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Abstract: The study of microstructures for the accurate control of material properties is of industrial
relevance. Identification and characterization of microstructural properties by manual measurement
are often slow, labour intensive, and have a lack of repeatability. In the present work, the intermetallic
phase ratio and grain size in the microstructure of known Mg-Sn-Al alloys were measured by
computer vision (CV) technology. New Mg (Magnesium) alloys with different alloying element
contents were selected as the work materials. Mg alloys (Mg-Al-Sn) were produced using the hot-
pressing powder metallurgy technique. The alloys were sintered at 620 °C under 50 MPa pressure
in an argon gas atmosphere. Scanning electron microscopy (SEM) images were taken for all the
fabricated alloys (three alloys: Mg-7Al-55n, Mg-8Al-55n, Mg-9Al1-55n). From the SEM images, the
grain size was counted manually and automatically with the application of CV technology. The
obtained results were evaluated by correcting automated grain counting procedures with manual
measurements. The accuracy of the automated counting technique for determining the grain count
exceeded 92% compared to the manual counting procedure. In addition, ASTM (American Society
for Testing and Materials) grain sizes were accurately calculated (approximately 99% accuracy)
according to the determined grain counts in the SEM images. Hence, a successful approach was
proposed by calculating the ASTM grain sizes of each alloy with respect to manual and automated
counting methods. The intermetallic phases (Mg;7Al;; and Mg,Sn) were also detected by theoretical
calculations and automated measurements. The accuracy of automated measurements for Mgj7Alj»
and Mg,5n intermetallic phases were over 95% and 97%, respectively. The proposed automatic image
processing technique can be used as a tool to track and analyse the grain and intermetallic phases of
the microstructure of other alloys such as AZ31 and AZ91 magnesium alloys, aluminium, titanium,
and Co alloys.

Keywords: microstructure; grain size; computer vision; automated counting; intermetallic phases;
image processing
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1. Introduction

Magnesium (Mg) is the eighth-most abundant lightweight structural material found
in the earth’s crust and is the third most plentiful element dissolved in seawater [1,2]. Mg
material possesses a low density of 1.74 g/cm3, which is /~22% steel and ~65% aluminium,
and is most comparable to fibre-based composites and plastics [3,4]. Thermal stability,
damping characteristics, mechanical properties, low density coupled with good electro-
magnetic shielding, and machinability are a few of the characteristic features of magnesium
that allow it to replace other metals on a large scale [5-8]. Owing to their excellent proper-
ties, industries are fabricating parts that are useful for automotive, aircraft, and military
devices; biomedical implants; smartphones; computers; and household appliances, etc. [9].
Environmental perspectives also demand the use of magnesium parts that reduce vehicle
weight, with design changes in structures and engine size that could result in fuel savings
and reduce greenhouse gas emissions (80% of CO, emissions from road transport and
45% from cars) by 60% [10,11]. Significant attention should be given to enhance certain
properties that scale up the production and, in turn, the applications of magnesium parts.

In recent years, worldwide attention with intense research and development activities
has led to the introduction of novel materials that exhibit superior properties with the
addition of alloying elements and synthesis methods [12,13]. Table 1 shows the addition
of alloying /reinforcing elements to magnesium and its alloys that have resulted in better
mechanical, thermal, tribological, and microstructure properties. Mg alloys are synthesized
by various processing routes, such as DMD (Direct Metal Deposition), SLM (Selective Laser
Melting), casting, and powder metallurgy [12,14]. In the cast processing route, the defects
(porosity, shrinkage, hot tears, and segregations), material wastages, and the fact that
molten magnesium is more prone to oxidation and burn limit the extensive use of casting
processes [15,16]. Secondary processing methods (such as plastic deformation and heat
treatment methods) are applied to the cast products to limit the casting defects and enhance
the product’s properties [17-20]. The secondary processes result in a high manufacturing
cost of alloy development and the fabrication of parts [21]. Powder metallurgy proved to
be the most promising technique to yield fine grain structures with superior properties
in the significant alloys compared to the casting processing route [9,22]. In addition,
its greater flexibility in fabricating complex parts with the desired geometrical accuracy
ensures near-net-shaped PM parts [23]. The hot pressing in powder metallurgy technique
reduces both sintering temperature and time; refines the grain structure and ensures
grain uniformity; improves density and strength; is free from microstructural cracks; and
has greater simplicity, flexibility, and low cost and can therefore offer parts of a better
dimensional stability [24-26].

