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Abstract: A large amount of Bayer process red mud is discharged in the process of alumina produc-
tion, which has caused significant pollution in the environment. The pozzolanic activity of Bayer red
mud as a supplementary cementitious material is a research hotspot. In this work, a new method for
Fourier-transform infrared spectrometry is used to determine the polymerization degree of Bayer red
mud in order to evaluate its pozzolanic activity. Based on the results of the dissolution concentration
of (Si+Al), strength index and polymerization degree of Bayer red mud, the relationships between
different evaluation methods were analyzed, and the relevant calculation formulas of pozzolanic
activity were obtained. The results showed that different evaluation methods can reflect the variation
law of pozzolanic activity in Bayer red mud. The polymerization degree of Bayer red mud had a good
linear relationship with the pozzolanic activity index obtained by the strength index and dissolution
concentration of (Si+Al), respectively. The polymerization degree was negatively correlated with
pozzolanic activity index and dissolution concentration of (Si+Al), and the correlation coefficients
were greater than 0.85. Therefore, this method was found to be effective and hence can be used as a
rapid and simple test for pozzolanic activity evaluation of Bayer red mud.

Keywords: Bayer red mud; pozzolanic activity; evaluation method; polymerization degree; dissolu-
tion of (Si+Al)

1. Introduction

Bayer red mud (RM) is a kind of strong alkaline solid waste discharged in the process
of alumina production; about 1–2 tons of RM will be discharged per ton of alumina
production [1–3]. At present, the annual discharge of RM has exceeded 100 million tons
in China, which is mainly disposed of by damming, and the comprehensive utilization
rate is less than 4% [3]; this stacked RM has caused serious pollution to the surrounding
environment. In order to solve the problem of RM pollution, the comprehensive utilization
of RM has become a focus for researchers.

Meanwhile, increases in infrastructure worldwide have led to a substantial increase in
the demand for cement. However, cement production not only consumes a large amount
of coal, limestone, iron ore, clay and other resources, but also discharges a large amount
of CO2, which seriously pollutes the environment. The green sustainable development of
cement has been a concern of international scholars, and research focus has mainly been on
energy conservation, emission reduction and environmental protection, in order to meet
the needs of carbon neutrality. Industrial solid wastes, such as fly ash, and blast furnace
and steel slag, have been widely used as supplementary cementitious materials in the field
of cement and concrete [4–6].
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RM can be used as a supplementary cementitious material for cement and concrete,
which can greatly improve the resource utilization rate of RM. However, the current
utilization rate of RM in cementitious materials is low because of its high alkalinity and
low pozzolanic activity [3]. The pozzolanic activity of industrial solid waste is a hot topic
in current research [7]. Some methods for evaluating pozzolanic reactivity were proposed
based on the principle of interactions between calcium hydroxide and industrial solid waste
with potential pozzolanic activity. Moreover, some simple, rapid and quantitative methods
have been used to evaluate the pozzolanic activity of industrial solid waste; these methods
include the chemical composition of industrial solid waste, crystallinity of minerals, and
strength and electrochemical performance [8–12]. In addition, although strength evaluation
can comprehensively and intuitively reflect the overall pozzolanic activity of materials,
the required cycle is usually long. The dissolution evaluation must select appropriate
conditions to separate the active components from the inert components. However, there
are many influencing factors in the implementation of this method, such as the type,
concentration, and dissolution time and temperature of alkali solutions, which will lead to
large errors in the experimental results. In recent years, some scholars have studied new
methods for testing the pozzolanic activity of materials. Martín et al. [13] measured the
pozzolanic activity of hollow glass microspheres through the improved Chapelle test and
compared the compressive strength of hardened cement paste samples, and were able to
obtain better results. Basto et al. [14]. studied the pozzolanic activity of sewage sludge
ash via a conductivity method. The results show that there is a good correlation between
mortar compressive strength tests and conductivity tests. Hasani et al. [15]. proposed a
new method to simply compare pozzolanic activities by using the molecular dynamics
simulation method. The adsorption process of water molecules on the surface of pozzolanic
minerals was simulated, and the water/surface interaction energy was used as a criterion
for investigating mineral activity. However, the physical and chemical properties of
different kinds of industrial solid wastes are greatly different, which leads to difficulties in
establishing a model that accurately evaluates the pozzolanic activity of industrial solid
wastes. It is worth noting that there are many factors affecting the pozzolanic activity of RM.
Therefore, it is of great importance to find a quick and effective method for determining
the pozzolanic activity of RM.

