is transferred to the
adjacent graphene sheet via interlayer shearing. Related continuum models [1,21-23] have
implied that in-plane tensile behaviors of this kind of structure mostly depend on the
balance of in-plane and interlayer load transfer. In particular, the interlayer interaction
of pristine graphene is van der Waals (vdW) interaction, too weak to transfer enough
in-plane tensile load, which significantly limits the improvement in the mechanical prop-
erties of GLNs. Therefore, many strategies have been proposed to enhance the interlayer
load transfer including chemical crosslinking [24-27] and nano-structural modifications.
On the other hand, the out-of-plane behaviors of laminar structures including bending
deformation [28-31], failure [32], and compressive buckling [33-35] have been studied.
Due to the weak interlayer interactions, laminar structures have shown some unusual
mechanical behaviors such as intrinsic buckling without structure slenderness. Although
it is known the interlayer mechanical properties play an important role in the overall
mechanical behaviors of both nacre-like and laminar structures, few works have been made
to explore the effects of interlayer interaction on bending behaviors of laminar structures.
Furthermore, the bending behaviors of nacre-like structures are still unknown.

Further assembly of GLNs can form the graphene-based layer materials (GLMs),
whose mechanical properties dependent on not only the properties of GLNs, but also multi-
scale assembling structures such as the wrinkles, orientation of GLNs, etc. Three kinds of
macroscopic graphene assemblies, namely graphene papers (GPs) [11,36], graphene fibers
(GFs) [12,37], and graphene aerogels (GAs) [38,39] have mostly been studied. The GPs
and GFs are obtained with the GLNs assembled in a compacted manner, while the GAs
possess cellular structures, but their cell wall consists of GLNs. Different methods have
been developed to fabricate the different graphene macroscopic assemblies. For example,
the compacted paper-like structures can be obtained from the vacuum filtration, while
the compacted fiber-like structures come out of the wet-spinning method, and the porous
structures result from the solution assembling, followed by freeze-dry methods. The details
of different fabrication methods are briefly discussed in Section 4. Moreover, some porous
films or fibers [40,41], exhibiting paper or fiber-like morphologies but possessing the
porous structures inside, are produced via the combination of the fabrication methods of
compacted and porous structures. In general, the structure compaction and uniformity are
two important parameters to influence the load-bearing properties of GLMs in experiments.
This is why GFs have superior mechanical properties, especially Young’s modulus and
tensile strength, to that of GPs. However, the multi-scale mechanisms of mechanical
property degradation from monolayer graphene to macroscopic graphene assemblies as
well as the structure—property relations of GLMs are still unclear.

Various graphene/polymer nanocomposites have been developed. Thanks to its
excellent mechanical properties, graphene is a promising reinforced filler that can signifi-
cantly enhance the Young’s modulus and strength of composites with only a small amount
of graphene. However, the uniform dispersion of graphene in composites with a large
graphene content is a large problem, and the weak vdW interface between graphene and
polymer matrix also provides the crack initiation source, which hinders the further mechan-
ical improvement in graphene/polymer composites. Therefore, several strategies have
been proposed to optimize the interface structures and properties to improve the overall
mechanical properties of graphene nanocomposites including Young’s modulus, strength,
and toughness [42,43]. Besides, other structures such as inverse nacre-like [44,45] or bi-
continuous [46] laminar microstructures have been fabricated, which can simultaneously
improve the strength and toughness of graphene nanocomposites.

Although several reviews have focused on graphene monolayer [47-49], GPs [50,51],
GFs [52,53], GAs [54], and graphene/polymer nanocomposites [55,56], the mechanical
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degradation mechanisms of GLMs across a multi-scale have rarely been discussed. With
this scenario, this review aims to provide an overall understanding of the structure-
mechanical property relations of graphene-based materials from the nanoscale to macroscale
to provide some multi-scale optimization strategies to improve their mechanical properties.
We primarily focus on the hierarchical structures as well as the related mechanical behav-
iors of GLMs, accompanied by a brief introduction of the fabricating methods resulting
in such microstructures. The rest of this review is organized as follows. In Section 2,
theoretical models for monolayer graphene, nacre-like, and laminar GLNs are discussed.
Note that the theoretical models for the nanoscale layered structures are also applicable to
macroscopic layered structures [31]. In-plane tensile mechanical behaviors of monolayer
graphene, interlayer shear behaviors as well as bending behaviors of GLNSs, are introduced
in Sections 3.1-3.3. Then, the conformations of large-scale graphene sheets (also denoted as
graphene macromolecules) in solution, which may affect the microstructures of graphene
assemblies, are also discussed in Section 4.1. Three types of graphene assemblies are
introduced in Sections 4.2—4.4. Next, graphene/polymer nanocomposites with different
microstructures are discussed in Section 5. Then, multi-scale strategies to optimize the
mechanical properties of graphene-related materials are summarized in Section 6. Finally,
we provide a summary and outlook for further works of GLMs in Section 7.

2. Theoretical Models of GLMs
2.1. Theoretical Models for Tension Behaviors of Monolayer Graphene

The classical mechanical model may be inappropriate to describe the mechanical
properties of the atomic thick 2D materials, thus it is important to develop new theoretical
models to accurately predict the structure—property relations of 2D materials to design
the mechanical properties of 2D materials. The in-plane Young’s modulus of graphene
in a small deformation regime exhibits isotropy credit to the sixfold symmetry atomic
structure, but the overall stress—strain relation, strength, and toughness are direction-
dependent under finite deformations. For example, the ultimate stress along the armchair
direction and zigzag direction has a variation of 11 GPa in terms of Cauchy stress using
density functional theory (DFT) simulation [57], while are 6~26 GPa in MD simulations
using different force fields [58-62], as listed in detail in Table 1. Furthermore, several
continuum models based on hyperelasticity have been proposed [63-65] to elucidate the
nonlinear behaviors of pristine graphene with finite deformation under uniaxial loading,
biaxial loading, or nanoindentation [63], where the elastic constants are determined by
least-squares fitting to the ab initio calculations [63-65]. In particular, Hossain et al. [66]
found that cracks always nucleate and propagate along the zigzag direction under uniaxial
tension in different directions. Based on this observation, they proposed a simplified
formula to characterize the chiral dependence of strength and toughness, which fits the MD
results very well by considering the non-linear elastic deformation, as shown in Figure 2a
for anisotropic toughness.

Table 1. The Young’s modulus and Cauchy ultimate strength of defect-free graphene obtained from different methods.

Method Potential Young(:} Il:/;)dulus Armchair Ultl(rgai)t:)Tensﬂe Stress Zigzag Ultm(lz;t;:)"ensﬂe Stress Ref.
DFT - 1.050 110 121 [57]
MD AIREBO 1.01 £0.03 102 129 [58]
MD AIREBO - 100 126 [59]
MD Tersoff 1.106 124 130 [60]3
MD ReaxFF 0.751 125 138 [61]

MM ! Morse - 102.15 82.22 [62]3
HM 2 - 1.030 ~118 ~104 [63]

1 Molecular mechanics; 2 Hyperelastic model; 3 In terms of engineering stress.
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Figure 2. In-plane mechanical behaviors of monolayer graphene. (a) Anisotropic toughness of pristine graphene. Reprinted

with permission from [66]. (b) Initial stress field induced by grain boundaries with different tilt angles along armchair

(ac) and zigzag (zz) directions, and the strength-tilt angle relation. Adapted and reprinted with permission from [67].

(c) Schematic plot of two grains showing GB tilt angle (6) and tensile loading angle (¢). Reprinted with permission from [68].

(d) Top and perspective views of graphene polycrystalline, and the survival probability predicted by the statistic model.
Reprinted with permission from [69].

