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Abstract: In this paper, the effects of an aging treatment on the corrosion resistance/mechanism
of a tensile deformed Al-Cu-Mn-Fe-Zr alloy are investigated. The impedance magnitude and
polarization resistance increase, while the corrosion current decreases with the increased aging time
and temperature. The discontinuously-distributed precipitates and precipitation-free zone, which
can cut the corrosion channels, appear at grain boundaries when the temperature is relatively high
and the aging time is relatively long. They can improve the corrosion resistance. Additionally, the
intergranular and pitting corrosion are the main mechanisms. The intergranular corrosion is likely to
occur in an under-aged alloy. This is because the potential difference between the grain boundaries
and grains is high, due to the segregation of Cu atoms. When the aging degree is increased, the
grain boundary precipitates reduce the potential difference, and the intragranular precipitates make
the surrounding matrix prone to dissolution. As such, the pitting corrosion is likely to occur in the
over-aged alloys.

Keywords: alloy; aging; corrosion mechanism; microstructure

1. Introduction

Because of their outstanding mechanical and physical properties, aluminum alloys are
widely used in the fields of ship building and aerospace [1–4]. Al-Cu alloys are often used
in the production of high-performance components, such as rocket engines, and pressure
vessels, etc. These components are thin-walled and large-sized, and usually formed by
tensile deformation [5–8]. Al alloys have been also selected as the building material for
space habitats and equipment. Generally, the service environment of the components
is severe. The alloys or components should have excellent mechanical and corrosion
properties [9–13]. Therefore, it is important to design suitable heat treatment methods to
enhance the mechanical and corrosion properties of Al-Cu alloys.

In recent years, many scholars have studied the effects of aging on the precipitation
kinetics [14,15], corrosion resistance [16–18], as well as some other mechanical properties
of Al-Cu alloys [19–24]. However, the corrosion performance of Al-Cu alloys still needs
comprehensive investigation. Lin et al. [25] and Li et al. [26] investigated the relationship
between the corrosion behavior and microstructures of 2024Al alloy. In their study, de Sousa
Araujo et al. [27] revealed the effects of thermomechanical treatments on the corrosion
behavior of a 2198 Al–Cu–Li alloy. Wang et al. [28] discussed the effects of the S phase
on the pitting initiation of an Al-Cu-Mg alloy. Ma et al. [29] significantly enhanced the
corrosion resistance of 2219 Al alloy welds by laser surface melting. Liu et al. [30] indicated
that the effect of microstructure refinement on corrosion performance is weak, but the
effect of second phases is significant. Surekha et al. [31] found that the dissolution of
the Al2Cu phase can improve the corrosion resistance of a 2219 Al alloy. Lu et al. [32]
found that pre-deformation can increase the θ′ phase within grains and improve the
corrosion resistance of a 2219 alloy. Huang et al. [33] found the phases at grain boundaries
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can reduce the intergranular corrosion sensitivity of an Al-Cu-Li alloy. Grilli et al. [34]
indicated that the intermetallics act as a cathode in the corrosion process, dissolving the
surrounding aluminum matrix. Chen et al. [35] found the multiaxial fatigue life decreases
with the increased pre-corrosion time. Hikku et al. [36] improved the corrosion resistance
by adding graphene nanocomposite coating and chromium plating on a 2219 Al alloy
surface. Kairy et al. [37] found that adding Zr and Sc elements to Al-Cu alloys can reduce
the corrosion current, thereby reducing the pitting/intergranular corrosion. Zhu et al. [38]
improved the corrosion resistance of the alloy welds by heat treatment. Emarati et al. [39]
improved the corrosion resistance of a 2024 Al alloy by electric etching, anodizing, sealing
and surface chemical modification.

Although there is some research on the mechanical and corrosion properties of Al-Cu
alloys, there are few studies on the effects of an aging treatment on the corrosion properties,
as well as the corrosion mechanisms, of a deformed Al-Cu-Mn-Fe-Zr alloy. Furthermore,
this topic is very important for industrial production components, such as thin-walled
components produced by tensile deformation or spinning processing. In this study, a ten-
sile deformed Al-Cu-Mn-Fe-Zr alloy is aged at 155-175 ◦C for 6–24 h. The electrochemical
corrosion experiments were performed in a 3.5% NaCl solution. The electrochemical
impedance spectroscopy (EIS) and polarization curves of the aged alloy are measured in or-
der to discuss the effects of aging on corrosion resistance. To discuss corrosion mechanisms,
the corrosion properties and corrosion morphology of the aged alloy are analyzed.