In this work, the evaluation of pozzolanic activity of RM by polymerization degree was
proposed. The pozzolanic activity of calcined RM at different temperatures was evaluated
by the methods of strength, dissolution of (Si+Al) and polymerization degree. The poly-
merization degree of RM was characterized by FTIR. Correlations between polymerization
degree and other evaluation methods of pozzolanic activity were established, providing a
theoretical reference for the application of RM in the field of cement and concrete.

2. Materials and Methods

RM was produced by the China Aluminum Co., Ltd. Shanxi Branch, Hejin, China.
Cement (42.5) was purchased from the Tangshan Jidong Cement Co., Ltd, Tangshan, China.
Standard sand was purchased from a factory in Henan, China. Sodium hydroxide was
purchased from Sinopharm Chemical Reagent Co., Ltd, Beijing, China. Deionized water
was made in the laboratory. An XRF was used to analyze the main chemical constituents of
RM and cement. The main chemical constituents of RM and cement are shown in Table 1.
The main chemical constituents of RM are Fe2O3, Al2O3, SiO2, Na2O and a small amount
of CaO.

Table 1. The chemical constituents of RM and cement (wt.%).

Oxides SiO2 Al2O3 Fe2O3 CaO MgO Na2O SO3 TiO2 LOI

RM 22.71 22.96 26.57 2.17 0.13 11.08 1.01 1.72 11.19
Cement 18.60 3.81 3.25 64.86 2.90 0.24 0.45 0.31 4.14
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First, 200 g of RM was weighed and put into a muffle furnace (4S1200, Zhengzhou
Ansheng Scientific Instrument Co., Ltd, Zhengzhou, China). The muffle furnace was
heated to a set temperature at a rate of 10 ◦C/min (the set temperatures were 100 ◦C,
200 ◦C, 300 ◦C, 400 ◦C, 500 ◦C, 600 ◦C, 700 ◦C, 800 ◦C, 900 ◦C and 1000 ◦C, respectively).
After reaching the set temperature, the muffle furnace was kept warm for 2 h. After
calcination, the RM was cooled to room temperature, and the RMs showing differing
pozzolanic activities were obtained; the RMs were named RMn (n = 100–1000) for different
calcination temperatures. Finally, the pozzolanic activity of RM was evaluated according
to different experimental methods.

Strength method: The pozzolanic activity index of RM was calculated according to the
Chinese standard GB/T 2847–2005 (pozzolanic materials used for cement production) [16].
The masses of RMs with different pozzolanic activities, the cement and the standard sand
were 135 g, 315 g and 1350 g, respectively; these were stirred and mixed according to
a water–cement ratio of 0.5, and then injected into an abrasive tool to vibrate and form.
The prepared mortar sample was put into the curing box (YH-40B, Hebei Ruiheng test
instrument factory, Cangzhou, China), the formwork removed after curing for 24 h, and
curing continued until 28 days. The curing temperature was 20 ± 1 ◦C, and the curing
humidity was 95%. The compressive strength of the sample was tested with the press
(DYE-300, Beijing hengying Technology Co., Ltd, Beijing, China), with 6 test samples for
each sample. The pozzolanic activity index (Kα) of RM was expressed by the compressive
strength percentage of sample A (RM and cement system) at 28 days and sample B (cement
system) at 28 days:

