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Abstract: This paper describes an improved method of calculating reactivity ratios by applying
the neuronal networks optimization algorithm, named gradient descent. The presented method is
integral and has been compared to the following existing methods: Fineman–Ross, Tidwell–Mortimer,
Kelen–Tüdös, extended Kelen–Tüdös and Error in Variable Methods. A comparison of the reactivity
ratios that obtained different levels of conversions was made based on the Fisher criterion. The new
calculation method for reactivity ratios shows better results than these other methods.

Keywords: gradient descent; reactivity ratios; copolymerization

1. Introduction

Binary copolymerization is one of the essential techniques to obtain macromolecular
compounds with controlled characteristics. To predict the copolymer composition and to
control the properties, the calculation of reactivity ratios with higher accuracy becomes
a critical goal. The most commonly used kinetic model in methods to calculate reactivity
ratios is the terminal model, which is described by the following equations [1]:

Pn −M∗1 + M1
k11→ Pn+1 −M∗1

Pn −M∗1 + M2
k12→ Pn+1 −M∗2

Pn −M∗2 + M2
k21→ Pn+1 −M∗1

Pn −M∗2 + M2
k22→ Pn+1 −M∗2

where Pn—growing polymer chain, M∗1 , M∗2—the active center on monomer 1 and on
monomer 2, respectively, k11, k12, k21, k22—propagation rate constants.

The correlation of these four kinetic equations into an expression which can link the
copolymer composition with the kinetic parameters can be carried out assuming that the
monomer consumption in the initiation and the termination reaction can be neglected and
rate of interchange of radicals is constant (1).

k12[M∗1 ][M2] = k21[M∗2 ][M1]a = 1, (1)

Considering the two lemmas, the mathematical solution proposed by Mayo and
Lewis [2] for the instantaneous consumption of monomers is described by Equation (2),
and the integral form of this equation is described in Equation (3):

d[M1]

d[M2]
=

[M1]

[M2]

r1[M1] + M2

[M1] + r2[M2]
, (2)

Materials 2021, 14, 4764. https://doi.org/10.3390/ma14164764 https://www.mdpi.com/journal/materials

https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://doi.org/10.3390/ma14164764
https://doi.org/10.3390/ma14164764
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma14164764
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma14164764?type=check_update&version=1


Materials 2021, 14, 4764 2 of 22

where:
r1 =

k12

k22
and r1 =

k21

k22
(3)

and the integral form of this equation, described by Equation (4), has been proposed by
Mayo and Lewis [2]:

log
[M2]

[M20]
=

r2

1− r2
log

[M20][M1]

[M10][M2]
− 1− r1r2

(1− r1)(1− r2)
log

(r1 − 1) [M1]
[M2]
− r2 + 1

(r1 − 1) [M10]
[M20]

− r2 + 1
(4)

Determining the reactivity ratios with relation (4) is difficult, but is easier to use if it
has been transformed in the following relation:

r2 =

log Mo
2

M2
− 1

p log
1−p M1

M2

1−p
Mo

1
Mo

2

log Mo
1

M1
+ 1

p log
1−p M1

M2

1−p
Mo

1
Mo

2

, (5)

where:
p =

1− r1

1− r2
, (6)

Mo
1, Mo

2—the initial molar fraction of monomers in feed, [M1], [M2]—molar fraction of
monomers in feed at given conversion.

Considering the same lemmas, Wall [3] and Skeist [4] propose the use of the fol-
lowing mathematical equation to correlate the kinetic parameters with the instantaneous
copolymer composition:

∆M1

∆M1 + ∆M2
= m1 =

r1 f 2
1 + f1 f2

r1 f 2
1 + 2 f1 f2 + r2 f 2

2
, (7)

where f1 and f2 are the molar fractions of monomer 1 and 2, respectively, in feed; ∆M1
and ∆M2 are the amounts of the corresponding components which enter the polymer in
a differential time interval; m1 is the mole fraction of the first component in the polymer
formed during the differential time interval and r1, r2 are reactivity ratios for monomers 1
and 2, respectively. Equation (7), proposed by Wall and Skeist, is a nested equation of the
Mayo–Lewis Equation (2).