According to the second law of thermodynamics, defects are inevitably introduced
into monolayer graphene in the fabricating process [47,48]. Qin et al. [48] reviewed the
effects of several types of defects including point defect (vacancies, dislocations, S-W
defects), line defect (grain boundaries (GBs)), pattern defect (chemical functionalization),
and areal defect (hole and crack) as well as the underlying mechanisms to fracture be-
haviors. However, few theories have been developed to predict the overall mechanical
properties of defective graphene, which is quite a big challenge. Among the limited theoret-
ical works, Read and Shockley [70] predicted the energies and motions of GBs between two
crystallites using the dislocation model, which works well for small-angle GBs. Based on
the disclination model [71], Li [72] deduced an elastic field that is induced by a disclination
dipole and serves for both small-angle and large-angle GBs. Then, considering the inter-
actions between disclination dipoles, and following the rules that failure always initiated
at the bond (shared by the hexagon-heptagon rings) with maximum residual stress, Wei
et al. [67] theoretically gave the relation of strength to the tilt angle (as shown in Figure 2c)
of GBs under tension perpendicular to the GBs, as shown in Figure 2b, which is well con-
sistent with the MD simulations. With the consideration of loading direction (as shown in
Figure 2c), Fox et al. [68] systematically studied the failure strength of GBs under tension in
all possible directions varying from 0° to 90° using continuum theory and MD simulations.
Besides, Shekhawat and Ritchie [69] developed a statistic model to predict the strength and
toughness of polycrystalline graphene containing GBs and triple junctions with different
sample sizes, grain sizes, and strain rates, as shown in Figure 2d. Then, they obtained the
scaling laws for both the strength and toughness of polycrystalline graphene, and predicted
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(a)

(b)

that the toughness is independent to grain sizes over 25.6 nm, while the fracture strength
is always grain-size and sample-size dependent. Moreover, Meng et al. [73] investigated
the dislocation shielding effect on crack propagation and predicted the fracture toughness
enhancement using theoretical analysis and MD simulations, as shown in Figure 6g.

2.2. Theoretical Models for Tensile Behaviors of Nacre-Like Structures

As aforementioned in Section 1, the in-plane tensile force is transferred to the adjacent
platelet through interlayer shear stress for nacre-like GLNs. Therefore, it is necessary to
develop a theoretical model to describe the tension-shear load transfer to further predict
the mechanical properties of this kind of structure. As shown in Figure 3a, a tension-
shear chain (TSC) model was first presented by Ji and Gao [74] to describe the mechanical
behaviors of biological materials like nacre and bone, where the aligned mineral tablets are
connected by soft and tough protein in a layer-by-layer manner. The TSC model reveals that
tensile load in mineral tables is mainly transferred by the large shear zones of the protein
matrix, so that the mineral tablets carry most of the tensile load while the protein matrix
provides large shear deformation. As a result, the rigidity of minerals and toughness of
protein are simultaneously maintained with an optimized aspect ratio of mineral, mineral
content, and also the hierarchical structures. Then, Zhang et al. [75] developed a quasi-self-
similar hierarchical model based on the TSC model, which gives the optimal levels for the
hierarchical nacre-like materials (i.e., bone, mineralized tendon, and shell) and agrees well
with natural observations.

(©)

Elastic-plastic deformation

b

Tension zone

in protein
P T
1 Plastic zones
I
=== I a :
| nterfacial failure
i h A-a
Shear zone :
in protein q
a
: 1
Q lef2 X

$ETEELLLLLLRBITLLI B2 U2L 22222222  Functionalized
IXEIZIEZIZTI IR ICCRIZT IZZIZIZZIEE. ﬁ:feﬂ:‘aelers“ee‘
CHTffiiiiiiaieteseredi Tiiilaiily Interlaver
Interlayer load transfer
1.0 1.0
- —— Shear strain by
5 08 Tensile strain /o8 &
e ‘ @
w06} -7 [{os E_,‘ .
'E """ § = Failure of sheets (mode G)
% 04} 04 5
8 J
&5 02} 02 S :
Failure of crosslinks (mode |)
0.0 0.0
0 2 4 6 8 10
Xl k,

Figure 3. Tension-shear models for the nacre-like structure. (a) Tension—shear chain (TSC) model. The mineral tablets were

assumed to be rigid, and the shear deformation of protein was the same everywhere. Reprinted with permission from [74].

(b) Deformable tension-shear (DTS) model. Two failure modes were distinguished, namely fracture of sheets (mode G)

and failure of crosslinks (mode I). Adapted and reprinted with permission from [22]. (c) Nonlinear tension—-shear model.

The interlayer interactions are elastic perfectly plastic. Reprinted with permission from [23].
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By considering the tensile deformation of platelets, Liu et al. [21,22] developed a
deformable tension-shear (DTS) model, as shown in Figure 3b to describe the tension
behaviors of nacre-like GLNSs, in which the extremely large aspect ratio of graphene sheet
results in significant in-plane tension deformation of the platelet. Thus, a characteristic
length scale is defined as Iy = +/Dho /4G, where D, hy, and G are tensile rigidity of graphene
sheet, interlayer distance, and interlayer shear modulus, respectively. When the length
of graphene sheets [ exceeds 3y, the TSC model fails to describe the overall mechanical
behaviors of nacre-like GLNs due to the tension of graphene sheets and nonuniform
interlayer shear stress. Furthermore, two failure modes (i.e., the fracture of graphene
sheets (mode G) and failure of interlayer crosslinks (mode I)), were distinguished. With the
increase in I/, the tensile strength increases and converges quickly to a saturated value;
when [ exceeds 5, the stiffness also increases but converges at a larger length, and the
toughness reaches the maximum value at about / = 3.3ly. Based on this understanding, the
ultra-strong graphene fiber with giant graphene sheets was reported by Xu et al. [9].

The DTS model also revealed that the interlayer shear deformation is mainly located
within the distance of I to the graphene edges, as shown in Figure 3b, which means
that the most effective shear load transfer is at this region. Therefore, the interlayer
crosslinks away from this region have limited contribution to the overall behaviors of
GLNs. Then, to improve the contribution of interlayer crosslinks to the overall mechanical
properties, noncovalent and self-healable crosslinks (i.e., hydrogen or ionic bond), which
can reconstruct after breaking and prevent the quick propagation of interfacial break, can
be introduced into the interlayer [26,27]. Accordingly, a nonlinear tension-shear model
with consideration of the interlayer sliding was proposed by He et al. [23] to explore
the strengthening and toughening mechanisms of noncovalent crosslinked GLNs, where
the interface is assumed to be elastic perfectly plastic (as shown in Figure 3c), while the
interface is elastic-brittle in the original DTS model.

2.3. Theoretical Models for Bending Behaviors of Laminar Structure

The bending behaviors of layered materials are quite different from traditional bulk
materials due to the local curvature dependent bending energy of monolayer graphene and
large interlayer shear deformation. Although the Timoshenko beam model can consider
the shear deformation, it does not account for monolayer bending energy [76,77]. To solve
this problem, Liu et al. [78] proposed a multi-beam shear model by considering monolayer
bending energy and interlayer shear energy separately, as shown in Figure 4a, which
could describe the bending behaviors of few-layer graphene with small interlayer shear
modulus due to neglecting the in-plane extension in this model. Combining continuum
theory and MD simulations, Shen and Wu [79] found that the bending rigidity was pro-
portional to layer number for layer numbers exceeding five. Then, Liu et al. [80] proposed
an improved beam model with in-plane tension by treating the layered materials as an
architectured multi-beam. Based on a similar idea, the effects of interlayer plasticity and
pre-delamination on bending rigidity of layered materials were also studied [29]. Recently,
by introducing monolayer bending energy into the potential energy of the Timoshenko
beam model, Qin et al. [31] developed a modified Timoshenko beam model (MTBM) that
can correctly predict the bending stiffness of layered materials and structures without any
fitting parameters, as shown in Figure 4b. They found that the bending behaviors of layered
materials can be determined by a dimensionless parameter AL, where L is the length of
the beam and A = \/kGA/Dg +kGA/(nDpeyq); kGA and Dy are the shear and bending
rigidity of the beam cross-section, respectively; Dpeng is the bending rigidity of monolayer;
and #n is the number of layer. They further performed MD simulations, finite element
simulations, and experiments to validate MTBM. This model captures the intrinsic defor-
mation modes of layered materials to provide an accurate tool to predict and optimize the
mechanical properties of layered materials. Furthermore, the failure behaviors of layered
materials under bending deformation have also been theoretically studied by Pan et al. [32].
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Three failure modes including interlayer shearing, rippling, and kink delamination were
demonstrated with length- and thickness-dependence, as shown in Figure 4c.
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Figure 4. Bending models for laminar structures. (a) Multi-beam shear model, the in-plane extension of each sheet
is neglected. Reprinted with permission from [78]. (b) Modified Timoshenko beam model (MTBM). Reprinted with
permission from [31]. (¢) Failure behaviors of GLNs under bending deformation, including interlayer shearing, rippling,
and kink/delamination. Adapted and reprinted with permission from [32].

