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Abstract: Lithium-ion batteries (LiBs) are seen as a viable option to meet the rising demand for energy
storage. To meet this requirement, substantial research is being accomplished in battery materials as
well as operational safety. LiBs are delicate and may fail if not handled properly. The failure modes
and mechanisms for any system can be derived using different methodologies like failure mode
effects analysis (FMEA) and failure mode methods effects analysis (FMMEA). FMMEA is used in
this paper as it helps to identify the reliability of a system at the component level focusing on the
physics causing the observed failures and should thus be superior to the more data-driven FMEA
approach. Mitigation strategies in LiBs to overcome the failure modes can be categorized as intrinsic
safety, additional protection devices, and fire inhibition and ventilation. Intrinsic safety involves
modifications of materials in anode, cathode, and electrolyte. Additives added to the electrolyte
enhance the properties assisting in the improvement of solid-electrolyte interphase and stability.
Protection devices include vents, circuit breakers, fuses, current interrupt devices, and positive
temperature coefficient devices. Battery thermal management is also a protection method to maintain
the temperature below the threshold level, it includes air, liquid, and phase change material-based
cooling. Fire identification at the preliminary stage and introducing fire suppressive additives is
very critical. This review paper provides a brief overview of advancements in battery chemistries,
relevant modes, methods, and mechanisms of potential failures, and finally the required mitigation
strategies to overcome these failures.

Keywords: Lithium-ion battery; electrode materials; electrolyte; failure modes; failure mechanisms;
mitigation

1. Introduction

Internal combustion engines are a hundred-year-old technology and their develop-
ment was backed by the stringent emission norms imposed by environmental pollution
control boards in different countries. As the emission norms are becoming more stringent,
internal combustion engines cannot meet the future norms. Hence, electric vehicles are
the future automotive technologies with hybrid electric vehicles as a bridging technology.
The electrification of the automotive sector is mainly driven by changes in climate-related
policies, awareness of economic and security problems related to oil, a rise in pollution in
the air which is depleting air quality, and rapid technology development in the field of
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batteries. Thus, there is a need to develop vehicles that run on sources other than fossil
fuels. In electric vehicles, the internal combustion energy is replaced by a simpler and
lighter electric motor that gets its power locally from the batteries, thereby, a wide variety
of power sources including renewables can be used to supply the energy for the propulsion
of the car. The electrification of the automotive sector, as well as ever-increasing demands
for consumer electronics [1], have led to the substantial growth of Lithium-ion batteries
(LiBs) [2]. In electric and hybrid electric vehicles, LiBs are extensively preferred over other
types of batteries due to their tremendous performance and long shelf life [3,4]. Despite
their advantages, LiBs have certain disadvantages that need to be examined. LiBs are sensi-
tive to high power charging (fast charging), a too high or too low operating temperature,
and mechanical abuse which eventually leads to capacity fade, short-circuiting, and the
hazard of thermal runaway [3,5–9]. Repeated fast charging can expedite battery aging,
resulting in shorter battery life. Xianke et al. investigated the effects of fast charging on
the LiBs [10]. The optimal working temperature range for LiBs is 15 ◦C to 35 ◦C whereas
temperatures above or below this range have a negative influence [11]. Low operating
temperatures diminish battery capacity and power density [12], while high temperatures
increase internal resistance and reduce active material availability, resulting in capacity
and power loss [11]. Mechanical abuse and/or extremely high operating temperatures
can result in short circuits that may lead to thermal runaway [11,13,14]. Based on the
above-mentioned shortcomings, safety, and performance improvement studies of LiBs
should go hand in hand and for this, it is necessary to understand the materials used in
LiB construction.

A thorough understanding of each material will enable the researchers to improve
the materials [9] according to the requirements and also helps to develop new materials
to overcome the shortcomings of the existing battery chemistry. Studies to improve the
existing battery materials and for the development of new materials are recent trends in the
area of battery research. Due to increased demand, the development of safe and low-cost
materials, along with improved performance, is needed at this time. To improve existing
or developed new materials, it is essential to understand how the existing material can
undergo failure. There are numerous ways by which a battery can fail. Analyzing those
methodologies at the component level, as well as at the system level, will aid in the creation
of safer batteries. A thorough understanding of the failure methods helps in devising
strategies to mitigate the battery failures, thereby improving safety.

Mitigation strategies are critical to reducing the risk of failures in LiBs as well as their
consequences. They can thus be achieved in two steps. In the first step, strategies are
implemented during the normal operation of batteries, to reduce the risk of a particular
failure mode occurring in a device. Such strategies include material alterations, protection
devices, and thermal management of batteries. In the second step, implemented strategies
are the ones that are adopted when the LiBs have failed to aid in evading the disaster
subsequently caused by the failure. This includes the isolation, diagnosis, and extinguishing
of fires.

The contents of this literature review have been organized into five sections. A
schematic overview of the topics covered is also seen in Figure 1 below. After this intro-
duction, Sections 1 and 2 provide insights into the materials used for LiBs. It also provides
information on material history, capacities, functions, merits, and demerits, and current
studies. Section 3 gives an in-depth analysis of each component, discussing the mechanisms
of failure of these components. These mechanisms explain why and how a component can
fail, which might further lead to a system-wide breakdown. The mechanisms leading to
failure for each component are explained using flowcharts. Furthermore, in Section 4, the
possible modes of failure are discussed and are broadly classified into mechanical, electrical,
and thermal modes. In each mode, all the possible scenarios and tests that validate the
course of failure are discussed. Section 5 elaborates mitigation strategies that are classified
into five modes; namely, (1) Innate Safety; (2) Protective Devices; (3) Thermal Management;
(4) Mechanical Mitigation Strategy; and (5) Fire Control. The innate safety strategies are
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further classified into material alterations that are carried out in cathode, anode, electrolyte,
and separators. Furthermore, in the innate safety section, battery management systems
are discussed briefly. Subsequently, protective devices including protection vents, Positive
Thermal Coefficient (POTC) devices, and circuit breakers are discussed before we provide
an overview of temperature management strategies using air, liquid, and Phase Change
Material (PCM) cooling. The mechanical mitigation strategies section then covers various
types of battery casings to evade any form of failure due to mechanical loads. Finally,
Fire Control mechanisms comprising the detection mechanisms and extinguishing agents
are explained.
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2. LiBs Materials