The integration form of Equation (7) was made by Meyer and Lowry [5] and is given
by the following equation:

[M1] + [M2][
M0

1
]
+
[
M0

1
] = ( f1

f 0
1

)α(
f2

f 0
2

)β(
f 0
1 − δ

f1 − δ

)γ

, (8)

where:

f1 =
[M1]

[M1] + [M2]
= 1− f2, (9)

α =
r2

1− r2
; β =

r1

1− r1
; γ =

1− r1r2

(1− r1)(1− r2)
; δ =

1− r2

2− r1 − r2
, (10)

Over time, based on these mathematical models, several methods have been created
to calculate reactivity ratios. The proposed methods for calculating reactivity ratios are
classified as:

a. In differential methods using Equations (2) and (7) as models, where the conver-
sions are usually <10% and the calculated composition of the copolymer is the
instantaneous one;
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b. In integral methods using Equations (4), (5) and (8) as models, where the conver-
sions are usually >10% and the calculated composition of the copolymer is the
global composition.

Another classification type of the methods for calculating the reactivity ratios can be
made according to the mathematical way by which the values of the variables r1 and r2 are
obtained, as follows: linear methods and nonlinear methods.

One of the commonly used differential methods is the graphical method proposed by
Fineman–Ross (FR for Equation (10) and r-FR for Equation (11)) [6] which is linearized in
Equation (2) and is described by the following equations:

F
f
( f − 1) = r1

F2

f
− r2, (11)

f − 1
f

= −r2
f

F2 + r1, (12)

where
f =

m1

m2
≈ dM1

dM2
; F =

m1

m2
, (13)

When using the Fineman–Ross method, the slope of Equation (11) and the intercept
of Equation (12) give the value for r1 and, respectively, the intercept of Equation (11) and
the slope of Equation (12) give the value for r2. The distribution of the calculated points
using Equations (11) and (12) is not uniform along the line. These calculated points are
crowded in the area of origin of the coordinate system, and due to experimental errors, can
easily lead to errors in estimating the values of the slope and the intercept and obviously
the values of the reactivity ratios are affected.

One solution to eliminate this disadvantage of the Fineman–Ross method was pro-
posed by Kelen–Tüdös (KT) [7,8]. This method is also based on linearization of Equation (2)
and is described by the following mathematical equations:

G
a + F

=
(

r1 +
r2

α

) F
α + F

− r2

α
, (14)

where:
α =

√
Fmin · Fmax, (15)

G = x
y− 1

y
and F = x

x2

y
(16)

x =
M1

M2
and y =

dM1

dM2
≈ m1

m2
(17)

The KT method only gives one solution of reactivity ratios and the calculated points
are homogenously distributed along the line.

Calculating the reactivity ratios using the linearization technique of the KT method
was extended by the same authors [9,10] for experimental data obtained at high conversions.
For this reason, the mathematical Equation (8) is rewritten as follows:

z(y− 1)
αz2 + y

=
(

r1 +
r2

α

) y
az2 + y

− r2

α
, (18)

where:

z =
log M1

M10

log M2
M20

=
log
[
1− y

x0
log
(

1− Pn
α+x0
α+y

)]
log
(

1− Pn
α+x0
α+y

) , (19)

α =
µ1

µ2
, (20)
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x0 =
M10

M20
and y =

m1

m2
(21)

where the 0 index refers to the initial concentration of monomer i, α has the same math-
ematical form as Equation (8), Pn weight percent conversion, µ—molecular weight of
monomers. Under this mathematical form, the method is known as the extended Kelen–
Tüdös method (eKT).

For both methods of calculating the reactivity ratios proposed by Kelen and Tudos (KT,
e-KT), the value of r2 is obtained from the value of the intercept multiplied by the correction
factor α and the value of r1 is obtained from the value of the slope which decreases the
value of the intercept.