Table 1. Summary of literature reviews of magnesium alloys and their characterizations.

Material Alloying Elements Synthesizing Process Analysed Parameters Ref

Pure Mg Ca: 0.1-1 wt.% Casting + Extrusion 1YS, 1 UTS, | GS [17]
Ep; ) o . . 4 GS from 123.9 to 75.2 um, T YS

Mg-5Bi Sn: 4 wt.% Casting + Extrusion by 6.63% & T UTS by 8.67% [27]

Pure Mg Al: 8wt /(i’ Svr:o/z wt.%, Zn: Casting + HPR 1 GS, 1 ductility [28]

Al: 3wt.%, Zn, Mn: 1 wt.%, .

Pure Mg Ca: 0.5 wt. % Casting 1S,1T7F |l GS [29]
Mn, Ca, Sn, Y: 0.5 wt.%, . 1 GS with Mn, Nd, Y, | GS with

Mg-9Al Nd: 0.25 wt. % Casting Ca, Sn, | CR with Mn, Y, Ca [30]

Mg-Zn Gd, Al Casting 1 GS, 1YS, 1 UTS 1 ductility [31]
1D, | P | GSby 76%, | CTE by

Pure Mg NiTi: 0.5-3 wt.% DMD + Extrusion 10%, 1 H by 31%, T Y5 by 129%, 1 [32]

UTS by 46%, T EA by 35%, 1 CYS
by 104%, 1 UCS by 26%




Materials 2021, 14, 5095 3of 16
Table 1. Cont.
Material Alloying Elements Synthesizing Process Analysed Parameters Ref
o o .7 o . . 1TYS by 122.2%, | GS from 650 to
Pure Mg Gd: 2-15 wt.%; Zr: 1 wt.% Casting + Extrusion 55 um, 1 H, [CYS by 248.5% [33]
AZ61 Mn: 0.4 wt.%; Sn: 0.8 wt.% SLM JCR,TH, 1 CS [34]
Pure Mg Sn: 5-13 wt.% Hot Pressing 1YS, 1 UTS [9]
Mg-55n Zn: 1-5 wt.% Hot Pressing 1TYS, 1 UTS [35]
Mg5Sn4Zn Al: 14 wt.%, Mn: 0.2 wt.% Hot Pressing 1YS, 1 UTS [36]
Mg6Sn Zr: 0'5_2:\;:'0//0’ Mn: 0.1 Hot Pressing 1YS, 1 UTS [26]
Mg75n2Zn Mn: 0.15-0.30 wt.% Hot Pressing 1YS, 1 UTS [25]
AM60 Ti: 1 wt.%, ‘I;t } wt%, S0l oting + Hot rolling +YS, 1 UTS [24]
Pure Mg Zn: 4 wt.%, La: 1 wt.% As-cast and As-extruded 1YS, 1+ UTS [37]

D: density; P: porosity; GS: grain size; DC: damping capacity; YS: yield strength; UCS: ultimate compressive strength; PM: powder
metallurgy; HPR: hard plate rolling; H: hardness; WR: wear resistance; CTE: coefficient of thermal expansion; EA: energy absorbed; UTS:
ultimate tensile strength; S: strength; DMD: disintegrated metal deposition; IT: ignition temperature; BN: boron nitride; CR: corrosion rate;
CYS: compressive yield strength; SLM: selective laser melting; HT: heat treatment; TID: turning-induced deformation.

Alloying elements (Gd, Al, Sn) are known to improve the ductility and grain structure
in Mg alloys [28,31]. Refined grain structure with alloying elements (Sn, Al, and Si) ensures
higher wear resistance in Mg components [38-40]. Al, Zn, Sn, and Ca are the family of light
metal groups used as the major alloying elements for Mg alloys [35,41,42]. The addition
of Ca, Mn, and Sn elements to Mg alloys (Mg-9Al and AZ31) refines grain structures and
thereby enhances corrosion resistance [30]. The addition of Al and Sn improves the ductility
in powder metallurgy parts [31,36]. The literature review confirmed that the appropriate
control of microstructure with alloy selection and processing methods resulted in better
properties, i.e., hardness [7], strength [27,43], wear resistance [38], and corrosion resis-
tance [30], in Mg and its alloys. In addition, the formability [28] and machinability [44,45]
of magnesium components are also influenced by the microstructure. The above literature
confirms that PM based on hot pressing is a promising technique which offers components
with complex geometry for a wide range of alloys with refined microstructure [9]. Further-
more, appropriate control of microstructures with alloys resulted in improved mechanical,
thermal, and tribological properties. Therefore, a suitable method needs to be established
that estimates the changes in microstructure with differences in chemical composition or
production methods.