Kα = (compressive strength of sample A)/(compressive strength of sample B) × 100% (1)

Alkali dissolution of (Si+Al) method: One gram of RMs with differing pozzolanic
activities were taken and put into a 100 mL plastic bottle with 1 mol/L of NaOH solution.
After sealing, it was put into a curing room at 20 ◦C for 7 days before filtering. The filtrate
was sealed and stored in a plastic bottle. The contents of Si4+ and Al3+ in the filtrate were
tested by ICP–OES (ICPOES730, Agilent Technologies, Palo Alto, CA, USA) [17]. It is
worth noting that the more silicon and aluminum ions that were dissolved, the higher the
pozzolanic activity of the RM.

Polymerization degree method: Origin software (Origin 2018, OriginLab, Northampton,
MA, USA) was used to split and fit the peak area of Si(Al)Qn in the range of 800–1200 cm−1

on the FTIR spectrum. Zhang et al. [18] proposed the concept of the relative bridging
oxygen bond (RBO) to evaluate the polymerization degree of [SiO4]. The polymerization
degree was calculated by the following formula:

RBO =
1
4
(1× Q1

ΣQn + 2× Q2

ΣQn + 3× Q3

ΣQn + 4× Q4

ΣQn ) =
1
4
× Σn×Qn

ΣQn (2)

The main chemical compositions of RM and cement were analyzed by X-ray fluores-
cence spectrometry (XRF; xrf-1700, Shimadzu, Shimadzu enterprise management (China)
Co., Ltd, Shanghai, China). The phase composition of RM and cementitious materials
was measured by an X-ray diffractometer (XRD; D/max Rb, Rigaku Corporation, Tokyo,
Japan). The experimental conditions were 40 kV, 100 mA, Cu Target and scanning speed of
4 ◦/min. The molecular bonds of the samples were tested by Fourier-transform infrared
spectrometry (Nicolet IS10, Thermo Nicolet Corporation, Madison, GA, USA). The test
conditions were as follows: sample and KBr were put into a mortar, ground and mixed
evenly (1 mg of sample and 100 mg of KBr). After that, it was pressed into a transparent
sheet of a specified size, and the measured wavenumber range was 400–4000 cm−1.

3. Results and Discussion
3.1. XRD of RMs with Different Pozzolanic Activities

The phase composition has an important influence on the pozzolanic activity of
RM. Previous studies have shown that the amorphous phase is the most active phase in
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supplementary cementitious materials, such as GGBFS and fly ash [3]. The XRD patterns
of RM calcined at different temperatures, as shown in Figure 1. It can be seen from
Figure 1 (RM100) that the diffraction peaks of different phases in RM are clear and sharp,
which indicates that there are few amorphous phase substances in RM, and that the
crystallization degree of each phase is high. The phase analysis of RM shows that its main
phase composition is composed of katoite, cancrinite, calcite, paragonite and diaspore. It is
worth noting that the XRD patterns of RM100 and RM200 are similar, the XRD patterns of
RM300–700 are similar, and the XRD patterns of RM800–1000 are similar. This shows that
the phase composition of RM changes gradually with increases in temperature.

Figure 1. XRD patterns of calcined RM at different temperatures.
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In the XRD patterns of RM calcined at ≥300 ◦C, the diffraction peaks for diaspore
gradually disappear, which indicates that the diaspore has been decomposed—but no
crystal peaks of Al2O3 have been found, indicating that the diaspore has decomposed to
produce active Al2O3, which is difficult to detect in XRD [19]. At 300–700 ◦C, katoite in RM
begins to decompose hydroxyl and to transform into cancrinite. When the temperature
rises to 700 ◦C, the diffraction peak of katonite disappears completely. At the same time,
the peak of calcite also decreased gradually, indicating that it also decomposed.