2. Materials and Experiments
2.1. Materials Preparation

A rolled Al-Cu-Mn-Fe-Zr alloy sheet with the chemical compositions of (Al-6.37Cu-
0.30Mn-0.16Fe-0.12Zr-0.05Si-0.04Ti (wt.%)), was used. Firstly, the alloy sheet was solution-
treated at the temperature and time of 535 ◦C and 40 min, respectively. The tensile test
specimens were cut from the solution-treated sheet (in the rolling direction). According to
the GB/T4338-2006 “Metal Material High Temperature Tensile Test Method”, the tensile
test specimens meeting the requirements were then obtained through CNC machining,
as shown in Figure 1. The specimens were then stretched on the MTS-GWT2105 testing
machine at 150 ◦C, with a deformation amount of 15%, and tensile speed of 0.54 mm/min.
Afterwards, the specimens were cooled to room temperature in the air. Finally, the de-
formed specimens were aged according to the designed conditions shown in Table 1.
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Case ID Temperature (◦C) Time (h)
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4
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5 12
6 24
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2.2. Electrochemical Corrosion Experiments

The electrochemical corrosion experiments were performed on the CHI660E electro-
chemical workstation. The samples, with a length of 10 mm, were cut from the gauge
segment of the aged alloy, and the impurities and oxide film were removed from surface
by polishing. The surface area of the samples that were exposed to the 3.5% NaCl solution
was 40 mm2. Firstly, the samples were immersed in solution for 10 min to obtain open
circuit potential. The electrochemical impedance spectroscopy (EIS) measurements were
then conducted with an alternating current (AC) signal, of which the frequency ranged
from 0.01 Hz to 100 KHz and the amplitude was 10 mV. In addition, the preparation of the
samples for the polarization curve tests are consistent with the EIS test. The scan interval
was selected according to the open circuit potential. Based on previous research [29], the
open circuit potential of a 2219 Al alloy is between −0.6 V/SCE and −0.8 V/SCE. The
scanning interval was −1.2~0 V/SCE, and scanning rate was 0.5 mV s−1.

2.3. Corrosion Morphology Observation

In order to investigate the effects of the aging treatment on corrosion morphology, a
scanning electron microscope (SEM) (FEI Electron Optics B.V; Prague, Czech Republic), op-
tical microscope (OM), and laser scanning confocal microscope (LSCM) were used. Before
the SEM and LSCM tests, the non-working surface of specimens was polished to ensure
flatness, and the samples were vacuum sealed to avoid the oxidation of corrosion products.
In order to analyze the corrosion depth of the longitudinal section of the corroded sample,
the OM tests were conducted on an optical microscope (Olympus DSX500) (Olympus
Corporation, Tokyo, Japan). Before the OM tests, the longitudinal profile was mechanically
polished until the surface had no obvious scratches. In addition, a transmission electron
microscope (TEM) (Tecnai G2 F20; FEI Company; Hillsboro, OR, USA) was used to observe
precipitated phases in the aged alloy. Here, a TEM sample was obtained by mechanical
grinding and stamping. Its thickness was 50–80 µm and the diameter was 3 mm. After-
wards, the samples were electropolished by double-jet in HNO3 (30%) and CH3OH (70%)
at −25 ◦C.