To date, X-ray analysis, optical, and scanning electron microscopy are the three most
popular techniques applied by industrial and research practitioners to analyse microstruc-
tures [46-48]. In Mg alloys, the grain size in microstructures greatly influences mechanical
and other tribological properties [27,33]. Examining the grain sizes in microstructures is
of primary importance. Compared to coarse grain structures, the number of grains per
unit area in a fine-grained microstructures is greater [49]. According to the Hall-Petch
effect, the increased length of grain boundaries creates difficulty in dislocation movements,
thereby improving the mechanical properties of the material [49-51]. Scanning electron
micrographs are taken and analysed manually to assess the total number of grains and
length of grain boundaries present in microstructures [9,52]. The manual method in esti-
mating the microstructural features (e.g., grain size, length of grain boundaries, number of
grains) is time-consuming, laborious, requires expert materials scientists, and suffers from
poor repeatability [53,54]. Therefore, the development of an accurate method that could
quickly detect the microstructure features via image analysis techniques is of industrial
relevance [55-57].

Computer vision technology reinforced with machine learning has been enhanced for
various practices and has demonstrated noteworthy findings [58]. Object detection (2D and
3D) and classification processes are one of these major fields in which different features,
such as object edges, primitive shapes, and colour scale, are differentiated using image
and video streams [59-61]. To accomplish certain operations, machine learning algorithms
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have been combined with object classification models. These include: logistic regression
(LR), support vector machine (SVM), random forest (RF), decision tree (DT), k-nearest
neighbours (kNN), multilayer perceptron (MLP), and Naive Bayes (NB), which have been
proven effective in a variety of applications, ranging from micro-scale to macro-scale
characterization [62,63]. Most of the studies published in the field of vision-based object
investigation agree that characterization, image resolution, image processing methods, and
colour scale represent the critical parameters of the process [64,65]. Today, with the help of
advanced computer vision technology, image processing techniques have been developed
to capture the morphological features (grain size, volume fractions of grains, colony size,
etc.) for analysis of the complex microstructure of Ti6Al4V alloys [54]. The microstructure
features of high carbon steels have been quantified to identify the carbide network and
pearlite matrix using digital image processing techniques [66]. The optimal image technique
successfully detects the presence or lack of fusion defects (created artificially) in powder
bed fusion parts [67]. Machine learning techniques can successfully detect and classify the
six surface defects in hot-rolled steel parts based on images [68]. The computer vision (CV)
technique has been applied to capture the signs of microstructural features and classify
them automatically into groups with high accuracy using relatively small data sets [69-71].
CV techniques have been used to capture and classify the microstructural features of ultra-
high carbon steels treated at different heat treatment conditions [72]. CV (autonomous,
objective, and repeatable) and machine learning algorithms have been successfully applied
for the feature detection of microstructures, which ensures clustering, comparison, and
analysis of the powder micrographs [73,74]. The performance of materials is analysed
based on microstructure as they can detect defects, phases, materials, and so on, with the
help of the CV technique [75]. CV technology has been successfully applied to examine
the pore morphology in additive manufactured parts [76]. Therefore, CV has proven its
potential in evaluating microstructures (to capture information regarding defects, count
grains, grain boundaries, properties, and so on from the images retrieved from SEM and
OM) by applying filters, thresholds, and mathematical functions.