2.4. Theoretical Models for Out-of-Plane Deformations of GLMs

Out-of-plane deformation of pristine graphene can be induced by thermal fluctua-
tion [81,82]. Due to the atomic thickness, the bending rigidity of monolayer graphene is
treated as an independent material parameter related to the bond angle and out-of-plane
dihedral angle deformation [31], which is approximately one-tenth of that predicted by the
classical beam theories (assuming the thickness as 0.335 nm [83]). Therefore, monolayer
graphene is more likely to bend than stretch, which results in the spontaneous ripples of
suspended graphene sheets under finite temperature that have been widely observed in
experiments [84], as shown in Figure 5a, and further affects the in-plane and out-of-plane
mechanical performances. With this scenario, different physical mechanisms have been
proposed to explain the rippling. For example, Gao and Huang [85] developed a statistical
mechanics model to explain the effects of thermal fluctuation on the elastic properties
of monolayer graphene. They found that due to thermal fluctuation, the in-plane stress
increases nonlinearly with applied strain even in the infinitesimal region, in contrast to the
classical linear elastic theory.
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Figure 5. Out-of-plane deformation of GLMs. (a) Intrinsic rippling. Reprinted with permission from [14]. (b) Buckling
induced by grain boundaries. Reprinted with permission from [69]. (c) Intrinsic buckling of GLNs induced by external
load parallel to the sheet direction. Reprinted with permission from [33]. (d) Wrinkle propagation through flower-like GBs.
Reprinted with permission from. [86].

Out-of-plane deformation of graphene can also be induced by defects (as shown in
Figure 5b) and external load (as shown in Figure 5c) [33,34,87]. Based on the observation
that the length of C—C bonds increases around 10% when attached by the OH group [88],
Rebea et al. [89] indicated that a 20% concentration of OH adsorbates can generate ripples
with the experimental observed wavelength and amplitude. On the other hand, in-plane
defects within graphene sheets would introduce residual strain energy, which can be partly
released by out-of-plane deformation. With this scenario, Elder et al. [90] proposed an
extended phase field crystal model that was employed to investigate the out-of-plane
deformation induced by strain, dislocation dipoles, and grain boundaries. Besides, this
model can also capture the out-of-plane deformation of stacked bilayer materials. In terms
of external load, Ren et al. [33] indicated the intrinsic buckling of layered materials without
structure slenderness, as shown in Figure 5c. The critical buckling strain depends only
on several elastic constants of the layered materials when the size of layered materials
along the compression direction exceeds a certain length. The continuum model can
describe the behaviors very well. In contrast, the critical buckling load of the monolayer
and bilayer graphene sheet was found to be dependent on size, boundary, aspect ratio,
and chirality [34]. Moreover, by considering of vdW interactions, post-buckling modes of
monolayer graphene under compressive loadings were found to be qualitatively different
from that of the planar Euler elastica [35].

Furthermore, the impacting induced out-of-plane wrinkle propagation in graphene
sheets was also studied [86]. It is found that in graphene sheets with flower-like grain
boundaries, the curvatures mismatch between the wrinkles, and the flower-like GBs can
generate a significant defect shielding/ offsetting effect for wrinkle propagation. Otherwise,
if their curvatures are similar, dynamic wrinkles can pass the flower-like GBs without a
significant shielding effect, as shown in Figure 5d.

3. Mechanical Behaviors of Graphene at Nanoscale
3.1. Mechanical Behaviors of Monolayer Graphene

The elastic stiffness E;p and intrinsic strength of freestanding graphene were first mea-
sured by nanoindentation with an atomic force microscope (AFM) with values of 340 N/m
and 130 GPa, respectively [83]. Then, Zhang et al. [91] found that the fracture toughness
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of graphene was about 15 J/m?, comparable to that of brittle materials [92,93]. Another
definition of material toughness is the strain energy stored before failure, which for pristine
graphene is 24.0 ] /m? along the armchair direction obtained from DFT simulations [66].
Here, we mainly focused on the effect of defects on the in-plane mechanical properties of
monolayer graphene including modulus, strength, toughness, and fracture toughness as
the graphene constituent in GLMs is defective.

Most of the theoretical and simulated works have revealed that the vacancy defect
decreases both the elastic stiffness E;p and strength of graphene [94,95] because defects
would induce residual stress in graphene [67], which is the atomic-scale origin of the
decrease in modulus, strength, and toughness [96,97]. However, for E;p, Lépez-Polin
et al. [20] reported a counterintuitive fact that with the increase in defect density, Epp first
increases, and then decreases, leading to an elastic stiffness up to 550 N/m at vacancy
density around 0.2%, as shown in Figure 6a. They attributed the initial increase in E;p
to the suppression of out-of-plane fluctuations by defects, which was not considered in
former theories and simulations. Recently, Ruoff and co-authors have shown that E;p
of polycrystalline monolayer graphene decreases to an average value of ~120 N/m with
the grain size of 1-2 um [98], as shown in Figure 6b, which was also attributed to the
out-of-plane deformation induced by GBs [99]. By continuing to decrease the grain size
(increase GB density), Xu et al. [100] achieved an Epp of 436 N/m with an average grain
size of 20 nm, even higher than that of pristine graphene, as shown in Figure 6c.
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Figure 6. In-plane mechanical properties of defective graphene monolayer. (a) 2D elastic modulus of monolayer graphene

as a function of vacancy density observed in the experiments. Adapted and reprinted with permission from [20]. (b) 2D

elastic modulus as a function of GB density. Adapted and reprinted with permission from [98]. (c) 2D elastic modulus and

strength as a function of GB density. Adapted and reprinted with permission from [100] (d) Strength, failure strain, and

toughness of vacancy defected monolayer graphene as a function of vacancy density. Reprinted with permission from [97].

(e) Flower-like grain boundary. Reprinted with permission from [101]. (f) Atomic-scale crack bridging. Reprinted with

permission from [102]. (g) Shielding effect of dislocation to crack propagation. Reprinted with permission from [73].
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In terms of strength, defective graphene with a vacancy density of 20% still possesses a
fracture strength higher than that of most typical engineering materials [103,104], as shown
in Figure 6d. The strength of polycrystalline graphene with tilt GBs is found to be sample
size-, grain size-, and strain rate-dependent [67,69,100,105]. A conflict should be pointed
out that, in statistical theory [69], the strength of polycrystalline graphene decreases with
the decrease in grain size. However, in the experiment [100], the strength (also modulus)
first decreases and then increases to a value comparable to that of pristine graphene, as
shown in Figure 6¢, indicating novel stiffening and strengthening mechanisms that have
not been considered in previous theories. Furthermore, a recent study has shown that
the strength of flower-like GBs (as shown in Figure 6e) is weakened by decreasing the
curvature of the grain boundary [101].