A rechargeable battery is an energy storage component that reversibly converts the
stored chemical energy into electrical energy. LiBs are a class of rechargeable batteries
that are capable of undergoing numerous charging and discharging cycles. They have
gained rapid popularity in recent times due to their superior performance. Similar to other
batteries, they comprise important components such as electrolytes (liquid, polymer, or
solid) [15], separators [16], cathode [4], anode [17], current collectors, and casings. During
the charging process, there is a movement of Li-ions from cathode to anode through the
electrolyte, while the electrons flow through the external circuit in the same direction.
During the process of discharge, the stored Li-ions move back from anode to cathode. In
both processes, Li-ions are extracted from and stored in host materials and this process of
ion insertion from one electrode to another is termed intercalation. Every component used
will contribute towards battery performance and safety, and finding out the best possible
combination will help in creating better batteries [4,18].

2.1. Anode

The discharge potential versus capacity graph for the commonly used anode and
cathode materials is shown in Figure 2. Anode materials should possess a lower potential,
a higher reducing power, and a better mechanical strength to overcome any form of
abuse [19,20]. Several materials such as graphite [4], carbon, and lithium titanate Li4Ti5O12
(LTO) [21] have been tried and tested for quite some time and a few, such as silicon,
lithium metal, or titanium niobium oxides (TNO) [22], are still under research. However,
there are certain drawbacks during normal battery operation, which would lead to the
initiation of mechanisms that might cause anode material failure. These are discussed
in Section 3.1. Graphite is widely used because of its layered structure, large insertion
capacity (372 mAh·g−1), high reversibility, and low cost. Moreover, the very low potential
for Li insertion allows for a high cell voltage [23] but limits the fast-charging capability
(due to the hazard of lithium metal plating). In graphene, the same monoatomic carbon
layers are accessible individually, so that the theoretical specific capacity is almost thrice
when compared to graphite, so that it has been considered as an anode material of the
future, despite its higher price. Similarly, carbon nanotubes and fullerenes are under
study for lithium storage [24–26]. LTO is another good anode material that has a defective
Spinel structure and the research on LTO has gained prominence over the years [27]. The
thermal stability of LTO is considerable [28], and the material does not exhibit any volume
change during intercalation/deintercalation [29] so that it is also referred to as a Zero
Strain (ZS) material [19]. The spinel structure provides a three-dimensional network of Li+
ion pathways with low migration barriers that further promote the rate capability of the
LTO anode. Its high potential (1.55 V) enhances safety on fast charging, but along with
the low specific capacity of about 150 mAh·g−1, limits the achievable energy density [30].
A detailed literature review on LTO chemistry was carried out by Zhao et al. and can
be referred to, to obtain additional information [27]. More recently, a series of Titanium
Niobium Oxides TixNb2yO2x+5y (e.g., TiNb2O7, TiNb6O17, TiNb24O62) have been explored
as an alternative to LTO for high-rate applications, as they combine the elimination of
the Lithium plating hazard due to a high Li insertion potential (ca. 1.6 V) with a higher
theoretical capacity that can be practically accessed even at high rates by carbon coating
and doping. For details, the reader is referred to a recent review by Yuan et al. on this class
of material [22].
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materials. Reproduced with permission from ref. [28]. Copyright 2014. Nitta, N., Wu, F., Lee, J.T.,
Yushin, G.; published by Elsevier Ltd.

Lithium alloying elements [31], such as Silicon (Si), Tin (Sn), Antimony (Sb), Zinc (Zn),
Phosphorus (P), Germanium (Ge), Bismuth (Bi), and Aluminum (Al), are also considered
as potential anode materials. Silicon material has a very high specific capacity and a
lower voltage potential compared to other materials, which is the essential requirement
for achieving high energy density [20,23]. However, during the lithiation and delithation
process, materials like silicon and tin undergo huge volume expansions around 300%.
This damages the electrode microstructure accelerates capacity fading and may lead to
short-circuiting and as a consequence thermal runaway [32]. Therefore, to avoid hazards,
silicon is converted to either an alloy or a composite where nanostructured silicon or its
alloys are combined with graphite, graphene, or other forms of carbon, silicon and carbon
nanotube composites, or silicon nanowires [23]. Zuo et al. [33] have provided in-depth
information regarding the potential of silicon as an anode material.
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Lithium metal itself has the highest specific capacity (>3860 mAh·g−1) and the lowest
potential (−3.040 V), which should make it an ideal anode material [34]. However, lithium
is a highly reactive metal and formally the relative volume expansion trivially becomes
infinitely large in this case. Since lithium is reactive in nature, the selection of suitable
electrolytes is critical. Due to the large anode volume changes, the Solid Electrolyte Interface
(SEI) layer can crack and dendrites formed during lithium cycling can grow through this
layer, leading to short circuit and battery failure. Detailed reviews have been conducted by
various authors on the potential of lithium metal as an anode material [34–36].

2.2. Cathode

Generally, LiBs are identified by the cathode material chemistry as the choice of the
material used as the cathode will mostly dictate both the battery performance and its cost.
Early attempts for intercalation concepts were made in 1970 [16,37]. Since its inception
in the 1980s on layered cathode LiCoO2, several chemistries have been tried and tested.
Popular chemistries and widely preferred. Among them is lithium cobalt oxide LiCoO2
(LCO), lithium nickel manganese cobalt LiNixMnyCozO2 (NMC), lithium manganese oxide
(LMO), lithium nickel cobalt aluminum (NCA), and lithium iron phosphate, LiFePO4 (LFP).