The transformation of the Mayo–Lewis Equation (2) into a weighted (Equations (14)
and (18)) or unweighted linear form (Equations (11) and (12)) admits the existence of
a dependent variable y, the left hand of equations and an independent variable x, the
term that multiplies the reactivity ratio to the right of the equations. The reactivity ratios
calculated with linear methods represent the slope and intercept of the line, and to obtain
these two parameters, linear regression using ordinary least squares methods (OLS) is
carried out. To estimate the best values of reactivity ratios using OLS, the variables x and y
must meet the Gauss–Markov assumptions, which are:

a. The dependence between y and x variables must be linear and to have random errors.
Non-linearity gives a wrong estimation of reactivity ratios;

b. For independent variable x, the expected error term is zero, otherwise the intercept
is biased;

c. The covariance of errors for all independent variables x is constant and represents
the measurement of the model uncertainty. If the covariance of errors is not constant,
the estimated reactivity ratios are less precise, which increases the likelihood of being
further from the correct values;

d. The standard hypothesis in linear regression is that the independent variable x is
not dependent on the dependent variable y or, put another way, each independent
variable x is uncorrelated with the error terms. In the linear methods of reactivity
ratio calculation, the variables x and y are correlated; for this reason, it is possible to
obtain biased or inconsistent reactivity ratios;

e. All independent variables x must by collinear, otherwise the calculated reactivity
ratios with OLS will have big errors.

Considering those assumptions presented above, the reactivity ratios obtained using
linear methods must be viewed with caution in terms of their quality if supplementary
information about measurement errors does not exist.

The Tidwell–Mortimer (TM) [9] method is a differential optimization method based on
the modified Gauss–Newton nonlinear least-square algorithm. They developed a method
of calculating reactivity ratios from Equation (4) and derived the following relationship:

m21 = Gj
i +
(

r0
1 − rj

1

)∂Gj
i

∂r1
+
(

r0
2 − rj

2

)∂Gj
i

∂r2
+ εi, (22)

where:

Gj =
rj

2 f 2
2 + f1 f2

rj
2 f 2

2 + 2 f1 f2 + rj
1 f 2

2

, (23)

i is the number of the experimental run, j is number of the estimation set and r0
1, r0

2 are the

expectation values of rj
1 and rj

2 respectively.
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Thus, if the difference between the molar fraction measured experimentally and the
one calculated using the Wall equation using Equation (6):

di = m2i − Gj
i = β1

∂Gj
i

∂r1
+ β2

∂Gj
i

∂r2
+ εi, (24)

then estimates, β̂1, β̂2 of the smallest squares of β1 and β2 provide the necessary corrections
so that the new values of rj

1 and rj
2 given by

rj+1
1 = rj

1 + β̂1, (25)

rj+1
2 = rj

2 + β̂2, (26)

introduced in Equation (10) should lead to a decrease in value the ∑ (di)
2. This method is

known as the Gauss–Newton optimization method.
Although integral methods for calculating reactivation ratios have existed for a long

time, their use is limited and reduced to a few simpler methods based either on the
linearization of integral equations or on the minimization of errors in one variable or
both variables.

The Error in Variable Method (EVM) is a concept for calculating reactivity ratios rather
than a method itself because there are many variants of it [11–19]. When this concept
was first used to determine the reactivity ratios, it was admitted that the measurement
errors are only in one of the variables [11]; later, the concept used the analysis of errors
in both variables [12–19]. The EVM variant proposed by van der Meer et al. [12], Patino-
Leal et al. [13], and Hautus et al. [14] uses the mathematical model given by Equation (3);
Yamada et al. [10] use Equation 5 as a mathematical model and Kazemi [17] use the
Meyer–Lowry model (Equation (6)).

One of the EVM variant methods is the one proposed by Chee and Ng [20], which
uses the integral form proposed by Mayo–Lewis (3) as a mathematical model and is based
on the minimization of the residual weighted sum for r2, defined by the following relation:

S = ∑ W(r2 − re
2)

2, (27)

where:
W =

1
Var(r2 − rpe

2 )
=

1
Var( f )

, (28)

Var( f ) =
(

∂ f
∂x

)2
Var(x) +

(
∂ f
∂y

)2
Var(y) +

(
∂ f

∂Pn

)2
Var(Pn) + 2

(
∂ f
∂x

)(
∂ f
∂y

)
Cov(x, y)

+2
(

∂ f
∂y

)(
∂ f

∂Pn

)
Cov(y, Pn) + 2

(
∂ f
∂x

)(
∂ f

∂Pn

)
Cov(x, Pn)

(29)

x =
M10

1−M10
and y =

m1

1−m1
(30)

Var(x) = (1 + x)4σ2
M (31)