The fracture behavior of monolayer graphene sheets was found to show a brittle-
to-ductile transition with vacancy densities of 8-12%, and the toughness was found to
dramatically decrease when introducing vacancy defects, but almost kept constant as the
vacancy densities ranged from 2 to 20% [97]. On the other hand, the fracture toughness of
pre-cracked graphene was widely found to be strongly affected by defects [73,102,106-109].
For example, the fracture toughness can be significantly enhanced by atomic-scale crack
bridging, as shown in Figure 6f, where the single-atom chains continue to bridge fracture
surfaces as the crack propagates [102]. Besides, the dislocation shielding effect on nano-
cracks [73] was also revealed to improve the fracture toughness, as shown in Figure 6g.

3.2. Bending Behaviors of Multilayer Graphene

The bending rigidity of multilayer graphene has been found to be significantly en-
hanced by the weak interlayer shearing via nanoindentation and pressurized bubble
experiments. It should be noted that the interlayer shear stiffness is three orders of mag-
nitude smaller than that of intralayer stiffness, thus the relation of bending rigidity D
to layer number N is predicted in the range of free interlayer sliding D~N to perfectly
bonded D~N?3. For example, Chen et al. [28] investigated the bending stiffness of few-layer
graphene with self-folding conformation using atomic force microscopy (AFM) and nonlin-
ear mechanical modeling. They found that the relation of the bending stiffness and layer
number N (N = 2~6) followed D~N?, indicating that the weak interlayer shear interaction
had a substantial stiffening effect for multilayer graphene. In contrast, Shen and Wu [79]
found that D was proportional to N for N > 5, which can be extended to other kinds of
2D layered materials [110]. Wang et al. [111,112] used pressurized bubble experiments to
directly measure the bending rigidity of layered materials, and similar laws of bending
rigidity were found, as expected from previous works, as shown in Figure 7a. Furthermore,
Han et al. [30] found the bend softening phenomenon of few-layer graphene, where the
bending stiffness significantly decreases as the bending angle increases, as shown in Figure
7b. They attributed the softening mechanism to interlayer shear, slip, and the onset of
superlubricity between adjacent layers.

3.3. In-Plane Mechanical Behaviors of Multilayer Graphene

In-plane mechanical properties of multilayer graphene, especially that with nacre-
like nanostructures, are also strongly dependent on the interlayer properties. As the
graphene sheet is discontinuous in nacre-like nanostructures, the in-plane load is trans-
ferred by interlayer shear stress to adjacent graphene sheets. Therefore, the interlayer shear
properties play important roles in the overall mechanical properties. Intrinsic vdW interac-
tion between graphene layers is too weak to carry enough in-plane load, thus interlayer
crosslinking and nano-structural modification are introduced to regulate the interlayer
shear modulus and strength.
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In general, modulus, strength, and toughness of multilayer graphene can be simulta-
neously improved by enhancing interlayer properties using typical interlayer bonds, as
shown in Figure 8a for instance. To increase modulus and strength, covalent bonds should
be introduced because they are stiff and strong. For example, if the two graphene layers are
arranged in the A-B stacking phase, a covalent crosslink between can be built through the
monovacancy in each layer [113,114], while in the A—A stacking phase, strong interlayer
covalent bonds can be built with an interlayer distance of 0.156 nm [24]. Otherwise, in order
to increase the toughness, non-covalent bonds including hydrogen [26,115], ionic [116],
coordinate [117], and -7 bond [118] can be introduced due to their reconfigurability,
which can prevent interlayer crack propagation. Moreover, the fracture toughness of func-
tionalized graphene multilayers was experimentally measured to be more than two times
higher than the graphene monolayer, which was attributed to the random distribution of
functionalized carbon atoms that restrict the growth of a preexisting crack [107].
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Since pristine graphene is insoluble and intractable, it is difficult to be shaped in
desired structures, or be connected through interlayer interactions. Therefore, chemical
modifications are used to generate graphene oxide (GO) and reduced graphene oxide
(rGO) [121], which can produce a big number of oxygen-rich functional groups and generate
rich interlayer interactions covalently or non-covalently, and further improve the overall
mechanical properties, as shown in Figure 8b. Additionally, Qin et al. [120] demonstrated
a geometrical locking effect of wrinkled graphene generated by topological defects to
improve the interlayer shear properties. They found that the interlayer shear modulus was
significantly increased with the increase in the aspect ratios of the wrinkles, as shown in
Figure 8c.

4. Structure-Property Relations of Graphene Assemblies

Macroscopic graphene assemblies possess hierarchical microstructures that extend
from the nanoscale to meter/centimeter scale. The monolayer graphene sheets first stack in
a layer-by-layer manner to form the building blocks of GLNs, then GLNs can be assembled
to the hierarchically layered structures or nanoporous structures. According to different
macroscopic morphologies, these graphene assemblies can be distinguished into fiber (1D),
film/paper (2D), and porous (3D) assemblies, respectively. Since the overall properties
of materials are decided by their microstructures, the conformations of monolayer and
multilayer graphene within graphene-based materials also play fundamental roles in the
overall mechanical properties of macroscopic graphene assemblies. Thus, in this section,
we first briefly introduce the conformations of GO sheets in solutions, then focus on the
microstructures and mechanical properties of the aforementioned three types of graphene
assemblies as well as the related fabricating and optimizing methods.

4.1. Conformations of GO Macromolecules

Monolayer GO sheets were experimentally processed into various conformations
(i.e., the flat, crumpled, folded, and compact structures). For example, crumped GO
nanosheets can be prepared by rapidly drying the aerosol, possessing a fractal dimen-
sion of 2.54 + 0.04 [122]. Crumpled and compact conformations can be observed in dis-
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persions by tuning the qualities of solvents [123-125] or introducing long-range inter-
actions [126]. Folded conformation can be obtained by introducing ions (i.e., Ca?*) as
short-range interaction in GO sheets with slight out-of-plane corrugation [126]. More
recently, Li et al. [127] constructed a general description of thermodynamic and rheological
behaviors of 2D macromolecules dispersed in solutions based on experimental and dissipa-
tive particle dynamics simulations, which provides a fundamental framework that can be
used in the understanding and control of their assembly and processing in solution toward
applications.

More conformations have been observed in GO aqueous dispersions with high GO
concentration, as shown in Figure 9. For example, GO sheets stay flat in good solvents (i.e.,
pure N, N-dimethylformamide (DMF)) and distribute uniformly and isotropically at low
GO concentration (<0.02 mg/mL) [125]. However, the increase in GO concentration leads
to a regular alignment of GO sheets in the nematic phase. Furthermore, a coexisting phase
consisting of the isotropic distributed phase and nematic phase were also observed [125] at
intermediate GO concentration. In contrast, inter-molecular attractions can be enhanced
by introducing a poor solvent like ethylacetate (EA). For example, in extremely low GO
concentration, GO sheets transit into the folded phase by introducing additional ions as
short-range attractions, while turn into a crumpled phase with long-range attractions.
Increasing GO concentration in poor solvent makes flat GO sheets stack together and
form a flat-stack phase [126,128], while the folded GO sheets also stack and form into
a multi-folded phase. Moreover, with long-range attractions, flat GO sheets first stack
together and then shrink into a multiple-crumpled phase [126].
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Figure 9. Conformation phase map of GO in solution accompanying the potential energy landscape. Reprinted with

permission from [126].