The phase composition of RM800–1000 is mainly composed of gehlenite, hamatite
and nepheline. It is worth noting that these are newly formed substances. This shows that
the original substances in RM have undergone phase transformation. After 800 ◦C, the
higher the temperature, the stronger the peak of crystalline phase in RM, indicating that
the content of crystalline minerals in RM is relatively increased.

In addition, it can be seen from Figure 1 showing RM100, RM600, RM700 and RM1000,
that the content of the amorphous phase in calcined RM at different temperatures is
different. The content of the amorphous phase in RM700 is the highest and that in
RM1000 is the lowest. This means that calcined RM has different pozzolanic activities at
different temperatures.

The phase transformation reactions of RM during calcination at different temperatures
are as follows:

200–700 ◦C:
AlO(OH)→ Al2O3 + H2O (3)

Aluminosilicate minerals→ Active silicon and aluminum (4)

CaCO3 → CaO + CO2 (5)

800–1000 ◦C:
CaCO3 → CaO + CO2 (6)

Active silicon and aluminum→ Aluminosilicate minerals (7)

CaO + Al2O3 + SiO2 → Gehlenite (8)

3.2. Compressive Strength Evaluation of Pozzolanic Activity

The compressive strength of RM and cement mortar is used as an index to evaluate
pozzolanic activity. The compressive strength of mortar is a comprehensive index reflecting
its structure; it can not only reflect the secondary reaction of RM in the hardening process,
but can also reflect its filling water reduction effects. Therefore, the compressive strength
test can comprehensively reflect the role of pozzolanic materials in the whole system.

Figure 2 shows the compressive strength of cement paste of calcined RM at different
temperatures at 28 days. It can be seen from Figure 2 that the compressive strength
of calcined RM mortar at different temperatures first increases and then decreases with
temperature. The compressive strength of RM700 is the highest, reaching 48.52 MPa.
Table 2 shows the pozzolanic activity index of calcined RM at different temperatures (he
compressive strength of the standard cement mortar used is 62.80 MPa at 28 days). It can
be seen from Table 2 that the change law of the pozzolanic activity index of calcined RM at
different temperatures is consistent with that of its compressive strength. This indicates
that RM700 has the highest activity of Si and Al, which is consistent with the area of
amorphous peak in XRD. The compressive strength of RM1000 decreased significantly, and
its compressive strength at 28 days was lower than that of RM100. The compressive strength
and pozzolanic activity index of RM1000 were the lowest, indicating that the content of
active Si and Al were the lowest, basically not participating in the hydration reaction, and
mainly playing a filling role. The above results show that the pozzolanic activity of RM
changes distinctly at different calcination temperatures, and that the pozzolanic activity of
RM700 is the highest.
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Figure 2. The compressive strength of samples at different temperatures.

Table 2. The pozzolanic activity index of calcined RM at different temperatures.