LCO was introduced in the year 1980 by Mizushima et al. [38] and was the first
chemistry to be commercialized [3]. It is a type of layered transition metal oxide that
possesses hexagonally shaped crystal platelets [39]. Assuming full utilization of the lithium
contained, it has an attractive theoretical specific capacity of almost 274 mAh·g−1 [29], but
practically, the capacity is limited to about 155 mAh·g−1 [40] due to its limited structural
stability [41]. The average operating voltage is 3.9 V [42] as further delithiation would
destabilize the structure. Its advantages include a high working voltage, high mobility
of electronic and ionic charge carriers, a good cycle performance, and a high energy
density [43]. Its few drawbacks include its high cost and the supply limitations of cobalt [40],
and moderate thermal stability [44]. The introduction of Nickel and Manganese into
LCO created Li(NixMnyCoz)O2 (x = y = z = 1) (NMC) cathode materials [45,46]. This
enhances practical capacity and mitigates reliance on supply-critical cobalt. Alternatively,
the Nickel-rich compositions can be stabilized by electrochemically inert aluminum, leading
to LiNi0.8Co0.15Al0.05O2 (NCA) with an enhanced capacity and cycle life [47], while the
introduction of metal oxide coatings improved cyclability [48]. However, the cost, toxicity,
and supply limitations of cobalt demand newer and better materials to be developed to
create sustainable batteries.

LiMn2O4 (LMO) was introduced in 1983 by MM Thackeray et al. as one of the potential
cathode materials. It has a Spinel structure [49]. With lower theoretical (150 mAh·g−1) [50]
and practical (<20 mAh·g−1) capacities [51], it is comparatively inferior to LCO. However,
the average operating voltage (4 V) is similar to LCO. This particular chemistry is stable
with lithium extraction [52] and due to the abundance of manganese is more economical
than LCO [50]. On the other hand, capacity fade at high temperatures [53] and oxygen
loss [54] are key factors limiting the current application range of this chemistry to low-
cost LIBs. Partial replacement of manganese with aluminum, however, improves cycle
performance [55,56], nano-composite techniques improve specific capacity [57] and surface
modification techniques improve the capacity retention at a broader temperature range [58].
It is expected that manganese-based cathode chemistries will gain importance simply
because the supply limitations of alternative transition metals (cobalt and increasingly also
nickel) become more prominent with the scale-up of LIB production.

LFP is a relatively newer cathode material that was introduced by A. K. Padhi et al.
in the year 1997 [59]. It possesses an olivine-type framework structure, leaving one-
dimensional channels for Lithium ions. Its practical capacity (<165 mAh·g−1) is close to
the theoretical value (170 mAh·g−1) [60]. It is environmentally safer when compared to
others with good cyclability [61] and high thermal stability due to its strong P–O bond [28],
making it potentially a very good cathode material. The use of highly abundant iron as the
redox-active transition metal makes it also a highly sustainable cathode material. However,
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it possesses a low voltage (3.4 V) [60], ionic, and electrical conductivity [62] in comparison
to the materials discussed above. Multiple types of research are being carried in the field
of LFP chemistry to improve the existing drawbacks. The reduction in particle size helps
to achieve better chemical performance [63]. Doping of materials like nickel, cobalt, and
magnesium improves battery performance and cyclability [64]. Moreover, other materials,
such as triclinic structure (LiVPO4F) [65], Vanadium-based metal inorganic or organic
phosphate (PO4), phosphite (HPO3), and oxalates as cathodes [66–69], and other tavorite
structures called fluorosulphates, are being currently developed which could potentially
replace LFP [70,71]. As mentioned in the above paragraphs, each of the cathode materials
come with their own set of drawbacks, and these can initiate certain processes that will
eventually lead to the cathode failure mechanisms that are discussed in detail in Section 3.2.

2.3. Electrolytes

There has been a rapid increase in the working voltage potential of the LiBs that has
forced researchers to explore safer and better ion-conducting materials that can be used
as an electrolyte [15]. During the charging and discharging process, ions move from one
electrode to another and the electrolyte acts as a conducting medium. There are certain
criteria that materials should meet to be used as an electrolyte. (1) it should allow only
specific ions but not the electrons to pass; (2) it should not undergo degradation over a
wide range of working potentials; (3) it should not react with other battery components;
(4) it should be thermally stable over a wider range of operating temperatures; (5) it should
be non-toxic, sustainable, environmentally friendly as well as economical [72]. Along with
battery reactions that cater to the charging and discharging process, certain side reactions
lead to a slump in battery capacity and increased wear. This phenomenon is discussed in
detail in Section 3.3 while this section is focused on the materials that are widely used as
electrolytes currently.

Salts of lithium dissolved in electrolytes based on organic carbonate compounds have
been widely used since LiBs were first commercialized. Popular solvents are mixtures of or-
ganic carbonates and esters such as Propylene Carbonate (PC), Dimethyl Carbonate (DMC),
Diethyl carbonate (DEC), and Ethylmethyl Carbonate (EMC). To enhance ionic conductiv-
ity, salts with weakly coordinating anions were added. The most commonly employed
Lithium salt in commercial LIBs is Lithium Hexafluorophosphate (LiPF6). Most alternative
salt anions such as BF−4 , trimethanesulfonate (Triflate), bis(trimethanesulfonyl)imide (TFSI),
etc., also contain fluorides to enhance the electrochemical stability. As the processing of
fluorinated compounds comes with hazards, various fluoride-free materials have been
explored (e.g., bis(oxalate)borate (BOB), tetracyanobaroate (Bison), etc.) but none of them
could achieve the cost-performance ratio of the fluorinated competitor LiPF6 when applied
to graphite-based LIBs. However, for next-generation batteries with alternative anodes,
different Li-salts may be more advantageous [73]. Fluorinated organic carbonates enhance
the cycling stabilities compared to non-fluorinated carbonate electrolytes [74,75]. Kang
Xu. [76] carried out extended research on lithium salts and organic electrolytes. Even
though organic solvent mixtures are widely used in commercial batteries, the volatility and
flammability characteristics of organic solvents cause concern over the safety of the battery.
The focus now is towards the usage of non-flammable electrolytes like ionic liquids and
polymer electrolytes [23]. Ionic liquids have better stability, a larger operating temperature
range, and higher ionic conductivity compared to organic electrolytes [72]. Imidazolium,
quaternary ammonium, pyrrolidinium, and piperidinium-based ionic liquids are some
of the commonly used ionic electrolytes. Prominent research [77–80] is being carried out
in the areas of synthesis and performance enhancements of ionic electrolytes. The newer
electrolytes, comprising polymers and polymer electrolytes (PoE), can be broadly classified
into solid and gel. Gel PoEs will have lithium salts and solvents confined in a polymer
matrix (physical gel PoE) or with a chemical bond and cross-linking agent (chemical gel
PoE). Solid polymer electrolytes are obtained by dissolving salts of lithium in a polymer
matrix with an electron donor group. Polymer electrolytes are flexible, safe, and have a
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higher ionic conductivity and mechanical strength [81]. More information in detail related
to PoEs can be found in [81,82].