In the present work, the microstructures of different proportions of alloying elements
(Sn and Al) to pure Mg were examined. Novel Mg-Al-Sn alloys were developed using
powder metallurgy processing techniques, followed by hot pressing. Three samples
prepared at different mixing ratios were examined based on their microstructures. An
image processing technique was applied to determine the American Society for Testing
and Materials (ASTM) grain size of a number of alloys. CV technology ensures automatic
detection of the microstructural (grain size and ASTM grain size number) features of
Mg-alloys. The C++ programming language and open-sourced image processing library
(OpenCV) is useful for analysis purposes. All the collected micrographs were subjected
to the same illumination condition using a microscopic camera, which ensures accurate
analysis. The images were processed with colour transformation, thresholding, and contour
detections. The processed images were sufficient to accurately predict the grain size and
ASTM grain size numbers. The results of the proposed CV-based method were corrected
with the manual method. The ASTM grain size numbers were obtained at approximately
99% accuracy. The intermetallic phases (Mg;7Alj; and Mg,Sn) were also detected by
theoretical calculations and automated measurements. The present study introduces
the application of automated image processing procedures for analysing the grain and
intermetallic phases of the microstructure with a single image input. The automated
procedures offer multiple image outputs, including grain and phase images of Mg-Sn-Al
alloys, along with their properties, such as area, perimeter, and counts. Thus, the processed
image outputs offer the possibility to characterize SEM images concerning the grains and
phase properties of Mg-5Sn-Al alloys with a quick, easy, and accurate method. In addition,
the present study would be a convenient solution for examining the microstructure of other
known metals, such as Ti, Cu alloys, and steels, by computer vision technology.
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2. Materials and Methods
2.1. Material Production

In the present study, micro-sized Mg, Al, and Sn powders (AlfaAesar, Kandel, Ger-
many) with high purities were used. The particle size and purity properties of the powders
are given in Table 2. Table 2 presents the details of powder mix composition, sintering tem-
perature, and applied pressure for preparing Mg alloys. The mixing ratios of the powders,
measured in terms of weights, are presented in Table 2. The samples were prepared using
the production methods followed in the published literature [7,34,35]. The appropriate
weight proportions of different powders were mixed and transferred to graphite moulds,
followed by sintering at 620 °C and hot-pressing at 50 MPa. It should be noted that argon
gas was passed through the hot-pressing system during sintering with a flow rate of 6
1/min to prevent oxidation. Mg alloys with a different weight proportion of Al, Sn, and
Mg were produced to determine the accuracy of the CV.

Table 2. The chemical compositions of the Mg alloys.

wt.% Al, wt.% Sn, wt.% Mg, Sintering
Sample No. Purity: 99.9% Purity: 99.9% Purity: 99.8% Temperature Pressure (MPa)
Size: 8 um Size: 10 pm Size: 45 um °Q)
Sample 1 7 5 Bal. 620 50
Sample 2 8 5 Bal. 620 50
Sample 3 9 5 Bal. 620 50

2.2. Manual Measurements and Theoretical Calculations

The prepared Mg-alloys were subjected to sanding, polishing, and etching processes.
SEM images (Jeol brand, JSM 6510 model, Jeol Ltd., Tokyo, Japan) at 500 x magnification
were taken from each Mg-alloy, whose grain boundaries became clear as a result of the
etching process. Grain sizes in the microstructures were measured manually using SEM
images (see Figure 1) and by the CV method (see Figure 2).

Figure 1. Manual grain counting method: (a) original SEM image of sample 1, (b) measuring by
horizontal, (c) measuring by vertical.
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Figure 2. (a) Taking SEM image, (b) SEM image and image processing procedure outputs; (c) software
codes, (d) grains, (e) Mg;7Al;, phases, (f) Mg,Sn phases.