Var(y) = (1 + y)4σ2
M (32)

Var(Pn) = Pn

{(
σP
PW

)2
+ (1− α)2

[(
x

1 + αx

)2( σM
M10

)2
+

(
y

1 + αy

)2( σm

M1

)2
]}

(33)

Cov(x, y) = 0 (34)

Cov(y, Pn) =

(
∂Pn

∂y

)
Var(y) (35)

Cov(x, Pn) =

(
∂Pn

∂x

)
Var(x) (36)
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re
2—the value of r2 estimated with Equation (3), Pn weight percent conversion, σ—standard

deviation of M10, m1 and Pn, µ—molecular weight of monomers.
The improved method proposed below is based on numerical integration step by step

of a differential equation and uses the gradient descent optimization algorithm.

2. Material and Methods

A simplified algorithm used in the processes of optimizing neural networks [21] and
machine learning [22] is that of the stochastic gradient descent (GD). This optimization
algorithm was adapted for the process of the calculation of the reactivity ratio for a ter-
minal model of copolymerization. In this procedure, it is assumed that the Wall –Skeist
Equation (4) is valid and the experimental error is independent and has a common variance.
The calculation principle of this algorithm consists of determining the parameters r1, r2 of
a function m2i (Equation (9)) by minimizing the cost of the function.

The calculation procedure of the descending gradient algorithm consists of the follow-
ing steps:

a. Initialize the value of reactivity ratios, rj
1, rj

2 with values obtained with the Fineman–
Ross method;

b. By introducing rj
1, rj

2 values into Equation (8), calculate m2i by numerical integration
for each experimental point until the specific conversion has been reached using the
numerical integration algorithm proposed by Kazemi [17,18];

c. The cost of the coefficients rj
1, rj

2 is evaluated with the following equation,
Equation (15):

cos tj =
(

mj exp
2i −mj calc

2i

)
(37)

where mj exp
2i is the experimentally determined copolymer composition, mjcalc

2i is the
copolymer composition calculated with Equation (2), and j is the number of the
calculation step.

a. The partial derivative of the cost function (δ) according to r1 and r2 is calculated to

determine the direction of evolution of the parameters rj
1, rj

2. Equations (35) and (36):

δ
j
1 =

1
n∑

(
Gj

i −mj
2i

)∂Gj
i

∂rj
1

(38)

δ
j
2 =

1
n∑

(
Gj

i −mj
2i

)∂Gj
i

∂rj
2

(39)

where n is the number of experimental sets.
b. The new values of the reactivity ratios rj+1

1 , rj+1
2 are calculated with Equations (40)

and (41):
rj+1

1 = rj
1 − (αδ1) (40)

rj+1
2 = rj

2 − (αδ2) (41)

where α is the search step which has a small positive value α ∈ [0, 1], in this
case, α = 0.1.

c. The error of the method is determined using Equation (42):

err =
∣∣∣∣1− cos tj

cos tj−1

∣∣∣∣ (42)

d. If the error is higher than a preset value (err = 1 × 10−15 in this case), then the calcu-

lation is resumed with new coefficients rj+1
1 , rj+1

2 , or else the calculation will stop.
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The evaluation of the quality of the reactivity ratios obtained is performed using the
Fisher criterion (F), whose formula shown below.

Fc =

√√√√∑n
j=1 ∑

p
i=1

(
mj(e)

i −mj(c)
i

)
n(p− n + 1)

(43)

where Fc is the value of the Fisher criterion, n is the number of monomers used in copolymer-
ization and p is the number of the experimental data set. Thus, mj(e)

i is the molar fraction of

monomer “i” from copolymer for “j” experimental data set, and mj(c)
i is the molar fraction

of monomer “i” calculated based on a mathematical model for the experiment “j”.
As can be seen from Equation (43), the lower the value of the Fisher criterion, the

closer the values of reactivity ratios are to the true value.
The analysis of the quality of the methods for calculating the reactivity ratios consid-

ered in this paper was carried out by imposing the conditions presented in Table 1. The
choice of reactivity ratios used in the qualitative analysis was made based on the following
criteria: (r1 × r2): r1 × r2 ≈ 0; r1 × r2 ∈ [0,1] one < 0.5 other >0.5; r1 × r2 > 1.