3. Results and Discussion
3.1. Effect of Aging Parameters on Electrochemical Impedance Spectroscopy

Figure 2 shows the EIS of the aged alloy. In Figure 2a, the curve has an obvious
impedance arc at 155 ◦C for 6 h. When the aging time is 12 h or 24 h, two impedance
arcs appear at the frequency of 0.01–1 Hz or 1–1000 Hz, respectively. The arc at the low
frequency is mainly caused by the electrochemical corrosion process, while the arc at the
high frequency is related to the charge transfer resistance at the interfaces between the
electrolyte solution and alloy [40,41]. Generally, a large impedance arc indicates a high
impedance magnitude. The impedance magnitude reflects the charge transfer ability of the
sample surface. The higher impedance magnitude indicates that the electrode reaction is
slower and the corrosion resistance is larger [42–44]. As shown in Figure 2b, the impedance
magnitude increases with the extended aging time at a low frequency, showing that the
corrosion resistance of the alloy is improved. As shown in Figure 2c,d, the effect of the aging
time on the impedance magnitude is consistent with those shown in Figure 2a,b, which
further indicates that the corrosion resistance becomes larger with the increased aging
time. In Figure 2a,c, the radius of the impedance arc increases as the temperature is raised
from 155 ◦C to 175 ◦C for the same aging time. Meanwhile, in Figure 2b,d, the impedance
magnitude also shows the same rule, which indicates that the corrosion resistance increases
with the raised aging temperature.
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3.2. Establishment of Equivalent Circuit

The interface between the alloy and electrolyte solution is generally composed of
oxide film, which includes two layers. The outer layer has many small holes, while the
inner layer is dense, as shown in Figure 3a [44]. According to the characteristics of oxide
film, it can be divided into a porous layer and a barrier layer [45,46] (Figure 3a). The alloy
and electrolyte solution can be simplified into an equivalent circuit. In this work, the
R(Q(R(QR))) model (Figure 3b) is used. Rs represents the resistance of the electrolyte
solution, and its value mainly depends on the concentration of the electrolyte solution and
the distance between the electrodes. R1 is the resistance of the porous layers. Additionally,
R2 represents the charge transfer resistance, which corresponds to the barrier layers of
oxide film. The constant phase element (Q) is used to describe the nonideal capacitance
due to non-uniformed oxide film. Q1 and Q2 are the constant phase elements of the porous
and the barrier layers, respectively. The impedance of constant phase elements can be
expressed as [47],

Z = Y−1(jω)−n (1)

where Y represents the capacitance, ω is the angular frequency, n is the dispersion value of
the constant phase element, and its value is between −1 and 1. When −1 < n < 0, 0 < n < 0.5,
and 0.5 < n <1, the constant phase element is close to the inductance, resistance, and
capacitance, respectively.
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Figure 3. Schematic diagram of: (a) surface structure; (b) equivalent circuit.

The electrochemical parameters are obtained by ZsimpWin software (v3.60), as shown
in Table 2. Rs varies little at different conditions, and its value range is 5–11

(
Ω · cm2).

As mentioned above, the value of Rs is mainly related to the concentration of the electrolyte
solution and the distance between the electrodes. Therefore, the aging process has little
effect on Rs. Meanwhile, there is no obvious law in Q1 and Q2 at different conditions. The
phenomenon shows that the oxide film is relatively non-uniform The dispersion values
of the constant phase elements (n) are all above 0.5, and some values are 1, indicating its
electrochemical characteristics are close to the ideal capacitance. However, n2 is 0.596 for
the alloy aged at 155 ◦C for 6 h, which means that the charge diffusion occurs during the
electrochemical corrosion.

Table 2. Parameter fitting results of equivalent circuits.

Temperature (◦C) Time (h)
RS Q1

n1
R1 Q2

n2
R2

(Ω·cm2) (µF·cm−2) (Ω·cm2) (µF·cm−2) (Ω·cm2)

6 6.435 0.89 1 0.123 48.42 0.596 3932
155 12 5.92 16.43 0.874 4523 10.84 1 3638

24 5.14 15.91 0.8 34.13 276.9 0.8 9077

175
6 10.4 73.59 0.761 59.6 23.3 0.933 4617

12 7.14 9.503 0.904 4930 1397 0.994 5072
24 8.633 11.62 0.909 5785 203.9 0.994 12,750

The sum of R1 and R2 is the polarization resistance (Rp), which can represent the corro-
sion resistance of the studied alloy. Generally, it is believed that the corrosion current during
electrochemical corrosion decreases with the increased Rp, i.e., the corrosion resistance
becomes increasingly larger. The values of Rp are shown in Figure 4. It can be observed the
polarization resistance increases with the increased aging time and temperature.
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3.3. Effect of Aging Parameters on Polarization Curves