2.4. Separators

A separator is a thin porous membrane that separates two battery electrodes and stores
a certain amount of electrolyte to aid in ionic transport while preventing short-circuits by
direct contact with the active materials [83]. The early history of separators is discussed
in a recent review [16]. Separators should not undergo any electrochemical reaction, but
their presence is key in battery safety and performance. Several factors are to be taken into
account to select a suitable separator [29]. Important characteristics of separators [16,84]
are (i) good electrochemical stability; (ii) strong electrolyte absorption and retention capa-
bilities (i.e., high wettability by the electrolyte), which improves ion transport and hence
cell performance; (iii) optimum thickness 25 µm, low thickness yet high puncture strength
to survive the significant mechanical stresses during battery fabrication and operation.
Moreover, they lower the distance between anodes and cathodes, and thereby the internal
resistance, improving both volumetric and gravimetric energy density, (iv) a significant
amount of porosity (40%), an appropriate pore size, and higher permeability. Porosity is
necessary to trap the electrolyte, but a higher porosity could adversely affect the separator
performance and the pore distribution should be as uniform as possible [29]. Pore size
should be small enough to block electrode materials or dendrites. Permeability is measured
in terms of the MacMullin number, which gives the ratio between the resistance of the
separator soaked with the electrolyte and the free electrolyte of the same geometry [85].
The lower the MacMullin number, the better the separator’s performance [86], but high
mechanical strength and an adequate porosity at around 40% are the most important
properties that determine how good the separator membrane is [68] ((v) good thermal and
dimensional stability). The separator should not curl up or shrink when the temperature
within the cell increases during operation. For further information on performance evalua-
tion, literature work [87] can be referred to. Several conventional and modern methods
are used to manufacture separators. Wet and dry methods are widely used in large-scale
manufacturing and a detailed review of manufacturing methods can be found in [86]. The
electrospinning technique is widely used to develop newer nanofiber-based separators.
Li et al. [83] have carried out a comprehensive review of electro-spun nano-fiber separators,
their advantages, necessary improvements, and materials. Membranes can be broadly
classified into the micro-porous, non-woven mat, composite mat, and electrolyte types. For
detailed information on the same, literature work by Lee et al. [85] and Francis et al. [88]
can be referred to.

Some electro-spun separators are polyethylene terephthalate (PET), polyacryloni-
trile (PAN), polyvinylidene fluoride (PVdF), and polybutylene terephthalate (PBT). These
polyester-based separators will have a higher porosity when compared to Polyethylene
(PE) and Polypropylene (PP), which are widely used currently in LiBs. PE and PP-based
separators will have a thickness in the range of 20–25 µm, a porosity ranging from 36 to
48 percent, and the manufacturing of these separators can be either a wet or dry process.
PE separators start to soften at 110 ◦C and melt at approximately 135 ◦C, while PP-based
separators soften at 140 ◦C and melt at 165 ◦C. Advancements in this field include tri-
layer separators, ceramic-coated separators, and polyester-based (non-woven) separators.
Tri-layer separators are also called shutdown-type separators, which will have a PP layer
sandwiched in between two PE layers, and are manufactured using a dry-type process. It
possesses a similar thickness to that of single-layer separators. Ceramic-coated separators
will have a polyolefin layer and an additional alumina layer coating on either side of the
layer. Due to this coating, the ceramic-coated separators can withstand higher temperatures
(above 200 ◦C) before melting sets in [86,89–92]. The temperature at which a separator
should soften and thereby typically close its pores to become non-conducting should ideally
be adapted to the temperature at which the thermal runaway sets in so that the separator
can help to prevent fire hazards.
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The advantages of the above-mentioned separators are explained in Section 5.1.4.
However, they are sourced from crude oil. Coping with the development and usage of
sustainable materials in batteries, the potential of several biopolymer fibers such as hemp,
flax, coconut, etc., are currently being explored and detailed information on the same can
be found in [93]. Failures in separators happen mainly due to external factors or abusive
usage. This phenomenon is explained in detail in Section 3.4.

3. Mechanism of Failure in LIB

To study the modes of failure in LiBs, it is essential to study the process, cause,
outcome, and mechanism of a particular failure that will affect the system’s performance.
Failure Mode Methods Effects Analysis (FMMEA) is a symmetric method that involves
identifying all probable modes of failure and their mechanisms. However, the mainstay
feature of this method is its ability to even involve the Physics of Failure (POF) point of
view to assess the reliability at each level, be it system, sub-system, or component level.
This gives an advantage over Failure Mode Effects Analysis (FMEA), where only methods
are considered and not the reasons or the path that led to the particular failure [94]. The
usual mechanisms that lead to failure are physical, chemical, electrical, and mechanical
in nature [95]. Hendricks et al. [96] reported that the above mechanisms help identify
the path or the way a particular system fails due to one of the possible mechanisms.
Failure modes—the particular ways in which a system can fail—can only be defined clearly
when they are observed in real-time. A detailed study of the failure will reveal what
the origin of the failure is. This cause of origin can be a product of intrinsic or extrinsic
stresses that affect the system. Figure 3 below shows the possible scenarios that lead to
incidents compromising the safety of the operation of LiBs. The method FMMEA can be
implemented to the individual LiB cells and commercially available battery packs. This
method requires years of experience acquired from multiple battery dismantling, reliability
tests, and failure studies [97]. Using this method, component-level testing and assessment
can be accomplished and it provides exhaustive details on the reasons regarding how each
component can fail and contribute to malfunction or failure of the system.