Table 1. Conditions imposed for the qualitative analysis of the methods taken in this analysis.

No. r1 r2 r1 × r2
Pn

LC MC HC

1 0.05 0.50 0.025 1–10 10–25 30–55
2 0.80 1.80 1.440 1–10 10–25 30–55
3 0.40 0.80 0.320 1–10 10–25 30–55

For these imposed conditions, the initial compositions of the monomer mixture be-
tween 0–1 and conversions were normalized and randomly generated in the imposed
intervals given in Table 1. With these data, for the given conversions the composition of the
copolymer was calculated using numerical integration of Mayo–Lewis equation until the
specific conversion for each point was reached. In Tables 2–4, the obtained data is shown,
where LC is low conversion, MC is medium conversion and HC is high conversion and
numbers refer to 1 for r1 = 0.05, r2 = 0.5., 2 for pairs r1 = 0.8, r2 = 1.8 and 3 for r1 = 0.4,
t2 = 0.8.

Table 2. Initial data for conversions between 1–10%.

M1 Pn
m1

LC1 LC2 LC3

0.152 7.27 0.208 0.095 0.163
0.201 2.14 0.253 0.129 0.208
0.323 8.84 0.333 0.228 0.308
0.409 4.15 0.376 0.392 0.438
0.546 2.22 0.424 0.441 0.471
0.681 7.75 0.475 0.598 0.577
0.722 4.00 0.488 0.647 0.611
0.866 4.64 0.555 0.829 0.764
0.913 9.68 0.608 0.89 0.833

Further, the analysis of the quality of the reactivity ratios obtained with the described
methods was also carried out for the published experimental data with respect to the follow-
ing conditions: at low conversion (1.0–9.5%) for the copolymerization of n-butyl methacry-
late with n-butyl acrylate [23] in bulk at 80 ◦C initiated by BPO, at medium conversion
(14.0–16.5%) for the copolymerization of 2-isopropenyl-2-oxazoline with methyl methacry-
late [24] in acetonitrile at 70 ◦C initiated by AIBN, and at high conversion (10.9–55.0%)
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for the copolymerization of N-(4-carboxyphenyl) maleimide (NCPM) with N-vinyl-2-
pyrrolidone [25] (NVP) in dimethylformamide at 90 ◦C.

Table 3. Initial data for the conversions between 10–25%.

M1 Pn
m1

MC1 MC2 MC3

0.170 15.23 0.222 0.110 0.180
0.209 20.56 0.254 0.141 0.215
0.310 17.83 0.325 0.222 0.299
0.453 18.48 0.396 0.354 0.407
0.587 14.75 0.445 0.493 0.505
0.663 20.91 0.473 0.583 0.568
0.707 12.65 0.486 0.632 0.601
0.857 11.34 0.555 0.819 0.756
0.935 18.73 0.670 0.919 0.873

Table 4. Initial data for conversions between 30–55%.

M1 Pn
m1

1 2 3

0.199 32.18 0.243 0.137 0.205
0.272 47.25 0.297 0.203 0.269
0.313 44.14 0.325 0.237 0.303
0.415 31.50 0.381 0.324 0.381
0.577 49.66 0.451 0.501 0.517
0.672 50.77 0.488 0.607 0.588
0.768 38.42 0.523 0.716 0.671
0.851 44.52 0.589 0.818 0.766
0.915 34.67 0.666 0.895 0.849

The GD method was written in the Python 3.7 programming language.

3. Results

After processing the initial data presented in Tables 2–4, the following reactivity ratios
were obtained, which are presented in Tables 5–7 for low conversion, in Tables 8–10 for
medium conversion and in Tables 11–13 for high conversion, and also, in Tables 14–16 the
reactivity ratios obtained with the analyzed methods and the reported reactivity ratios for
the published experimental data are presented.

Table 5. Reactivity ratios obtained for data r1 = 0.05, r2 = 0.50 Pn ∈ (1–10%).