Figure 5 shows the polarization curves of the aged alloy. The polarization curves
are similar under different aging conditions, and there is no obvious passivation. This is
because Cl- is adsorbed on the surface of the alloy, and the formation of the passivation
film is hindered [48–50]. The values of corrosion potential, corrosion current, as well as the
slope of cathode and anode, are measured using the Tafel extrapolation method [45,51],
as shown in Table 3. The corrosion potential decreases slightly with the increased aging
time at 155 ◦C. When the aging temperature is raised to 175 ◦C, the corrosion potential
changes irregularly at a different aging time. The corrosion potential reflects the possibility
of electrochemical corrosion of the alloy [52–54], but the law of corrosion potential change
is not obvious under the tested conditions. Generally, the corrosion dynamic parameters
are used to characterize the corrosion resistance of alloys. Moreover, the corrosion current
belongs to the category of corrosion dynamic parameters [55]. As such, this research selects
the corrosion current as the judgment standard. The corrosion current is reduced by 90.23%
at 175 ◦C when the aging time is increased from 6 h to 24 h. The corrosion current is
reduced from 0.394 to 0.183 (i.e., a decrease of 53%), as the aging temperature is raised from
155 to 175 ◦C at the aging time of 24 h. In summary, the corrosion current decreases with
the raised temperature and aging time, i.e., the corrosion resistance of the alloy increases.
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Table 3. Corrosion parameters of the alloy under different aging conditions.

Temperature Time Corrosion Potential Corrosion Current

(◦C) (h) (V) (µA/cm2)

155
6 −0.655 2.747

12 −0.663 1.757
24 −0.688 0.394

175
6 −0.852 1.874

12 −0.771 1.617
24 −0.796 0.183

3.4. Corrosion Morphology Analysis

Figure 6 shows the corrosion morphology and corrosion products after electrochemical
tests. In Figure 6a, many corrosion pits are distributed on the surface of the alloy, and the
depth of corrosion is relatively larger. Meanwhile, some off-white corrosion products and
corrosion cracks appear around the corrosion pits. In Figure 6b, the main elements of the
corrosion products are measured as oxygen, aluminum, and chlorine, i.e., Al(OH)3 and
AlCl3. The formation of Al(OH)3 is mainly due to the hydrolysis reaction, which is caused
by some aluminum ions [56]. The hydrolysis reaction can be expressed as,

Al3+ + 3H2O→ Al(OH)3 + 3H+ (2)
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The formation of AlCl3 can be expressed as,

Al(OH)3+Cl− → Al(OH)2Cl + OH− (3)

Al(OH)2Cl + Cl− → Al(OH)Cl2+OH− (4)

Al(OH)Cl2+Cl− → AlCl3+OH− (5)

Corrosion products accumulate on the surface of the alloy during the electrochemical
reaction, which inhibits the diffusion of dissolved Al3+. Non-diffusible Al3+ accumulates
on the corrosion products, forming a strong electric field [57,58]. Thus, Cl− accumulates
to the outer layer of the corrosion products. Cl− can continue to move into the corrosion
products due to strong permeability. The corrosion products gradually crack under the
combined influence of Cl− and H+, and the matrix under the corrosion product continues to
be corroded. The corrosion then mainly proceeds along the crack of the corrosion products.

Figure 7 shows the corrosion morphology and laser confocal maps of the alloy. In
Figure 7a,b, a large amount of corrosion products are accumulated on the surface, and the
maximum height of the corrosion products reaches 1000 µm. As the aging time is extended
to 24 h, the maximum height of the corrosion products decreases to 550 µm, as depicted
in Figure 7c,d. In Figure 7e,f, many off-white corrosion products are distributed around
the corrosion pits for the alloy aged at 175 ◦C for 6 h, and the corrosion cracks mainly
propagate along the phase boundary. The laser confocal map shows that the maximum
height of corrosion products is 900 µm. In Figure 8g,h, corrosion pits are only found in the
center of the surface, and the maximum height of corrosion products decreases to 550 µm.