Manual measurements were made on the SEM image with 500x magnification
(Figure 1a). Snagit (2018 version, TechSmith Corporation, Okemos, MI, USA) and screen
calliper (version 3.3, Iconico Company, Philadelphia, PA, USA) softwares were used for
manual counting. Firstly, 6 blue coloured lines with equal lengths were drawn horizontally
on the SEM image (Figure 1b). The length of the horizontal lines (LH (um)) was determined
with reference to the actual length of the scale bar. The number of grains along the horizon-
tal (HNG), where any horizontal line crossed the grains, was counted manually. The grains
on the edge were counted as half grains. The average grain size along the horizontal (HGS)
of the grains, counted with reference to the horizontal lines, was calculated according to
Equation (1). Seven blue coloured lines with equal lengths were drawn vertically on the
SEM image, as shown in Figure 1c. The length of the vertical lines (LV (um)) was also
determined with reference to the actual length of the scale bar. The number of grains in
the vertical (VNG), where any vertical line crossed the grains, were counted manually.
The average grain size in the vertical (VGS) of the grains, counted with reference to the
vertical lines, was calculated according to Equation (2). The average area of a grain (AAG)
of the relevant SEM image was calculated according to Equation (3). To determine the real
values of the aspect (X-Y) measurements of the SEM images, the scale bar was taken as
a reference. The total number of grains (TN) and total area (TA) were calculated using
Equations (4) and (5), respectively. X (mm) is the horizontal length of the SEM image, and Y
(mm) is the vertical length of the SEM image. By converting the X and Y lengths from mm
to inches, the area (A) of the SEM image in inch? units was calculated using Equation (6).
Equation (7) was used to calculate the grain counts per square inch area (G) according
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to 100 x magnification using the total number of grains (TN) counted in the SEM image.
Using Equation (8), ASTM grain size numbers (M) of the alloys were calculated.

LH
HGS (mm) = (Y0 —— o)/ (6 1000) )

LV
VGS (mm) = (Y7 o~ o)/ (7 > 1000) @)
AAG (mmz) = (HGS x VGS) ©)
TA (mm?) =X x Y (4)

TA
TN= = ()

X Y

X

2
G (3
100

In(G)

)

)+1 ®)

M= (

2.3. Parameters and Block Diagram for the Computer Vision Method

In the present study, computer vision software was developed using the C++ pro-
gramming language and the open-sourced computer vision library (OpenCV) together,
which offers a fast and user-friendly method for measuring the grain size and amount
of intermetallic phases together by requiring only one SEM image as the input to charac-
terize microstructures with high accuracy. OpenCV is a very extensive image processing
library and open-sourced option for CV technology applications [77]. The image process-
ing procedures (Figure 2a—c) were developed to characterize microstructures on an SEM
image. The number of grains and ASTM grain size number were calculated with the help
of characterization steps. The image processing method starts with image acquisition,
followed by pre-processing. In the first step, the actual image (Figure 2b) is converted from
red green blue (RGB) to the Hue Saturation Value (HSV) and threshold to minimize the
saturation and shadowing effects. In the second step, the image is reduced to a grayscale
image, and another thresholding process is applied. In the next step, a contouring opera-
tion is processed on the image for determining the contours of the grains. The image is
then divided into three parts (Figure 2d—f). These parts are produced by the software for
determining the grains (Figure 2d) and grain boundaries (Mg;7Al;> and Mg,Sn phases
(Figure 2e/f, respectively)). The image processing parameters are defined by the user at the
beginning of the process, and the same parameters are applied to all SEM images. In the
experiments, the grains are counted using automated methods. To calculate ASTM grain
size numbers by the automated method, the number of counted grains used, according
to Equations (6)—(8) are applied for the CV method. CV technology also uses additional
features, such as the area of grains and grain boundaries, to count their numbers (refer to
Figure 2).

The software algorithm and flowchart are given in Figure 3a,b, respectively. The
flowchart presents the image processing procedure steps. The procedure starts with an
image acquisition process. An RGB image is obtained and assigned to a matrix variable.
The image is converted to the HSV form, and a threshold is applied for eliminating the
noise effects. A normalized box filter and Gaussian filters are used to smooth the images.
Image backgrounds are removed with the in-range operation on HSV images. A masking
process iss employed to obtain the smoothed actual image background, saturation, and
shadows. In the next stage, the image is converted to grayscale and the threshold process
is applied before the contour detection operation.
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Processing
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¢ l Microstructure
Threshold Grayscale
and Mask Threshold
End

Figure 3. (a) Image processing software structure, (b) Flowchart of the algorithm.

Grain interiors (x-Mg phases) and grain boundaries (Mg>Sn and Mg;7Aly; phases) in
the SEM images are separated using image processing methods concerning pre-defined
user parameters and proposed image processing techniques. The grain interiors and grain
boundaries are circulated and numbered with respect to the detected contour parameters.
Interiors and boundaries are circulated using the area and perimeter parameters of each
detected contour to calculate intermetallic phases in grain boundaries, grain number, and
grain size, concerning circulated area and circle count. Thus, image processing outputs were
obtained and calculated for grain numbers, areas of grain interiors, and grain boundaries.
In addition, there are two different intermetallic phases (Mgj7Al;; and Mg;Sn) in the
grain boundaries which could be separated from each other automatically by the image
processing software.