Sample RM100 RM200 RM300 RM400 RM500 RM600 RM700 RM800 RM900 RM1000

Kα 62.54% 64.09% 65.92% 68.41% 70.38% 73.89% 77.27% 60.67% 59.08% 57.96%

3.3. Pozzolanic Activity Evaluation for Dissolution of Silicon and Aluminum

Active silicon and aluminum produced by the decomposition of pozzolanic materials
are considered to be the main sources of pozzolanic activity [20,21]. Silicon and aluminum
components that can be dissolved under alkaline conditions may participate in the hydra-
tion reaction of cement. Therefore, the higher the content of silicon and aluminum that can
be dissolved in the RM, the higher the degree of the possible hydration reaction of the RM,
and the more hydration products it produces [22]. For studying the dissolution amounts of
silicon and aluminum in the active components of calcined RM in alkali solution, it is a
more direct evaluation method to take the dissolution amount of silicon and aluminum in
the solution as the index for evaluating the pozzolanic activity. Table 3 shows the dissolved
concentrations of Si, Al and (Si+Al) of RM at different temperatures in NaOH solution. It
can be seen from Table 3 that the dissolution of active silicon and aluminum increases first
and then decreases with the calcination temperature. The dissolution amounts of silicon
and aluminum in RM700 are 85.47 mg/L and 121.30 mg/L, respectively. The dissolution
amounts of silicon and aluminum in RM1000 are 42.53 mg/L and 50.71 mg/L, respectively.
It is worth noting that the change trend for the dissolution amount of silicon and aluminum
with temperature is consistent with that of the pozzolanic activity index. Therefore, the
relationship between the pozzolanic activity index of RM and its dissolution amount of
silicon and aluminum has been studied. The relationship between the pozzolanic activity
index of RM and its dissolution concentration of Si is shown in Figure 3. The relationship
between the pozzolanic activity index of RM and its dissolution concentration of Al is
shown in Figure 4. The relationship between the pozzolanic activity index of RM and its
dissolution concentration of (Si+Al) is shown in Figure 5. It can be seen from Figures 3–5
that there is a good correlation between the dissolution concentration of Si, Al and (Si+Al)
in RM and its pozzolanic activity index, and there is a positive correlation (linear tendency)
between them; the higher the dissolution concentration of Si, Al and (Si+Al) is, the higher
the pozzolanic activity index of RM is. The linear fitting R2 between pozzolanic activity
of RM and dissolution concentration of Si, Al and (Si+Al) is 0.92, 0.95 and 0.96, respec-
tively. It is worth noting that the linear fitting R2 between the dissolution concentration
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of (Si+Al) and the pozzolanic activity index is the largest, indicating that there is a good
correlation between the pozzolanic activity of RM and the dissolution concentration of
(Si+Al). Therefore, the dissolution amount of silicon and aluminum in RM is closely related
to its pozzolanic activity.

Table 3. The dissolution concentration of Si and Al in calcined RM at different temperatures (mg/L).

Sample Dissolution
Concentration of Si

Dissolution
Concentration of Al

Dissolution
Concentration of

(Si+Al)

RM100 46.93 67.04 113.97
RM200 47.18 67.44 114.62
RM300 52.24 73.24 125.48
RM400 54.73 92.51 147.24
RM500 61.72 96.29 158.01
RM600 75.25 120.60 195.85
RM700 85.47 121.30 206.77
RM800 45.63 64.60 110.23
RM900 43.06 59.60 102.66
RM1000 42.53 50.71 93.24

Figure 3. Correlation between dissolution concentration of Si and pozzolanic activity index.

Figure 4. Correlation between dissolution concentration of Al and pozzolanic activity index.
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Figure 5. Correlation between dissolution concentration of (Si+Al) and pozzolanic activity index.

3.4. Relationship between Polymerization Degree and Pozzolanic Activity for RM

The chemical structural changes of RM calcined at different temperatures were an-
alyzed by FTIR. Figure 6 shows the FTIR spectra of RM calcined at different tempera-
tures. The absorption peak is 3638 cm−1, which corresponds to the stretching vibration
of free –OH [3]. The absorption peak at 3452 cm−1 corresponds to the stretching vibra-
tion of associating –OH. With increases in temperature, the free –OH in RM is gradually
transformed into bound –OH, which indicates that there is a certain amount of hydrogen
bonding in its molecular structure. The absorption peaks of 1635 cm−1 and 1431 cm−1

correspond to the stretching vibration and antisymmetric stretching vibration of C–O,
respectively. It can be seen from Figure 6 that the carbonate in RM gradually decomposes
with increases in temperature. The absorption peak in the range of 800–1200 cm−1 is
an asymmetric tensile vibration of Si–O–Si or Si–O–Al connected with a tetrahedron of
[SiO4] or [AlO4]− [22]. The peak at 1092 cm−1 corresponds to the tensile vibration of
O–Si–(Si). The peak at 998 cm−1 is caused by the tensile vibration of Si–O (Al). The peak at
871 cm−1 corresponds to the tensile vibration of Si–O–. The absorption peak in the range of
600–800 cm−1 is symmetrical to stretching vibrations between Si–O–(Si, Al) in tetrahedrons
of [SiO4] or [AlO4]− [23]. It can be seen from Figure 6 that the position and area of peaks in
800–1200 cm−1 changes with temperature, which indicates that the bond between Si, Al
and O in RM is broken or combined. The absorption peak of 582 cm−1 corresponds to the
rings of Si–O and Al–O. The peaks in the range of 400–500 cm−1 correspond to the bending
vibration of Si–O–Si (Al).