4.2. 1D Graphene Fiber Structures

Graphene/GO fibers have attracted growing interest in the past decade [53]. Xu and
Gao [12] fabricated fiber-like graphene assemblies using a wet-spinning process with GO
chiral liquid crystals (LCs), which paves new ways for high-performance graphene-based
materials. Then, diverse methods (i.e., wet-spinning [12], dry-spinning [129], confined hy-
drothermal strategy [130], and twisting films [131]) have emerged to prepare graphene/GO
fibers. Graphene/GO fibers obtained from the aforementioned methods usually possess
high porosity and non-uniform core-shell structure, hindering their excellent mechanical
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properties. Therefore, the crosslinking or wrinkle modulation methods were developed to
further improve the mechanical properties of graphene/GO fibers. Hu et al. [132] proposed
a self-templating methodology to introduce the polymer into the interspace of adjacent GO
sheets during the wet-spinning process. The resultant GO-polymer fiber composites had a
tensile strength 60% higher than that of neat GO fibers, as shown in Figure 10a. Xu et al. [9]
found that the introduction of divalent ions enhanced the tensile modulus and strength
to two times those without crosslinks. They also claimed that the giant size of graphene
sheets considerably improved the mechanical performance, as shown in Figure 10b. On the
other hand, more efforts have been spent on controlling the morphologies of graphene/GO
sheets. For example, as schematically shown in Figure 10c, Xu et al. [133] presented a
full-scale defect engineering method to minimize the possible defects including voids,
inhomogeneity, random orientation, and wrinkles of graphene sheets, which created a new
record of modulus for GFs up to 400 GPa. Xin et al. [134] obtained a high-performance
graphene belt by controlling the alignment and orientation of graphene sheets in a microflu-
idic tube. Moreover, they also developed graphene fibers with more regular orientations
by introducing small-sized graphene sheets to connect the large-sized ones [135]. By mim-
icking the microstructures of nacre, Cheng and co-authors prepared super tough yet strong
graphene fibers via sequential interfacial interactions [136-138]. More recently, Li et al. [37]
presented a plasticization spinning method that flattens random graphene wrinkles and
regulates sheets with high order and stacking density, thereby forming large crystallite
domains and demonstrating a new record of strength for GFs up to 3.4 GPa.

Here, it should be noted that most of the graphene fibers fabricated by other methods
have lower modulus and strength than that of the wet-spinning method, but have higher
breakage strain. For example, Tian et al. [129] found a significant shrinkage in both axial
and radial directions of graphene fibers using the dry-spinning method, as shown in
Figure 10d. The shrinkage in the axial direction, followed by the transition of partial
orientation into wrinkles, produced a large failure strain up to 35%. Furthermore, Fang
et al. [131] twisted a GO belt to form a graphene fiber with helical microstructures that
could be stretched to a strain up to 29% until failure. Moreover, GO porous fibers have also
been developed by combining the spinning and ice-template strategies [41]. More details
for the mechanical properties of GFs can be found in Table 2.

Table 2. Summary of up-to-date mechanical properties of GFs and GPs.

Material

Graphene

Modulus Strength Strain to Failure Toughness

Type Type Method (GPa) (MPa) (%) (M] m—3) bea Ref.
GFs GO Wet-spinning 135 820 - - 2015 [135]
GFs rGO Wet-spinning 400 2200 ~0.6 - 2016 [133]
GFs rGO-ca?* Wet-spinning - 842.6 35 18.5 2016 [136]
GFs rGO Dry-spinning 11.6 375 9.4 19.12 2017 [129]
GFs rGO-ca®t Wet-spinning - 743.6 26.3 2018 [138]
GB! rGO Wet-spinning 309 1900 - - 2019 [134]
GFs GO Twisting film - 130 29 - 2019 [131]
GFs GO Plasticization 341.7 3400 - - 2020 [37]
Spinning
GPs rGO-Zn%* Assembling 11.2 439.1 5.3 7.6 2016 [139]
GPs rG]g);S\P- Vacuum filtration - 538.8 6.6 16.1 2017 [140]
GPs GO Sheet collapsing 0.1 23.8 22.7 - 2017 [125]
GPs dfGO Thermal annealing - - 16 - 2017 [141]
GPs “'brrécged Vacuum filtration 233 1054 6.4 35.8 2019 [142]
GPs rGO Plasticization 62.8 1100 - - 2020 [143]
stretching
GPs rGO Plasticization ~27 760 - - 2021 [144]
stretching
GPs rGO Freeze stretching 65.5 1547 3.7 35.9 2021 [145]

! Graphene belt.
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Figure 10. Graphene fibers (GFs). (a) Improved tensile strength for GFs with introduced polymers among adjacent sheets.
Reprinted with permission from [132]. (b) Tensile stress curves for GFs with giant graphene sheets and different crosslinks.
Reprinted with permission from [9]. (c) Schematic plot of full-scale synergetic defect engineering to manage possible
defects of GFs from the atomic scale to macroscale and tensile stress curves of resultant GFs. Reprinted with permission
from [133]. (d) Surface morphologies of shrunk GFs fabricated by dry-spinning method and corresponding strength and
break elongation. Reprinted with permission from [129].

4.3. 2D Graphene Thin Films

The graphene thin films were first fabricated as GO paper using a flow-directed
assembly of individual GO sheets by Ruoff and co-authors in 2007 [36]. Subsequently,
in 2008, Li et al. [11,146] first prepared pure graphene paper with chemically converted
graphene (CCG) sheets from GO sheets. Primary fabrication approaches to obtain paper-
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like graphene assemblies include infiltration-aided assembly, solution casting, and spray
coating, etc., which usually tend to bring out lamellar ordered GO sheets with random
wrinkles [36] due to the disturbance, shrinking, and capillary contraction of GO sheets.
Therefore, two directions to regulate the mechanical properties of graphene papers were
taken, one is stiffening and strengthening, while the other is improving flexibility. However,
the two pathways are usually contradictory.

Stiffening and strengthening strategies involve the crosslinking of adjacent graphene/GO
sheets [140,142,147-150] and wrinkle straightening [143,151]. Different kinds of crosslinkers
including divalent ions [147], borate [148], polymers [149,150], m—m crosslinking [140,142],
etc., as schematically shown in Figure 11a, were proven to efficiently enhance the stiffness
and strength of GO paper [21-23]. On the other hand, Dai et al. [151] observed a significant
enhancement in modulus of the GPs up to 84% by applying cyclic dynamic loading at a low
strain amplitude of 0.1% (see Figure 11b), which was attributed to the straightening and
reorientation of GO sheets in dynamic loading. Based on a similar idea, Wan et al. [145]
proposed a freeze stretching strategy where static bi-axial load was applied to the sample,
and covalent and -7t bonds were introduced to the inter-platelet space, which produced a
strength up to 1.55 GPa. Furthermore, by introducing solvent plasticizers, Li et al. [143] de-
veloped a plasticizer-assistant stretching method to straighten the wrinkles of direct-casted
GO papers. They found that the tensile modulus and strength of the modified GO papers
were significantly increased up to 693% and 370% compared to those of un-straightened
GO papers, respectively, as shown in Figure 11c.
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Figure 11. Stiffening and strengthening strategies for graphene papers (GPs). (a) Schematic plots of crosslinks introduced to

adjacent sheets including (top) divalent bonds, (left to right in the bottom row) borate, polymers, and -7 crosslinking.
Reprinted with permission from [142,147-149]. (b) Self-stiffening approach by cyclic stretching with small strain amplitude.
Reprinted with permission from [151]. (c) Plasticizer-assistant stretching method to straighten the wrinkles of direct-cast

GO papers, and the resultant stress—strain curves. Reprinted with permission from [143].
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On the other hand, by intentionally introducing micro wrinkles and folds, the flexibil-
ity of GPs was significantly improved [125,141,152-156]. For example, a promising method
used to introduce surface wrinkling patterns is to release the pre-strained polymer substrate
coated with large-area graphene film [152-155], as shown in Figure 12a. In order to form
wrinkle or fold patterns, three main steps should be taken including stretching the polymer
substrate first, then coating few-layered graphene [154] or GO dispersion [152,153] on the
substrate, and finally, releasing the stretched substrate in a controlled way. Furthermore,
additional reducing and transfer methods [157] should also be employed for further usage
of the graphene films with designed wrinkles. Beyond surface wrinkling, one can also
introduce wrinkles and folds as the intrinsic microstructures of freestanding paper-like
graphene assemblies. For example, Liu et al. [156] obtained flexible graphene papers with
micro folds by mechanically compressing graphene aerogels. Xiao et al. [125] soaked
jelly-like blade-casted GO/DMEF film into a poor solvent (EA) pool to promote the collapse
of GO sheets, followed by hang-drying under self-weight. This sheet-collapsing process in
poor solvent resulted in a rubber-like GO paper with hierarchical crumples whose breakage
elongation increased up to 23%, as shown in Figure 12b. Furthermore, Peng et al. [141]
proposed a thermal annealing approach to introduce micro folds into GO papers. During
the annealing process, gasbags are formed with sizes from several to tens of micrometers.
Under high compression, micro folds are then introduced to the resultant graphene paper
with high flexibility, as shown in Figure 12c. More details on the mechanical properties
of GPs can be found in Table 2. In addition, nano wrinkles were found to play important
roles in mass transport across graphene-based films [158,159].