Method r1 r2 Fc × 1000
Bias

r1 r2

GD 0.0497 0.5032 1.1439 −0.0003 0.0032
e-KT 0.0467 0.5017 1.2610 −0.0033 0.0017
KT 0.0554 0.5080 3.2918 0.0054 0.0080
TM 0.0569 0.5090 4.0873 0.0069 0.0090
FR 0.0589 0.5313 5.5489 0.0089 0.0313

r-FR 0.0569 0.5076 6.2937 0.0069 0.0076
EVM * 0.0001 0.4980 35.9326 −0.0499 −0.0020

* the variant of EVM proposed by Chee and Ng [19].
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Table 6. Reactivity ratios obtained for data r1 = 0.80, r2 = 1.80 Pn ∈ (1–10%).

Method r1 r2 Fc × 1000
Bias

r1 r2

GD 0.7997 1.8052 0.2038 0.0003 −0.0052
e-KT 0.7963 1.8001 0.2957 0.0037 −0.0001
TM 0.8036 1.7787 1.4868 −0.0036 0.0213
FR 0.8054 1.7820 1.4906 −0.0054 0.0180
KT 0.8042 1.7785 1.5381 −0.0042 0.0215

r-FR 0.8034 1.7782 1.6146 −0.0034 0.0218
EVM * 1.244881 0.0001 219.1527 −0.4449 1.7999

* the variant of EVM proposed by Chee and Ng [19].

Table 7. Reactivity ratios obtained for data r1 = 0.40, r2 = 0.80 , Pn ∈ (1–10%).

Method r1 r2 Fc × 1000
Bias

r1 r2

GD 0.3999 0.8016 0.2006 0.0001 −0.0016
e-KT 0.3974 0.8006 0.4229 0.0026 −0.0006
TM 0.4108 0.8076 1.5088 −0.0108 −0.0076
KT 0.4117 0.8081 1.6342 −0.0117 −0.0081
FR 0.4152 0.8199 1.9891 −0.0152 −0.0199

r-FR 0.4120 0.8079 2.3038 −0.0120 −0.0079
EVM * 0.4375 0.8268 4.9498 −0.0375 −0.0268

* the variant of EVM proposed by Chee and Ng [19].

Table 8. Reactivity ratios obtained for data r1 = 0.05, r2 = 0.5, Pn ∈ (10–25%).

Method r1 r2 Fc × 1000
Bias

r1 r2

GD 0.0499 0.5017 0.1688 0.0001 −0.0017
e-KT 0.0439 0.4937 3.5836 0.0061 0.0063
KT 0.0679 0.5203 9.5071 −0.0179 −0.0203
TM 0.0710 0.5331 10.9795 −0.0210 −0.0331
FR 0.0762 0.5844 14.3585 −0.0262 −0.0844

r-FR 0.0718 0.5236 17.5811 −0.0218 −0.0236
EVM * 0.0555 0.0555 87.2141 −0.0055 0.4445

* the variant of EVM proposed by Chee and Ng [19].

Table 9. Reactivity ratios obtained for data r1 = 0.80, r2 = 1.80, Pn ∈ (10–25%).

Method r1 r2 Fc × 1000
Bias

r1 r2

GD 0.7984 1.7992 0.1629 −0.0016 −0.0008
EVM * 0.7924 1.7897 0.3628 −0.0076 −0.0103
e-KT 0.7910 1.7867 0.4312 −0.0090 −0.0133
FR 0.8119 1.7157 4.4934 0.0118 −0.0843
KT 0.8085 1.7053 4.6748 0.0085 −0.0947
TM 0.8047 1.6973 4.7333 0.0047 −0.1027
r-FR 0.8145 1.7129 4.9533 0.0145 −0.0871

* the variant of EVM proposed by Chee and Ng [19].
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Table 10. Reactivity ratios obtained for data r1 = 0.40, r2 = 0.80, Pn ∈ (10–25%).

Method r1 r2 Fc × 1000
Bias

r1 r2

GD 0.3998 0.7991 0.2010 0.0002 0.0009
e-KT 0.3905 0.7927 1.0801 0.0095 0.0073

EVM * 0.4075 0.8261 1.7779 −0.0075 −0.0261
TM 0.4252 0.8072 3.5280 −0.0252 −0.0072
KT 0.4276 0.8098 3.7832 −0.0276 −0.0097
FR 0.4343 0.8033 4.2001 −0.0343 −0.0033

r-FR 0.4279 0.8095 4.9380 −0.0279 −0.0095
* the variant of EVM proposed by Chee and Ng [19].