The essence of pozzolanic materials participating in the hydration reaction of cement
is the process of [Si(Al)O4] tetrahedrons changing from their polymerization state, to their
isolated state, back to their polymerization state; the increase in pozzolanic activity is
caused by the depolymerization of polymerized [Si(Al)O4] tetrahedrons (i.e., the fracture
of the Si–O–Si(Al) bond). Generally, the smaller the polymerization degree of the silicon
aluminum network is, the higher its pozzolanic activity is.

According to the number of coordination bridge oxygens around a Si, it can be divided
into SiQ0, SiQ1, SiQ2, SiQ3 and SiQ4, where n in SiQn represents the number of coordination
bridge oxygens around Si. The fracture of the Si–O–Si bond in [SiO4] can cause changes in
the Si coordination structure around bridge oxygens, that is, from SiQn to SiQn−1. On the
contrary, if Si–O and Si–O polymerize to form a Si–O–Si bond, the Si coordination structure
around the bridge oxygens will change from SiQn to SiQn+1. It is worth noting that the
Al in the system can enter the [SiO4] during the polymerization process to replace the Si
and form [AlO4]−, but it does not affect the change in the number of bridge oxygen bonds.
Therefore, the change in bridge oxygen number can be used to reflect the relative degree of
polymerization or depolymerization in the system. Zhang et al. [17]. proposed the concept
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of RBO to evaluate the polymerization degree of [SiO4]. Therefore, here the authors used
the polymerization degree to reflect the pozzolanic activity of calcined RM at different
temperatures. In FTIR spectra, the characteristic peaks of SiQ0, SiQ1, SiQ2, SiQ3, and SiQ4

are about 850 cm−1, 950 cm−1, 1000 cm−1, 1050 cm−1, and 1100 cm−1, respectively. Origin
software was used to separate and fit peaks between 800–1200 cm−1, whereas the peak
area and RBO were calculated. Figure 7 shows the peaks in the range of 800–1200 cm−1

of the FTIR spectra of calcined RM at different temperatures. Table 4 shows the relevant
parameters of the peaks of calcined RM at different temperatures. It can be seen from
Table 4 that the polymerization degree of RM first decreases and then increases with the
increase in temperature. The high polymerization degree indicates that the silicon and
aluminum component has stable chemical properties. The low polymerization degree
indicates that the Si–O–Si (Al) bond in the RM is destroyed, which will increase the active
silicon and aluminum in the RM.

Figure 8a–c show the relationship between RBO and dissolution concentration of
Si, Al and (Si+Al) of calcined RM at different temperatures, respectively. It can be seen
from Figure 8a–c that RBO tends to be linear to the dissolution concentration of Si, Al and
(Si+Al), respectively. Therefore, the lower the RBO of RM is, the higher the dissolution
concentration of Si, Al and (Si+Al) is. Therefore, the decrease in RBO promoted an increase
of the dissolution concentration of Si, Al and (Si+Al) in RM. According to the results of the
XRD, this behavior is due to the conversion of crystalline phase substances in the RM into
active Si and Al at 700 ◦C, resulting in the increase in the dissolution concentration of Si, Al
and (Si+Al).