Homogeneously dried GO paper
Collapsed GO paper

;1.0 GPa

5 10 15 20 25
Strain (%)

e *
300 MPa

Micro-gasbags Micro-folds

Figure 12. Improving the flexibility of graphene papers (GPs). (a) Surface wrinkling method and top view of the resultant

wrinkle morphology. Reprinted with permission from [153]. (b) Rubber-like GPs with hierarchical crumples obtained by

sheet collapsing approach. Reprinted with permission from [125]. (c) Thermal annealing approach and resultant highly

flexible GPs with micro folds. Reprinted with permission from [141].
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4.4. 3D Graphene Porous Structures

Graphene porous structures, which are called graphene aerogels (GAs) or graphene
foams, were fabricated [38,160-162]. The lowest density of GAs ever reported up until now
is 0.16 mg/ cm? [10], which is even lighter than air. To eventually obtain GAs, their precur-
sors (like graphene hydrogel), the composites of graphene networks and solvent should
first be prepared, followed by drying of the precursors to remove the solvent. In general,
methods to obtain the precursors include hydrothermal reduction, chemical reduction,
crosslinking, and template directing. Here, methods of reduction and crosslinking can
promote the self-assembly of graphene sheets, and highlight the random distribution of
microporous structures in graphene networks, while the method of template directing can
prevent random interconnection and produce more regular microstructures [163], as shown
in Figure 13a. It should be noted that the bulk GAs fabricated from the aforementioned
methods are highly compressible but less stretchable. More recently, a 3D printing process
has been employed to fabricate the GA lattice, whose mechanical properties depend not
only on the microporous structures, but also on the macro lattice structures, thus provid-
ing mechanical designability to graphene 3D assemblies (i.e., the stretchable GAs [164]),
as shown in Figure 13c.
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Figure 13. Graphene aerogels (GAs). (a) Regular microstructures of GAs resultant from template directing method.
Reprinted with permission from [163]. (b) Bio-mimicking lamellar GAs with exceptional strength and mechanical resilience.
Reprinted with permission from [165]. (c) 3D printed stretchable GAs. Reprinted with permission from [164].

In general, the stress—strain curves for GAs under compression can be divided into
three regimes including the nearly linear elastic regime, stress plateau regime, and stress
densification regime, corresponding to bending of the cell walls, buckling of the cell walls,
and densification of the cells, respectively. Unlike the stretching of graphene sheets in
the paper- or fiber-like assemblies, the bending of cell walls results in an extremely low
initial modulus smaller than 1.0 MPa. Furthermore, hysteresis can also be found during
cyclic loading of GAs, which is attributed to the discontinuous buckling and breakage of
connections among the graphene sheets. Here, the breakage of the internal structure and
the irreversible buckling in GAs could also induce the degradation of elasticity, modulus,
and strength. To solve these problems, Qiu et al. [166] proposed a thermal annealing
strategy to improve the inter-sheet interactions, which produces the complete recovery of
GAs from 98% compression. Furthermore, by mimicking biomaterials, Yang et al. [165]
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developed 3D interconnected lamellar GAs with exceptional strength and mechanical
resilience, as shown in Figure 13b.

Due to the hierarchical porous structures, GAs are probably more promising for multi-
functional applications such as elastic and flexible conductors, environmental protection,
energy storage, sensors, supercapacitors, and catalyst beds, etc. [167-172], rather than
mechanical load-bearing.

5. Structure-Property Relations of Graphene/Polymer Nanocomposites

Composites have attracted lasting interest during the past decades, which are con-
sisted of two or more constituent materials with advanced mechanical properties compared
to those of the constituent materials. The mechanical properties of composites are related
to their matrix, fillers, and interfaces. Due to the excellent Young’s modulus, strength,
thermal, and electrical conductivities, graphene is an ideal nanofiller in high-performance
nanocomposites with mechanical properties superior to the polymer matrix. However,
among the ever-published papers, the mechanical properties of nanocomposites with a
high content of graphene are usually compared with pure graphene assemblies rather
than polymers. With this scenario, we first focused on the graphene/polymer nanocom-
posites with a relatively low content of graphene, whose microstructures and mechanical
behaviors compared to the pure polymers are discussed in Sections 5.1-5.3. For paper-like
nanocomposites with a high content of graphene, their mechanical properties compared
to pure graphene assemblies are presented in Section 5.4. The up-to-date works on the
mechanical properties of graphene/polymer nanocomposites compared to the pure matrix
are summarized in Table 3.

Table 3. Summary of up-to-date stiffening, strengthening, and toughening of graphene/polymer composites.

1 Increment
Graphene Matrix Method Graphene Increment Increment of of Break Increment of Year Ref.
Structure Content of Modulus Strength . Toughness
Elongation

Dispersed PU PI-GO Srf};f;og“ 0.1 wt% 47.5% 83.7% 25% 206.5% 2015 [43]

Dispersed PVDF PT-g-PMMA- Solution 0.42 wt% 333% 283% 106% - 2016 [173]
rGO mixing

Dispersed Epoxy  functionalized  Solution 0.75 wt% 3.6% 49% 23.7% 36.3% 2017 [174]
graphene mixing

Dispersed BMI PTZ-+GO Solution 0.4 wt% - 26.5% - - 2019 [175]
mixing

Dispersed WPU Hydroxyl- In situ poly- 2 wivh - 139% 15.8% - 2019 [176]

GO merization
Dispersed CNF PDA- Vacuum ~10 wt% - 25.4% 49.8% - 2020  [177]
graphene filtration

Network Epoxy Graphene Freeze 0.34 vol% 25.4% 10.2% - - 2018 [178]
casting

Network Epoxy GO Freeze 1.24 wt% - -14% - 320% 2 2019 [44]
casting

Network Epoxy GO f;fgﬁg 0.73 wt% - -18% - 261% > 2020 [45]

Continuous PVA GO Blade coating 0.3 wt% 42.3% 32.2% 64.2% 101.4% 2018 [46]
Gel-film

Nacre-like rGO CMC transforma- ~90 wt% - 299.7% - 633.3% 2017 [179]

tion

! Increment in mechanical properties of the composites compared to those of the pure matrix. 2 Increment in fracture toughness.

5.1. Graphene Dispersed in Polymer Matrix

Composites with nanofillers dispersed in polymer matrix have been widely studied in
the past decades. GO is a promising precursor for their rich functional groups, which can
provide efficient interactions between GO sheets and polymers. Therefore, GO/polymer
composites were first prepared, where GO is further reduced into rGO, and rGO/polymer
composites are obtained in the end. In general, these kinds of composites are superior in
Young’s modulus and strength compared to the pure polymers. For example, the tensile
strength and Young’s modulus of rGO/PVA composites with graphene content of 1.8
vol% fabricated by Zhao et al. [180] are 1.5 and 10 times larger than that of pure PVA,
as shown in Figure 14a. The comparison of Young’s modulus between experiments and
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theories derived from the Halpin-Tsai model [181] indicates that most graphene sheets
are randomly distributed in nanocomposites. Furthermore, the modified Halpin-Tsai
model [180,182] also revealed that the nanocomposites with aligned nanofillers exhibited a
higher modulus than those with randomly distributed nanofillers. Therefore, methods [55]
such as the infiltration and liquid crystal method have been proposed to fabricate aligned
graphene/polymer nanocomposites [13,55].
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Figure 14. Graphene/polymer nanocomposites with graphene sheets dispersed in polymers. (a) Graphene sheets dispersed

near randomly in polymers, enhanced strength and decreased break elongation. Reprinted with permission from [180].