3. Results and Discussions

Figure 4 shows the actual and processed SEM images of Sample 1. In the litera-
ture [7,35,63-66], the microstructure of Mg alloys (containing Mg, Sn, and Al), x-Mg,
Mg,Sn, and Mgj7Alj; phases were determined by SEM and XRD analysis. The mi-
crostructure of Mg alloys (containing Mg, Sn, and Al) includes two intermetallic phases
(Mg»5n and Mg;7Aly;) in the grain boundaries. According to relevant studies in the litera-
ture [7,34,35,63], the grains are dark grey in colour. The Mg,Sn phases are white-coloured,
and the Mgj7Alj> phases are grey-coloured. In the present study, the same results were
observed from actual images (Figure 4a,c,e). In Figure 4, there is only one SEM image as
the input, named Sample 1. Sample 1 has three outputs due to the automated measure-
ments. These are the x-Mg phase, the Mg;7Alj, phase, and the Mg,5n phase, respectively.
Figure 4 shows how the automated software measured the intermetallic phases (Mg;7Alj»
and Mg,Sn phases) regarding grain boundaries and determined the grain interiors («-Mg
phase). In the experiments, the SEM images were processed using CV technology based
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on the proposed method. The determined grains are indicated in Figure 4b; the grains
are grey-coloured and the borders of the grains are white-coloured. The grain boundaries
are black-coloured. In the processed image for determining Mg;7Al;, phases (Figure 4d),
grains and Mg,Sn phases are black-coloured and Mg;7Al;» phases are white-coloured (see
the areas in Figure 4b,d surrounded with blue circles). Finally, in Figure 4f, grains and
Mg7Aly2 phases are black-coloured and Mg,5n phases are white-coloured (see the areas
in Figure 4e,f surrounded with yellow circles).

Figure 4. Outputs of image processing of Sample 1: (a) SEM image for grain interior, (b) processed
image for determining grains (x-Mg phase), (c) SEM image for Mg;7Al;, phases, (d) processed image
of Mgj7Aly; phases, (e) SEM image for Mgy5Sn phases, (f) processed image of MgySn phases.

The two intermetallic phases are accurately determined in the grain boundaries. The
actual SEM processed images, including the Mg;7Al;; and Mg,Sn phases, are demonstrated
in Figure 5a—c, respectively. The determined Mg;7Al;» and Mg,Sn phases are shown in
Figure 5b,c, respectively. According to the obtained results, the CV method accurately
detects and separates the two phases from the actual images.
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Figure 5. Comparison of the regions of grain boundaries on (a) the actual SEM image, (b) Mg;7Alj»
phases in the processed image, and (c) Mg,Sn phases in the processed image.

In Figure 6, the SEM and processed images show the homogeneous distribution of the
intermetallic phases observed in the microstructure. The actual images in Figure 6a2,b2,c2
were processed using the CV method and were the threshold to separate two intermetallic
phases from the actual images. The extracted images from the actual images for the
Mg7Alj» phases are also shown in Figure 6al,b1,c1, and the Mg,5n phases are similarly
shown in Figure 6a3,b3,c3. In Figure 6al,bl,c1, white colours indicate Mg;7Al;, phases,
and the rest are black. It can be observed that the visible area of the MgjyAl;, phases
also increases in the samples by the effect of increasing Al content (Figure 6al,bl,cl,
respectively). For Figure 6a3,b3,c3, white colours indicate Mgy5Sn phases, and the rest
are black-coloured. No visible changes were detected for the Mg,Sn phases. According
to the experiments, the effect of Al content on the microstructure can be identified from
the visible observations. However, it is not easy to determine and express the differences
accurately. In contrast, the CV method detects and calculates the effect of Al content in the
microstructure and differentiates the two phases.