3.1. The Active Material in Anode

For this review, as discussed in Section 2.1, only carbon-based anode materials were
considered as they are most widely used [96]. A LIB eventually loses capacity, partially
because of the reactions between the organic solvents like Ethylene Carbonate (EC) or
DMC and the graphite [98]. The solvent also reacts with the anode, forming solid or
liquid coagulation called a Solid Electrolyte Layer (SEI). This results in an irreversible
loss in capacity, as well as in achievable power. This SEI layer is permeable and allows
the movement of ions, so it will grow over time, which further deteriorates the battery
and its life span. This layer formation is also spread to other parts of the cell [96]. The
mechanism of failure in the case of anode material failure is due to the reduction reaction at
electrodes leading to power fade in batteries. Upon observation, as the reaction proceeds,
the thickness of the SEI layer is increased.
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This SEI layer is highly delicate and it is very challenging to dismantle the battery
without causing damage to it. Therefore, partial disassembly is done and the mechanism is
studied using Nuclear Magnetic Resonance (NMR) imaging [100]. If the analysis needs to
be carried out, then it requires highly tedious multiple processes to study the behavior of
the SEI layer [101]. Formation of this layer is not the key factor leading to the failure, but it
is the decomposition of this layer at increased temperatures that affects the health of the
battery, making way to the thermal runaways that follow after the release of gases [102].
Here, the generation and growth of the SEI layers are seen as failure due to wear, which
results in reduced battery capacity and increased internal resistance according to FMMEA.

Dendrite growth is another issue related to the anode–electrolyte interface and is
a highly critical mechanism of failure [18]. Dendrites puncture the separators and lead
to Internal Short Circuits (ISCs). Dendrite growth usually occurs due to quick or rapid
charging of the battery at a sub-operating temperature range (less than 20 ◦C) [103]. NMR
can be used to efficiently detect the dendrite growth in the Li-ion cells [104]. This operando
method is preferred over cell dismantling mainly due to the instability of the dendrites.
During the process of dismantling, if any short circuit occurs, all the dendrites will disap-
pear, leaving behind little trace of formation or existence [105].

Apart from these key failure mechanisms, one more failure that hampers the working
of the battery is the fractures observed in particles of the electrode, due to the formation
of micro-sized cracks on the surface of the electrode material. This problem arises in the
case of a sharp and rapid charging cycle, poorly designed and sized electrode particles,
and their uneven distribution [106]. Volumetric expansion or contraction is also a reason
for instability in various parts of the electrode. To overcome these failures in the anode,
certain strategies are adopted, and these are mentioned in Section 5.1.1. The Li and graphite
particles are the ones that combine in a reaction that is intercalating in nature. All these
observations are done using the Focused Ion Beam (FIB) technique, Scanning Electron
Microscope (SEM), and X-ray nano tomography [107,108]. Figure 4 depicts the various
important possibilities for anode material failure.
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3.2. Cathode Material

Usually, the cathode is made of lithium oxides of cobalt (LiCoO2), LiNixMnyCozO2
(NMC-811,622), manganese (LiMn2O4), LiMn1.5Ni0.5O4, or iron phosphate (LiFePO4) [59,109].
Cathodes are also susceptible to the SEI layer but are not to the degree when compared to
the reaction with graphite at voltages higher than 4.5 V (because the film growth is stable
at higher voltages) [110] and even decomposition is observed in the case of over-charging.
Under the over-charge condition, the electrolyte undergoes an exothermic reaction with
the cathode material generating oxygen, making the electrolyte unstable [111]. The origins
and mechanisms of gas generation are still under discussion. Mitigation strategies to avoid
the above-mentioned failures are discussed in Section 5.1.2. Figure 5 denotes the failure
mechanism for the cathode material.
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3.3. Electrolyte

Organic-based solvents with dissolved salts containing lithium are used as electrolytes
in LiBs. One of the most commonly and commercially used electrolytes is EC and DMC,
which are organic carbonates. They are one of the main contributors to the side reaction
taking place at the electrodes, leading to a slump in the battery capacity and wearing.
Though the widely used electrolytes are highly efficient in ion transmission, they possess
the drawbacks of being highly inflammable and unstable, except for a limited window
of temperatures and voltages. Any operation under extreme conditions (typically above
100 ◦C) will result in decomposition and the generation of gases leading to thermal run-
aways [112]. The rate and level of degradation of the electrolyte in use can be compared
with that of an unused electrolyte can be studied using processes like Differential Scanning
Calorimetry (DSC) [113], Accelerated Rate Calorimetry (ARC) [114], NMR [115], Fourier
Transform Infrared Spectroscopy (FTIR) and Thermo-Gravimetric Analysis (TGA) [116].
Figure 6 shows the failure path for electrolytes. As mentioned above, the flammability
issue can be curbed using certain strategies which are discussed in Section 5.1.3.
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3.4. Separators

Separators in LiBs are made of porous electrolyte-soaked polymer sheets to facilitate
ion transmission between the electrodes while preventing their direct contact. If these sepa-
rators are damaged, the gaps between electrodes cease to exist, leading to short circuits and
temperature spikes, finally resulting in a fully-fledged thermal runaway [84]. Damaging
of the separator can be due to the growth of Li-dendrites or external factors like mechan-
ical abuse during cell assembly or operation. Any damage to separators can be studied
either by using SEM or bare eye investigation of melted separators or can also be done by
disassembling the cell. Studies are being carried out to study the origin of stresses in the
separator caused over time during normal operation or any form of abuse [117,118]. Abuse
leads to the melting of the polymers used in separators, causing a very dangerous thermal
runaway scenario [119]. Battery aging is also one of the contributing factors for separator
failure. A study conducted by Zhang et al. [120] shows that several factors influence aging
in battery separators, namely, hysteresis in temperature and mechanical loading, oxidation
of separator film, accumulation of chemical particles in pores of the separator film, and the
effect of electrolytes. Figure 7 depicts the stages leading to separator failure.