(b) Introducing interfacial crosslinks (covalent bonds here) between graphene sheets and polymers brings out overall

enhanced mechanical properties. Reprinted with permission from [43]. (c) Fractured surface of nanocomposites with

covalent (top) and non-covalent (bottom) functionalized graphene sheets. Reprinted with permission from [43,183].

Although the strength of composites with dispersed fillers is enhanced due to the
shielding effect of nanofillers to crack propagation perpendicular to the fillers [184], the dis-
persions of graphene in polymer easily generate fracture at massive interfaces due to the
weak vdW interaction. As a result, compared to pure polymers, nanocomposites with
dispersed nanofillers usually show a decline in breakage elongations and toughness. To
overcome this problem, non-covalent [173,175,183,185] and covalent [186—188] function-
alization of GO sheets with polymer chains were proposed to enhance the interfacial
interactions between the two components to further improve the mechanical properties of
composites [42]. Here, covalent functionalization of GO usually provides stronger covalent
bonds between the functionalized GO sheets and polymers, thus was expected to provide
higher load transferring capacity than non-covalent bonds. For example, by attaching
the polyisocyanate (PI) polymer through covalent bonds on GO sheets first, and then
incorporating the modified GO sheets into PU matrix through covalent bonds between
PI and PU, Ramezanzadeh et al. [43] found that the resultant PU/PI-GO composites (as
shown in Figure 14b) had a pronounced enhancement in overall mechanical properties
including Young’s modulus, tensile strength, break elongation, and toughness compared to
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neat PU and PU/GO composites. Here, it should be noted that a smooth fractured surface
in PU/PI-GO composites (the top image in Figure 14c) observed by SEM microscopy [43]
indicates that the overall fracture happens in the polymer matrix rather than the interface.
In contrast, step morphologies were observed in the fracture surface of nanocomposites
with non-covalent functionalized graphene sheets [183], indicating sliding between the GO
sheets and polymer matrix (the bottom image in Figure 14c).

The weak vdW interaction among GO sheets plays an important role when the GO
content rises to a relatively high value, leading to aggregation of the graphene sheets,
which limits the mechanical enhancement of the nanocomposites. The aggregation can be
partially solved by employing interfacial modification methods [176,189]. Moreover, it can
also be solved via another method, infiltrating polymers into a pre-fabricated graphene
scaffold, which will be discussed in Section 5.2.

5.2. Polymer Infiltrated into Graphene Scaffold

This kind of nanocomposites can be achieved by forming a 3D graphene scaffold
on the template and then infiltrating polymers into the scaffold. With this pre-scaffold-
infiltration process, Ji et al. [190] prepared rGO/epoxy composites with the graphene
scaffold grown on a Ni foam template. The flexural modulus and strength of the resultant
rGO/epoxy composites were 53% and 38% larger than that of solid neat epoxy at 0.2 wt%
of graphene content, and the fracture toughness was remarkably increased by 70% at
0.1 wt% of graphene content, as shown in Figure 15a. The toughening mechanism can be
attributed to the combination of crack tip blunting, interfacial debonding, slipping, and
separating between adjacent graphene layers, which provide enhanced energy dissipation
in composites. Furthermore, as shown in Figure 15b, Cheng and collaborators [44,45]
fabricated an inverse nacre-like layered epoxy nanocomposite by infiltrating the liquid
epoxy precursor into the rGO-CMC scaffold. They found that the fracture toughness Kic
with pre-crack perpendicular to the layered structure could be enhanced up to 3.61 times
to that of pure epoxy, while the strength exhibited anisotropy due to the anisotropy of
the scaffold. Thanks to the continuous structure of graphene networks, composites made
by this pre-network strategy also possess superior electric conductivity among graphene-
based composites.

5.3. Graphene/Polymer Bi-Continuous Lamina Composites

As shown in Figure 15¢, Liu et al. [46] proposed a continuous fracture toughening
mechanism with bi-continuous laminar GO/PVA composites, which were fabricated using
the blade-coating process with the GO layer and PVA layer aligned one by one. Due to
the bi-continuous structure, both GO and PVA are subjected to pure tensile stress before
the fracture of GO layers under stretching along the lamina direction. As a result, Young's
modulus of the composites can simply be determined by the superposition of the volume
fraction of the two components. During stretching, massive cracks in GO layers occurred
along the perpendicular direction, which led to the formation of lots of graphene fragments.
After that, due to shear-lag effects between the still continuous PVA layer and discontinuous
GO fragments, the sustaining fracture made the fragments further disintegrate into smaller
sub-fragments. Once the size of GO sub-fragments is small enough that the interface
sliding force cannot exceed the tensile strength of GO fragments, the sub-fragments stop
breaking again, then the applied force increases monotonously, showing a strain hardening
behavior until the fracture of PVA. With 0.3 wt% GO content, the mechanical properties
of GO/PVA composites were significantly improved by 42.3%, 32.2%, 64.2%, and 101.4%
in the Young’s modulus, tensile strength, break elongation, and toughness, respectively,
compared to pure PVA. As a result, this bi-continuous structure, combined with the
corresponding continuous fracture mechanism could provide an alternative methodology
to simultaneously strengthen and toughen the nanocomposites.
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Figure 15. Graphene/polymer nanocomposites with polymer infiltrated into graphene scaffold and bi-continuous mi-

crostructure. (a) RGO/epoxy composites, in which the graphene scaffold was grown on a Ni foam template, showing

enhanced flexural modulus, strength, and fracture toughness compared to pure epoxy. Reprinted with permission from [190].
(b) RGO/ epoxy composites with well-aligned rGO-CMC (carboxymethyl cellulose sodium) scaffold by ice templating,
showing enhanced fracture strength and toughness. Reprinted with permission from [45]. (c) Bi-continuous GO/PVA

composites, showing overall enhancement of mechanical properties including Young’s modulus, strength, break elongation,

and toughness compared to pure PVA. Reprinted with permission from [46].

5.4. Nacre-Like Graphene Nanocomposites

By mimicking the natural nacre, nanocomposites with high graphene content (i.e.,
more than 50 wt%) were fabricated as nacre-like composites [177,179,191]. In contrast to
those of low graphene content, graphene sheets in nacre-like composites serve as matric
phases, which is similar in function to the “bricks” in natural nacre. For example, as
shown in Figure 16a, Li et al. [191] proposed rGO/PVA nanocomposites with 80 wt% rGO
content by coating the PVA molecules onto GO sheets first, followed by water evaporation-
induced self-assembly to form a nacre-like lamellar structure. After further reduction
in the GO sheets, Young’s modulus, tensile strength, and fracture strain of the resultant
paper-like rtGO/PVA nanocomposites were 178%, 75.9%, and ~17.1% larger than those of
pure GO paper. Furthermore, as shown in Figure 16b, Gong et al. [179] fabricated laminated
GO/CMC (carboxymethyl cellulose) composites using the gel-film transformation method.
In this case, with an optimized GO content of 90 wt%, accompanied by the intrinsic
hydrogen bonds and additionally introduced ionic bonds Mn?*, the tensile strength and
toughness of rGO/CMC composites were 4 and 7.3 times larger than those of the pure GO
papers, respectively.
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Figure 16. Nacre-like graphene/polymer nanocomposites. (a) PVA/GO composite films with
enhanced tensile strength and fracture strain. Adapted and reprinted with permission from [191].
(b) GO (rGO)/CMC composites with improved mechanical properties. Adapted and reprinted with
permission from [179].