OM images of the longitudinal section of the alloy are shown in Figure 8. Generally,
the main corrosion types of Al-Cu alloys are intergranular and pitting corrosion, and the
corrosion type is affected by the microstructures [59–63]. In Figure 8a, the main type of
corrosion is intergranular corrosion for the alloy aged at 155 ◦C for 6 h. The corrosion
area and the corrosion depth are large-, and the maximum corrosion depth is 196 µm. In
addition, the pitting corrosion can be observed at grain boundaries and within grains.
As the aging time is increased to 24 h (Figure 8b), only the pitting corrosion is observed,
and the maximum corrosion depth is 32 µm. In Figure 8a,c, the corrosion area and depth
significantly decrease as the temperature is raised from 155 to 175 ◦C. As presented in
Figure 8d, a few pits appear on the surface of the alloy aged at 175 ◦C for 24 h. The above
results indicate that the corrosion type changes from the intergranular corrosion to the
pitting corrosion with increasing the aging time and temperature. Meanwhile, the corrosion
resistance is also improved with the raised temperature and aging time.
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3.5. Corrosion Mechanism Analysis

Based on the above experimental results, the main corrosion types of the aged alloy are
intergranular and pitting corrosion [64]. Intergranular corrosion is likely to occur in under-
aged alloys, while the pitting corrosion likely appears in over-aged alloys. Corrosion types
are mainly related to the continuity of precipitation phases and the precipitate-free zone
(PFZ) at the grain boundaries [65–68]. Figure 9 shows TEM images of grain boundaries
of the aged alloy. In Figure 9a, there is no precipitate at the grain boundaries and the
PFZ is narrow for the alloy aged at 155 ◦C for 6 h. The grain boundary can accelerate the
intergranular corrosion in the corrosion process. This is because the potential difference
between the grain boundaries and grains is high, due to the segregation of Cu atoms. As the
aging time is increased to 24 h (Figure 9b), the discontinuously-distributed precipitates
appear at grain boundaries, and there are fine precipitates in the grains. The nucleation
and growth of grain boundary precipitates consume a lot of Cu atoms, which reduces
the saturation of solute atoms and promotes the increase of PFZ width. In Figure 9c, the
grain boundary precipitates and intragranular precipitates become coarser, and the PFZ
becomes wider in the alloy aged at 175 ◦C for 24 h. Figure 10 shows the schematic diagram
of the evolution of the microstructures. When the alloy is under-aged, the intragranular
precipitates are relatively fine, and there are flat PFZs at the grain boundaries. The potential
difference between the grain boundaries and grains is high. A coherent circuit is then
formed. As such, the alloy exhibits the high sensitivity to intergranular corrosion. When
the alloy is over-aged, PFZ becomes more and more wide. In addition, the grain boundary
precipitates and intragranular precipitates become more and more coarse. The potential
difference decreases and intragranular precipitates make the surrounding matrix prone to
dissolution. Moreover, the grain boundary precipitates and PFZ cut corrosion channels in
the corrosion process, reducing the corrosion sensitivity of grain boundaries [45,54,69,70].
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Thus, the pitting corrosion is more likely to occur in over-aged alloys. Additionally, the
wider PFZ can protect the matrix from corrosion and improve the corrosion resistance of
the alloy.
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4. Conclusions

The effects of aging treatment on the corrosion resistance/mechanism of a tensile
deformed Al-Cu-Mn-Fe-Zr alloy are investigated. Several important conclusions are
shown below:

1. The impedance magnitude and polarization resistance increase, while the corrosion
current decreases with increasing the aging time and temperature. Therefore, the
corrosion resistance is improved.

2. The discontinuously-distributed precipitates and precipitation-free zone, which can
cut the corrosion channels, appear at grain boundaries when the temperature is
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relatively high, and the aging time is relatively long. The corrosion sensitivity of grain
boundaries can then be reduced.

3. The intergranular corrosion is likely to occur in under-aged alloys. This is because
that the potential difference between the grain boundaries and grains is high due to
the segregation of Cu atoms. When the aging degree is increased, the grain boundary
precipitates reduce the potential difference, and the intragranular precipitates make
the surrounding matrix prone to dissolution. As such, the pitting corrosion is more
likely to occur in over-aged alloys.
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