Orendorff et al. [89], in their study, pointed out that temperature variance between
the cells in the larger battery packs is very high when compared to that of smaller battery
packs. This uneven temperature profile will cause heterogeneous degradation of separators,
which in turn causes uneven cell resistances within the battery pack. More research must be
carried out in this area. However, certain measures are introduced by various researchers
to mitigate the failure in the case of separators and one of them is the shutdown type of
separator. The details about shutdown type separators and prevention of dendrite growth
in anodes by altering the material of separators are described in Section 5.1.4.
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3.5. Current Collectors

The anode is usually coated with etched copper foil that acts as a current collector
for an anode and it is inert to the chemical reaction. Whereas if we use Cu-foil as a
cathode current collector when we cycle above 3.5 V, oxidation occurs, then it may lead
to degradation in battery performance [121] and meltdown due to the over-discharging
scenario [96]. Over-discharge is a phenomenon that occurs when a cell is discharged
beyond the safe voltage limit. Over discharging induces serious problems in larger battery
packs [122]. The main cause for this type of failure is improper energy management in
batteries or failed Battery Management Systems (BMS) or abusive usage of batteries [123].

On the cathode side, aluminum is used as a current collector. Again, the aluminum
can undergo corrosion in the case of overcharging. Overcharging is a common failure, and
it occurs when the charge current is forced through the battery even after it has reached
a normal cut-off voltage [124,125]. Aluminum corrosion can lead to (i) an increase in
electrical resistance; (ii) an increase in self-discharge rate due to the decomposition of
the electrolyte [124]. Small contamination, such as ion metal impurities inside the cell,
cannot be safely avoided during the manufacturing of batteries. Such impurities may cause
short circuit defects and in the long run, lead to thermal runaway during overcharging.
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In batteries, overcharging dominates in the form of critical performance characteristics,
and generally, there is no capacity degradation up to 120% overcharging in NMC and
LMO cells. With NMC and LMO, a slight overcharge will thus not lead to a thermal
runaway and not even to performance degradation. In contrast, overcharging of 105 to
120% already leads to surface temperature increases and capacity loss in LFP. Generally,
overcharging is considered the most severe safety concern, and it is usually caused by the
malfunction of the charging control system, inappropriate design of BMS, and even the
capacity inconsistency in the cells. Hence, developing the methods of efficiently controlling
voltage plays a crucial role in resolving the safety issues of LiBs.

Hence, both overcharging and over-discharging of a battery must be avoided as much
as possible. Figure 8 shows how the fault leads to failure for current collectors.
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3.6. Cell Tabs and Casing

The current conduction to the external circuit is taken care of by the tabs of the cell.
They are joined with the collectors using spot welding. Any mistake in the welding (like
the lesser number of welded spots) will lead to a rise in contact resistance and lead to an
increase in resistance to the flow of the current. Thermo-mechanical fatigue will result
in connection failure between the tabs and cause the current connector to break down.
Loose connections of any kind will result in total system malfunction or system-wide
failure. Dampness in the casing where the battery is placed can result in short-circuiting. It
can also lead to corrosion of the battery tabs, resulting in ponderous discharge and heat
generation [126–128].

4. Failure Modes of LiBs
4.1. Mechanical Mode

So far, we have discussed the failure mechanisms involved and how each component
of a battery has its role in the failure. These mechanisms may lead to or may be the cause of,
certain modes of failure. The mechanical mode of failure appears to be the most perilous
one, compromising the battery safety in case of a mishap [129]. In this mode, the battery or
the casing undergoes deformation due to external loads that are mostly impulsive in nature.
The load from the casing gets transferred to internal components of the battery, rendering
them deformed. This leads to failure of the internal components such as separators and
contact is attained between separator and cathode, which was studied by J. Zhu et al. [130]
both by experimentations and simulations for 18,650 cylindrical cells. Numerous tests
have been conducted to realize the behavior of both cylindrical and prismatic batteries
and the conditions under which they undergo abuse. They can be differentiated as either
collision/crush or penetration. Experimental methods for mechanical abuse of cylindrical
and prismatic battery types are briefly summarized below.

4.1.1. Cylindrical Battery

Single cylindrical cell or multiple cell batteries are subjected to multiple tests like
the axial/radial compression/indentation, single point and triple or three-point bending,
surface indentation, piercing, and Pellini test (commonly called as drop weight test). In
a research project carried out by J. Xu et al. [131] for understanding the load-bearing
capacity of cylindrical batteries in the radial direction, it was found that the ultimate loads
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that 18,650 batteries could bear were 40 kN and 602,030 cells could bear a load of 400 kN.
Comparatively, indentation generates more local deformation in the radial direction despite
the magnitude of the ultimate load being lower than the others (deformation). In this case,
the dimensions of the indenter play a major role [8]. The deformations in the structures
for three/triple point loadings were complex in nature. Here, the top layer underwent
compression, but the bottom layer underwent tensional deformation. The max load that
18,650 cells could bear was just 4 kN and 602,030 cells could resist 100 kN [8,131].

4.1.2. Prismatic Battery

These types of batteries are made to undergo slightly different tests due to their shape.
They are subjected to various tests, such as compression or indentation, that were carried
out considering deformation and stresses in just the z-direction or just the x-y direction
and neglecting the other [132,133]. Bending and Pellini tests were also conducted but are
not effective to lead ISCs as compared to other tests, due to the ability of the structure
to bear high magnitude bending deformations. Dynamic loading tests, like the Pellini
test [133] and impact tests for high velocity, Ref. [134] help study the structural behavior
under dynamic conditions.