Figure 9 shows the relationship between RBO and pozzolanic activity of calcined RM
at different temperatures. It can be seen from Figure 9 that there is a significant correlation
between the pozzolanic activity of RM and its RBO. Therefore, the trend of this relationship
is that the smaller the RBO of RM, the higher the pozzolanic activity that is obtained by
RM. Therefore, compared with the compressive strength and dissolution of silicon and
aluminum, the polymerization degree evaluation method of pozzolanic activity is simple
and fast. At the same time, the method also obtains similar results. The most important
thing is that the proposed method is adequate to verify the pozzolanic activity of RM.

Figure 6. The FTIR spectrum of calcined RM at different temperatures.
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Figure 7. The peaks in the range of 800–1200 cm−1 of calcined RM at different temperatures.

Table 4. The relevant parameters of the peaks of calcined RM at different temperatures.

Sample
Relative Content/%

RBO R2
SiQ0 SiQ1 SiQ2 SiQ3 SiQ4

RM100 3.20 17.21 35.12 10.95 33.52 0.6360 0.995
RM200 4.41 20.11 30.04 12.42 33.02 0.6238 0.995
RM300 5.43 24.20 27.24 9.26 33.87 0.6049 0.995
RM400 7.85 19.87 29.98 10.38 31.92 0.5966 0.995
RM500 8.07 15.98 35.40 11.22 29.33 0.5944 0.994
RM600 8.28 19.21 30.30 11.07 31.14 0.5939 0.994
RM700 9.74 12.05 39.65 13.29 25.27 0.5808 0.987
RM800 2.13 19.39 11.39 48.13 18.96 0.6560 0.992
RM900 2.07 15.83 17.03 46.56 18.51 0.6590 0.995

RM1000 1.93 14.75 19.23 41.39 22.7 0.6705 0.988
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Figure 8. Correlation between dissolution concentration of (Si+Al) and RBO. (a) Si; (b) Al; (c) (Si+Al).

Figure 9. Correlation between RBO and pozzolanic activity index.

4. Conclusions

In this work, a new method to evaluate the pozzolanic activity of RM by its polymer-
ization degree was proposed. The relationships between compressive strength, dissolution
concentration of (Si+Al) and polymerization degree method with pozzolanic activity of
RM were studied, respectively. A correlation between polymerization degree method,
compressive strength and dissolution concentration of (Si+Al) was established. The main
findings of this work are as follows:

The pozzolanic activity of RM can be calculated quantitatively by polymerization
degree method and compressive strength and dissolution concentration of (Si+Al). The
polymerization degree of RM had a good linear relationship with the pozzolanic activity
index, obtained by the strength index and dissolution concentration of (Si+Al), respectively.

The polymerization degree of RM decreases with increases in pozzolanic activity,
which is negatively correlated. The compressive strength and dissolution concentration
of (Si+Al) are positively correlated with the pozzolanic activity of RM. The fitting equa-
tion between the polymerization degree and the pozzolanic activity index of RM was
y = −0.47x + 0.932, where R2 was 0.88. The fitting equation between the polymerization
degree and the dissolution concentration of (Si+Al) of RM was y = −0.0008485x + 0.745,
where R2 was 0.90.

Compared to the compressive strength, with a test cycle of 28 days, and the dissolution
of (Si+Al), with a test cycle of 7 days, the polymerization degree method has the advantages
of a short test cycle, convenience and low cost. It is related to the structure of silicon and
aluminum in RM and is not easily affected by the test environment. Therefore, it is a fast,
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simple and reliable method to evaluate the pozzolanic activity of RM by polymerization
degree method.

Through research on the relationship between the polymerization degree of RM and its
pozzolanic activity, a linear relationship between them was found. However, this work only
studied one industrial solid waste—RM. From the results of this work, the polymerization
degree method may be applicable to the pozzolanic activity evaluation of many kinds of
industrial solid wastes. In the future, the authors will try to apply this method to other
solid wastes other than RM. In conclusion, this work provides a reference for the study
of fast and reliable evaluation methods of pozzolanic activity of industrial solid waste in
the future.
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