6. Multi-Scale Mechanical Property Optimization of GLMs

The mechanical properties including modulus, fracture strength, fracture strain, and
toughness of GLMs were quite different from monolayer graphene. In this section, we
summarize the underlying multi-scale mechanisms to modify the mechanical properties of
graphene-based materials to provide the multi-scale optimization routine from nanoscale
to macroscale.

The mechanical properties of monolayer graphene are sensitive to various in-plane
defects and the morphology of the graphene sheet. For example, defects produce residual
stress and stress concentration, which lead to a reduction in strength. Graphene mor-
phologies such as wrinkles and crumpling usually leads to a decrease in Young’s modulus.
However, the regulation of defect density and arrangement on grain boundaries can sub-
stantially suppress out-of-plane deformation, thus efficiently mitigate the loss of Young's
modulus and strength, while increase the failure strain and fracture toughness. More-
over, mechanisms like dislocation shielding and single-atom chain bridging have been
demonstrated to improve fracture toughness.

The mechanical properties of GLNs are mainly affected by the mechanical properties
of individual graphene sheets, the sheet size, and interface properties. For nacre-like
nanostructure, their tensile mechanical properties can be improved by increasing sheet
size and enhancing the interlayer shear properties, while for the laminar nanostructure,
their bending rigidity can also be improved by enhancing the interlayer shear properties.
Therefore, interlayer properties play an important role in the mechanical properties of
both nacre-like and laminar nanostructures. In order to enhance interlayer shear modulus
and strength, different types of crosslinks (i.e., covalent, ionic, coordinate, and hydrogen
bonds) have been introduced to replace the original weak vdW interactions. Furthermore,
interlayer crosslinks also play an important role in the buckling behaviors of graphene
laminar nanostructures.
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The mechanical properties of graphene-based macroscopic materials including pure
graphene assemblies and GO/polymer nanocomposites with high graphene content are
strongly affected by their microstructures and nanoscale building blocks. Graphene-based
macroscopic materials with well-compacted structures and high-quality graphene sheets
were found to possess higher modulus and strength, but less fracture strain than those
with wrinkled graphene sheets. Therefore, the additional small molecules introduced as
plasticizers can not only smooth wrinkles, but also enhance the interlayer interactions and
further enhance the Young’s modulus and strength. For nacre-like GO/polymer nanocom-
posites, the modulus is comparable to that of pure graphene papers, while toughness and
strength have been efficiently enhanced due to the introduction of a polymer as additional
interfacial crosslinkers.

The mechanical properties of graphene/polymer nanocomposites depend on the
polymer matrix, the graphene nanofillers, and the interface between the two components.
In the case of low graphene content, by modifying the interface with chemical crosslinkers,
Young’s modulus, strength, toughness, and fracture strain of the composites are com-
prehensively improved compared to the pure polymers. Furthermore, the continuous
fracture mechanism and graphene pre-scaffold method were demonstrated to improve the
toughness of the composites.

In short, from the nanoscale to macroscale, mechanical properties of graphene-related
materials can be improved as follows: (1) improvement of modulus can be obtained by
using large-size graphene sheets, enhancing interfacial properties, and straightening the
wrinkles; (2) improvement of strength can be obtained by precisely engineering defects
(although difficult in experiments) and enhancing the interlayer and interfacial proper-
ties; while (3) increase in toughness can be obtained by defect engineering and properly
managing the interfacial properties with chemical crosslinkers, as summarized in Figure 17.
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Figure 17. Multi-scale optimization of GLMs. Reprinted with permission from [20,23,26,43,46,67,97,102,113,125,143].
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7. Conclusions and Perspectives

In this review, the multi-scale structures, mechanical behaviors, mechanisms of me-
chanical degradation as well as the corresponding fabricating methods for graphene-based
layered materials are summarized from monolayer graphene to macroscopic graphene
assemblies. Multi-scale mechanical optimization strategies have also been proposed based
on the mechanical degradation mechanisms. Through our retrospective analysis, we can
see that significant efforts have been made to produce the extraordinary properties of
monolayer graphene to macroscopic graphene assemblies. However, there is still more
space for the improvement in the mechanical properties of graphene-related materials by
considering the large gap in the mechanical properties between monolayer graphene and
macroscopic graphene assemblies. Here, we suggest a few topics of interest that may help
to understand the structure—property relations of graphene-related materials to improve
their mechanical properties.

At the nanoscale, works have been conducted to understand the effects of several
specific defects on the mechanical properties of monolayer graphene. However, defect type
and distribution in real materials may be more complicated (i.e., the effect of curvilinear
grain boundaries on mechanical properties has been rarely addressed). Therefore, greater
efforts are needed to understand the defect—property relations of 2D materials by machine
learning mediated theoretical /numerical methods, based on which defect engineering can
be further employed to regulate the mechanical properties. For example, as the Young’s
modulus and strength of graphene sheets first decrease and then increase with the increase
in grain boundary density, one may obtain the expected mechanical properties by control-
ling the growth condition of polycrystalline graphene (i.e., temperature) to modulate the
grain sizes of graphene in experiments. On the other hand, based on the experimental ob-
servations, free-standing monolayer graphene had massive rippling at finite temperatures
and the related theory should be developed to consider the rippling effect on mechanical
behaviors of monolayer graphene because materials are usually used under finite tem-
perature. In terms of graphene layered nanostructures, in-plane mechanical behaviors
of nacre-like structures and bending behaviors of laminar structures are well studied in
two-dimensional models. Further mechanical models should be proposed to describe
three-dimensional deformation of GLNSs as well as the bending behaviors of nacre-like
structures. Moreover, both experimental and theoretical works should also be conducted to
study the mechanical behaviors of layered structures under finite deformations, which may
play important roles in practical applications such as flexible electronics and biological
sensors et al.

The mechanical behaviors of macroscopic graphene-related materials are mainly af-
fected by the interfacial properties and microstructures. Previous works have qualitatively
explored the effects of interfacial properties, indicating the stronger the interface, the
stronger the material. However, more quantitative works involving specific interfacial
crosslinkers such as healable and edge crosslinks, interlayer sliding, and the viscoelastic
properties of interlayer sliding, are also needed to fully understand the effect of the interface
on overall mechanical behaviors. Regarding the microstructures, materials with compact
structures are promising for loading bearing, while those with porous structures usually
aim toward functional applications such as catalytic et al. As experimentally reported,
graphene fibers are usually superior in Young’s modulus and strength to graphene papers.
However, the underlying mechanisms are still unclear. Furthermore, the cross-section of
GFs usually features core-sheath morphologies, which play important roles on the mechan-
ical behaviors of GFs [192]. Therefore, it is necessary to quantitatively study the geometry—
mechanical behavior relation for GFs. An important yet rarely-visited direction is the
compressive behaviors of graphene-related materials (except for GAs), which is challeng-
ing to address with the current material geometries (fibers, thin films, etc.). Moreover, to
better understand these to further modulate the related mechanical properties, general the-
oretical frameworks should be developed to figure out the multi-scale structure—property
relations of macroscopic graphene assemblies. Finally, due to the twisting and bending
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deformation coupled intriguing properties of graphene, the mechanical-electromagnetic
coupled theoretics should also be explored to design graphene-based electrical [193,194]
and magnetic [195,196] materials.
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Abbreviations

GO Graphene oxide

rGO Reduced graphene oxide

GPs Graphene papers

GFs Graphene fibers

GAs Graphene aerogels

GLNs  Graphene layered nanostructures
GLMs Graphene-based layer materials
DFT Density functional theory

MD Molecule dynamics

GBs Grain boundaries

DTS Deformable tension-shear

vdW  van der Waals
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