All these tests help envisage the functions of the battery under those scenarios and
understand how it will further deteriorate the battery condition. In all these tests, the
outcome was ISCs. This was mainly due to the formation of contact between the internal
components of the battery. The mechanical stresses generated during this mode decide the
reactions of ISCs. This fact has been witnessed multiple times in several studies such as e.g.,
LFP. In the case of Cu–Ca, Figure 9a shows that for higher forces, the combination shows
good accordance with >>100 m ohm. At higher loads, the particles penetrate the electrolyte
layers and establish direct contact with the current collector. Figure 9b depicts the An–Ca
contact scenario. The values of short resistances show good accordance with >>100 m
ohms for higher forces. The results of a Cu–Al contact scenario are as shown in Figure 9c.
It is observed that with an increase in the force, the short resistance value decreases to
around 10 m ohm and maintains it for higher force values. For Al–An, Figure 9d shows
that for force values above 20 N, the particles exhibit good accordance with the ~100 m ohm.
Finally, we can summarize that electrolyte can influence the resistance of Lithium Ferrous
Phosphate [135–137]. The mechanical mode of failure is thus regarded as the initiator or
propagator of the electric and thermal modes that are discussed in the following sections.
Different battery casing structures, namely Navy Truss (NavTruss) and Blast Resistant
Adaptive Sandwich (BRAS), help in mitigating mechanical failures like compression and
penetration, which are discussed in Section 5.4.

4.1.3. Pouch Cells

They are similar to prismatic batteries but without any solid enclosure. Pouch cells
are often called soft packs. Pouch cells were tested using the Pelini test and compres-
sion test by Beaumont et al. [138] as indicated in Figure 10. Indentation tests are more
effective and it was observed that the small (59.5 mm × 34 mm × 5.35 mm) and medium
(129.5 mm× 43.5 mm× 8.2 mm) sized pouch cells are easily susceptible for ISCs compared
to large ones (227 mm × 160 mm × 7.25 mm). Sahraei et al. [139] conducted tests for
different-sized punches (Figure 11). It was observed that conical punch indentation tests
induced ISCs more quickly compared to others, whereas the hemispherical punch with a
smaller diameter could induce ISC more rapidly than a larger one. Therefore, it could be
inferred that batteries can handle the intrusion of blunt objects well.
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4.2. Electric Mode

The electric mode of failure can be observed as an independent event or the outcome
of a mechanical mode failure. Again, ISCs are the common outcome of this mode of failure.
The major electric signature of ISCs is the rapid drop in battery voltage due to contact
between the internal active components of a battery [8]. Santhanagopalan et al. [140] in
their work mention four possibilities of contact modes that result in ISCs. Table 1 below
gives the details regarding these contacts and the severity of damage they can inflict. Earlier
mentioned factors include the mechanical stresses leading to contact formation between
different components. This further assists in the melting of the component materials which
complicates the ISC mechanism. All the factors mentioned lead to this scenario of ISCs
and they are also strongly influenced by mechanical behavior, as the stresses generated
depend on the type of loading and its direction. To prevent a surge in current flow due to
abnormalities in the cell assembly, as summarized in Table 1, protection devices inhibit the
excess current flow, as discussed in Section 5.2.
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Table 1. Modes of contact and its effects (based on the data from [140]).

Contact Mode Resistance to
ISCs

Temperature
Rise

Heat
Generation

Heat
Conductivity

Severity of
Failure

Probability of
Occurrence

Anode-Current
collector (Cu-Foil) Low Low High High Most

dangerous
No data
available

Cathode-Anode High High Comparatively
low Low Second most

dangerous Maximum

Current collector-
Cathode (Al–foil) High Low Least High Low Minimum to

rare

Current collector-
Current Collector Low Low Highest Highest No data

available Low

4.3. Thermal Mode

The thermal mode of failure normally occurs due to other modes that initiate this
mode. LiBs are very susceptible to temperature. They are best operated in a narrow
range of 20−40 ◦C (±5 ◦C). If this temperature interval is exceeded, then not only their
performance is lowered, but their state of health also deteriorates. This is observed even in
the case of a high atmospheric temperature. Prolonged usage at higher temperatures can
lead to thermal runaway, further leading to the release of gases or an explosion and fire. As
soon as the local temperature crosses the critical value, this initiates multiple side reactions
(discussed in Section 4.3.1) that are exothermic in nature, increasing the temperature further.
If uncontrolled, this temperature increase will lead to thermal runaway [13]. The dynamics
of these side reactions leading to thermal runaway can be studied using the Semenov
plots [141] as shown in Figure 12. As soon as the local temperature crosses the critical value
called “Temperature of no return” (TNR) [142], an uncontrollable avalanche of exothermic
side reactions (discussed in Section 4.3.1) sets in [143].

Irrespective of working and boundary conditions, the LiBs will eventually reach the
value of TNR on uncontrolled thermal abuse, from which point onwards a thermal runaway
becomes unavoidable. This method only simplifies the study with the assumption of
uniform temperature distribution [99]. The governing equations discussed in Section 4.3.1
for each component show how each of them behaves under thermal runaway conditions.
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4.3.1. Governing Equations for Thermal Runaway
Anode

The metastable components of SEI undergo decomposition between 80 and 120 ◦C
and a maximum decomposition rate was observed at 100 ◦C [142,144]. Some balanced
reactions make the SEI undergo cyclical degradation and regeneration above 120 ◦C but
below 250 ◦C [145]. The key reaction leading to this is shown below.

(CH2OCO2Li)2 → Li2CO3 + C2H4 + CO2 +
1
2

O2 (1)

This decomposition of the electrolyte is observed both in contact with graphite anodes
and in the case of Li4Ti5O12 anodes [146–148]. The amount of graphite diminishes rapidly
above the temperature of 205 ◦C, rendering a stoppage of balanced SEI decomposition and
regeneration. This leads to reactions of the lithiated carbon with fluorine-based binders and
of the solvent reaction with Li, once the temperature increases beyond 260 ◦C [142,144,149].

−[CH2 − CF2]−+Li→ LiF± [CH = CF]∓ 1
2

H2 (2)

2Li + RF2 → 2LiF +
1
2

R2 (3)

The reaction between solvent and any metallic lithium present (see below) is already
observed at around 100 ◦C or even at a lower temperature of 68 ◦C for some special
electrolytes [142,144].

2Li + C3H4O3(EC)→ Li2CO3 + C2H4 (4)

2Li + C4H6O3(PC)→ Li2CO3 + C3H6 (5)

2Li + C3H6O3(DMC)→ Li2CO3 + C2H6 (6)

Cathode

The transition metal oxides acting as cathode material undergo breakdown, releasing
oxygen at a temperature of around 200 ◦C in the case of LiCoO2 [150–154].