Table 11. Reactivity ratios obtained for data r1 = 0.05, r2 = 0.50, Pn ∈ (30–55%).

Methods r1 r2 Fc × 1000
Bias

r1 r2

GD 0.0499 0.5023 0.2557 0.0001 −0.0023
KT 0.0972 0.5362 21.3053 −0.0472 −0.0362
TM 0.0986 0.5352 21.8155 −0.0486 −0.0352
FR 0.1015 0.5621 22.7294 −0.0515 −0.0621

r-FR 0.1036 0.5435 34.2062 −0.0536 −0.0435
e-KT 0.0001 0.0001 108.9645 0.0499 0.4999

EVM * 0.0001 0.0001 108.9645 0.0499 0.4999
* the variant of EVM proposed by Chee and Ng [19].

Table 12. Reactivity ratios obtained for data r1 = 0.80, r2 = 1.80, Pn ∈ (30–55%).

Methods r1 r2 Fc × 1000
Bias

r1 r2

GD 0.7969 1.7954 0.2326 0.0031 0.0046
EVM * 0.7568 1.7416 2.1460 0.0432 0.0584
e-KT 0.7602 1.7794 2.4694 0.0399 0.0207
KT 0.8277 1.5858 9.8426 −0.0277 0.2142

r-FR 0.8460 1.6112 10.2002 −0.0460 0.1888
TM 0.8354 1.5860 10.3112 −0.0354 0.2140
FR 0.8171 1.5577 10.3271 −0.0171 0.2423

* the variant of EVM proposed by Chee and Ng [19].

Table 13. Reactivity ratios obtained for data r1 = 0.40, r2 = 0.80, Pn ∈ (30–55%).

Methods r1 r2 Fc × 1000
Bias

r1 r2

GD 0.4026 0.7920 1.8107 0.0026 −0.0080
e-KT 0.3648 0.7748 5.1504 −0.0352 −0.0252
FR 0.4699 0.7971 8.4630 0.0699 −0.0029
KT 0.4767 0.8170 8.5785 0.0767 0.0170
TM 0.4805 0.8187 8.9553 0.0805 0.0187
r-FR 0.4860 0.8289 12.0666 0.0860 0.0289

EVM * 0.3293 0.3292 42.4595 −0.0707 −0.4709
* the variant of EVM proposed by Chee and Ng [19].
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Table 14. The reactivity ratios for copolymerization of n-butyl methacrylate with n-butyl acrylate [23].

Method r1 r2 Fc × 1000 Ref

GD 1.9839 0.4287 8.8713 This work
TM 1.9751 0.4480 9.4966 This work
r-FR 2.2045 0.4818 10.7046 This work
e-KT 2.3386 0.4965 12.3216 This work
KT 2.3222 0.5974 12.6241 This work
FR 2.8167 0.7535 27.4363 This work

EVM 2.6445 0.7768 30.6844 This work
RREVM 2.0080 0.4600 9.8015 [23]

Table 15. The reactivity ratios for copolymerization of N-vinyl prirrolidone with isobornyl
methacrylate [24].

Method r1 r2 Fc × 1000 Ref

GD 0.5644 0.5626 3.4453 This work
eKT 0.5630 0.5649 3.4536 This work
FR 0.5696 0.5624 3.4996 This work

EVM 0.5765 0.5694 3.5844 This work
KT 0.5879 0.5895 4.2869 This work
TM 0.5899 0.5830 4.2917 This work
rFR 0.6122 0.6061 5.8456 This work
OPT 0.71 0.63 13.5698 [24]

Table 16. The reactivity ratios for copolymerization of NCPM with NVP [25].

Method r1 r2 Fc × 1000 Ref.