The actual SEM images in Figure 7al,b1,c1 were processed with CV technology using
the proposed method. The obtained grains are indicated in Figure 7a2,b2,c2 from the actual
images (Figure 7al,bl,cl), respectively. In the SEM images, segregations are not observed
in the microstructure. In the processed images (Figure 7a2,b2,c2), grey colours represent
detected grains.
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Figure 6. Determined intermetallic phases using CV technology for samples 1, 2, and 3 (horizontal ones refer SEM images
and phases; vertical ones refer Samples 1, 2 and 3; 500 x magnification, scale bars with 50 um).
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Figure 7. Detected grains using CV technology for samples 1, 2, and 3 (horizontal ones refer SEM images and phases;
vertical ones refer Samples 1, 2 and 3; 500 x magnification, scale bars with 50 pum).
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According to the experiments, similar results are obtained for automated measure-
ments and theoretical calculations. A positive correlation was found between Al content
with the Mgy7Alj; phases (Figure 8a). However, the correlation is negative for the x-Mg
phases (grains) in Figure 8c. A Sn alloying element is equally added for samples 1-3, and
changes of Mg,Sn phase ratios are barely observed (Figure 8b). According to the manual
and automated measurements, the grain numbers increase depending on the increase of
Mgi7Al;, phase ratios (Figure 8d). This is also supported in other studies [35,63,67] from
the literature. The grain sizes decrease with respect to the secondary phases, which act as a
barrier in the grain boundaries. In the present study, it is assumed that the Mg;7Alj, phases
act as a barrier, and therefore the number of grains is increased per unit area. In light of
the experiments, the errors of grain counting were determined as 7.71%, 6.52%, and 6.82%
for Samples 1, 2, and 3, respectively. Although the sample content changes, there is little
change in the error rate, and the difference between the highest and lowest error rate in the
grain count is approximately 1%. It is also possible to say that the error rate decreases as the
number of grains increases. Moreover, the errors of ASTM size number determining were
found to be as low as 1.37%, 1.21%, and 1.20% for Samples 1, 2, and 3, respectively. The
overall accuracy for determining the ASTM number is approximately 99% with automated
measurements (Figure 8e). In another study [54], the Watershed Algorithm was applied to
analyse grain size in the microstructure of SEM images of Ti6Al4V. The results from the
Watershed Algorithm were compared with manual and MiPar measurements. The grain
size values were found to be 5.18 pm, 4.72 pm, and 2.86 um by the Watershed Algorithm,
manual methods, and MiPar methods, respectively. The best result of Campbell’s study [54]
for standard deviation was found to be approximately 9%.
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Figure 8. (a) Mg;7Al;» phase ratio, (b) Mg2Sn phase ratio, (¢) x-Mg phase ratio, (d) grain count, (e) ASTM grain size

numbers.
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4. Conclusions

This study demonstrated an automated characterization method for microstructures
using SEM images with CV technology. Novel Mg alloys with different alloying element
content were selected as the work materials for the experiments. The microstructure of
each sample was taken using SEM imaging techniques. The intermetallic phases and grain
sizes in these microstructures were counted automatically via image processing technology
and corrected with manual measurements.

The obtained results were evaluated by correcting automated procedures with manual
measurements. The accuracy of the automated method for determining the grain numbers
was found to be over 92% compared to the manual counting procedure. The ASTM grain
sizes were calculated precisely (approximately 99%) by applying CV technology according
to the determined grain numbers in the SEM images. This study also offers a method
to investigate the grain distributions of each alloy in the microstructure, which is a very
important parameter for the metal manufacturing industry and can be used during the
manufacturing process to check and qualify the material properties.

Two intermetallic phases (Mg,Sn and Mg;7Al;,) in the grain boundaries were detected
in the microstructure of Mg alloys (Mg-Al-Sn). An increase in Mgy7Al;; phase ratios
showed an increased number of grains. Two intermetallic phases were extracted using a
single SEM image input, and the outputs for each phase could be investigated separately
through the image processing method.

The proposed CV method can count the grains accurately and evaluates the inter-
metallic phases that are present in the microstructure automatically. The method offers
additional features such as measuring the areas of grain and grain boundaries to count the
grain numbers, corrected with a manual method.

In short, a successful approach was proposed by calculating the ASTM grain sizes
of each alloy with respect to the automated counting method. This image processing
technology can be applied to many research fields due to its low input requirements. It can
also be applied to other Mg alloys and different alloys such as aluminium, titanium, cobalt
alloys, steels, and the like, and the results can be applied to the literature. Furthermore,
CV technology offers greater capability in examining additional features without the
requirement of external equipment and their laborious measurement procedures.
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