GD 0.0327 0.3521 2.3722 this work
EVM 0.0352 0.3404 3.9834 this work
e-KT 0.0269 0.3467 5.0836 this work
FR 0.0452 0.3472 9.1372 this work
TM 0.0474 0.3722 10.0274 this work
KT 0.0592 0.3934 16.9579 this work

e-KT 0.0270 0.3470 5.0942 [24]
MH 0.0290 0.3470 3.7893 [24]

4. Discussion

However, in Tables 5–13 it can be easily seen that in all cases, the integral method
GD has the lowest bias compared to the initial conditions imposed, as well as the lowest
values of the Fisher criterion. The e-KT method gives good results, with one exception at
high conversion for values of r1 = 0.05, r2 = 0.5. The reason why by the e-KT method for
the reactivity ratios r1 = 0.05, r2 = 0.5 at high conversions gives wrong values is due to the
limitations of the method. This method can be used successful up to 40% conversions as
well as to the errors of the logarithm function of around of 0 values. More details have been
described by Tudos et al. [10]. The EVM method proposed by Chee and Ng [19] is usable,
with good results in a few cases. The limitation of the EVM variant proposed by Chee and
Ng [19] is due to the mathematical model used, because when one of the reactivity ratios
is very close to zero and the conversion is high, the factor of logarithm can take negative
values; for this reason, the results are erroneous. In Figures 1–9, the evolution of reactivity
ratios values is depicted, with searching steps and error value (Equation (39)) evolution for
last 60 searching steps for the GD method for data given in Tables 5–13.
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As can be seen from Figures 1–9, the best values of reactivity ratios obtained with
the GD method are strongly dependent on the initial value of the reactivity ratios used
in the optimization process. Additionally, the values of the reactivity ratios obtained by
descent gradient optimization are global minimums. Because the convergence of the err
function (Equation (39)) is small, there are situations in which the GD method requires a
high number of search steps to reach the proposed threshold value (10−15), which leads to
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a longer search time. Reducing the threshold value imposed will lead to a decrease in the
calculation time but can also reduce the accuracy of the result.

It is also well known that from a statistical point of view, all combinations of pairs
of reactivity ratios that can be obtained from within the 95% confidence domain satisfy
the experimental data for the chosen mathematical model. For this reason, the reliable
domains for the calculation methods taken in the analysis for the three initial conditions
are drawn in Figures 10–22, and published data are drawn in Figures 23–25.
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The JCR domains that do not appear in these figures are so large that they make the
other JCRs no longer observable.

Although in all cases regardless of the initial conversions, the bias between the calcu-
lated value of the reactivity ratios by the analyzed methods and the target value are small,
the JCR domains show their quality difference.

In the case of conversions below 10% and r1 = 0.05, r2 = 0.5 the r-FR method, through
its reliable JCR, can also admit the possibility of aberrant solutions, i.e., negative reactivity
ratios that are not allowed kinetically by their definition. The GD and e-KT methods
have the lowest reliable and practical identical JCR in the case of experimental data with
conversions of less than 10%.
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In the case of the conversion range between 10–25%, a good separation of the quality
of the results between the differential and the integral methods can be made. This is
observable both by the value of criterion Fc and by the size of the JCR domain shown
in Figures 13–18. It should be noted that among the integral calculation methods for
r1 = 0.8 and r2 = 1.8, although they have a close value of criterion Fc and the confidence
domains are small, GD is the only method that admits the target value within its JCR
domain. Additionally, it should be noted that the reactivity ratios obtained by the methods
presented are outside the JCR of the GD method. It is obvious that at high conversions
over 30%, differential methods give erroneous values and large areas of JCR. In this case,
there is a good separation of the quality of the results obtained between the GD and e-KT
method. Surprisingly, the EVM method analyzed here, although an integral method, does
not give acceptable results.
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versions of less than 10%. 

In the case of the conversion range between 10–25%, a good separation of the quality 
of the results between the differential and the integral methods can be made. This is ob-
servable both by the value of criterion Fc and by the size of the JCR domain shown in 

Figure 25. The JCR domain for copolymerization of N-(4-carboxyphenyl) maleimide with N-vinyl-2-
pyrrolidone [25].

Comparing the values of criterion Fc and the size of the 95% confidence regions, it can
be said that there is a good correlation between them; therefore, criterion Fc can be used as
an indicator of the quality of reactivity ratios.

5. Conclusions

It was observed that there is a good correlation between the value of criterion Fc and
the size of the JCR domain. For this reason, criterion Fc could be used as an indicator of
the quality of reactivity ratios. Regardless of the value of the conversions, the integral
methods gave better results than the differential methods. From these analyzed integral
methods, the GD method presented here can be successfully used to obtain reactivity ratios
for experimental data that obtained up to 50–55% conversions.
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