LiyCoO2 → yLiCoO2 +
1
3
(1− y)Co3O4 +

1
3
(1− y)O2 (7)

Co3O4 → 3CoO +
1
2

O2, CoO→ Co +
1
2

O2 (8)

In the case of the Li[NixCoyAlz]O2 cathode material, the breakdown is already ob-
served at around 140–160 ◦C [155–158].

Li0.36Ni0.8Co0.15 Al0.05O2 → 0.18Li2O + 0.8NiO + 0.05Co3O4 + 0.025Al2O3 + 0.372O2 (9)

When LiNiyCoxMnzO2 is used as cathode material, then the breakdown occurs only
at around 260 ◦C and is followed by reactions that are exothermic in nature leading to a
sharp increase in temperature [159–162].

Li0.35(NiCoMn)1/3O2 → Li0.35(NiCoMn)1/3O2−x +
x
2

O2 (10)

When using LiMn2O4 as the cathode material, the thermal breakdown is observed
in-between 150 ◦C and 225 ◦C [163,164].

Li0.2Mn2O4 → 0.2LiMn2O4 + 0.8Mn2O4 (11)

3Mn2O4 → 2Mn3O4 + 2O2 (12)
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LiMn2O4 → LiMn2O4−x +
x
2

O2 (13)

LiMn2O4 → LiMnO2 +
1
3

Mn3O4 +
1
3

O2 (14)

Mn2O4 → Mn3O4 +
1
2

O2 (15)

In the case of LiFePO4 as the cathode material, the breakdown is imminent between
190 ◦C and 310 ◦C [149,165,166].

2LixFePO4 → Fe2P2O7 +
1
2

O2(x = 0) (16)

Electrolyte

Decomposition of the electrolyte is one of the most critical reasons for thermal runaway.
The following reactions were observed from 200 ◦C to 300 ◦C [147].

LiPF6 → LiF + PF5 (17)

2ECLi−O− (CH2)4 −O− Li + PF5 → Li−O− (CH2)4 + 2LiF + POF3 (18)

C2H5OCOOC2H5 + PF5 → C2H5OCOOPF4 + HF + C2H4 (19)

C2H4 + HF → C2H5F (20)

C2H5OCOOPF4 → PF3O + CO2 + C2H4 + HF (21)

C2H5OCOOCPF4 → PF3O + CO2 + C2H5F (22)

There is also another phenomenon that affects the thermal performance of the battery,
which is the oxidation of electrolytes. This oxidation is initiated due to the breakdown of
metal oxide cathode material releasing oxygen or due to the electrolyte coming in contact
with air due to a damaged battery case [167].

2.5O2 + C2H4O3(EC)→ 3CO2 + 2H2O (23)

6O2 + C5H10O3(DEC)→ 5CO2 + 5H2O (24)

3O2 + C3H6O3(DMC)→ 3CO2 + 3H2O (25)

4O2 + C4H6O3(PC)→ 4CO2 + 3H2O (26)

Apart from these, even separators and collectors melt and thereby contribute to ther-
mal runaway. In the case of separators, combinations of PP and PE are used, which have a
melting temperature of 130–170 ◦C [84,89,168,169]. If they are coated with ceramic coatings,
then their melting point may be pushed to a higher temperature range of 200–260 ◦C [164].
Collectors made of aluminum have a melting temperature of 660.3 ◦C (STP) and copper
has around 1085 ◦C (STP) [8]. In summary, thermal management of batteries is very critical
to keep the temperature within the operating range. Different methods are adopted to cool
the battery packs, which are explained in detail in Section 5.3.

5. Mitigation Strategies

In this section, the possible mitigation strategies are discussed to overcome or restrict
some specific modes and mechanisms of Lithium-ion battery failure. LiB safety is the prime
focus, so multiple mitigation strategies are followed to keep the batteries safe. This can be
done by two methods, one by avoiding operation conditions, which lead to heat and gas
formation, the other being the process to control the heat and gas formation to avoid failure.
More stable LiBs can be accomplished by alteration of the chemistry and/or component
structures of the battery. The alteration can be made in electrodes and electrolytes [99].
The electrolyte alteration can be done by the addition of fire-inhibiting additives. The fire-
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inhibiting materials are non-flammable in nature and hinder the propagation of exothermic
reactions [170]. The limitation of the magnitude of current flow during working cycles is
also a mitigation strategy to keep the batteries safe. This restriction can be done by using
POTC devices, which quickly respond to temperature changes.

The inclusion of dedicated safety devices to the battery design is also one of the
mitigation strategies. These safety devices should be economical and should not lead to
packaging issues in the battery [171]. The safety devices can be in the form of protection
vents, current fuses, and additives in cell materials to shut the current flow. The electric
fuses and contact assemblies shield the circuit from current fluctuation [172]. The mitigation
of thermal runaway is particularly crucial, since postponing the thermal runway in the
event of a battery failure gives the passenger more time to escape the harm which can
be caused by the battery [167]. Thermal management of the battery is one of the most
crucial mitigation strategies, as it will prevent hazardous heat accumulation in the battery
pack. Thermal management can be achieved by air cooling, which is the simplest way of
cooling, liquid cooling, which is most efficient but complex in design, and phase change
cooling is best suited for extreme temperatures [173]. To suppress a fire after the failure
of LiBs, various methods and extinguishing agents are used in electric vehicles. The most
commonly used fire extinguishing agents are water, water mist, halons, etc., along with
suitable additives to improve the properties of the extinguishers [99]. Overall, there are
four main mitigation strategies with sub-classification as discussed above and shown in
Figure 13. These mitigation strategies will be explained in detail below.
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5.1. Innate Safety Strategies
5.1.1. Anode Alteration (Protection)

Surface coating is a popular method used for anode alteration. Among the coating
technologies, atomic layer deposition (ALD) is widely used. A typical example is an
Al2O3 coating carried out by the ALD process, which results in the formation of ultrathin
conformal film covering the anode composite which improves both cycle performance and
inertness towards thermal attack [174]. The process of ALD is as shown in Figure 14. The
incorporation of thermo-responsive polymer microspheres on the material of the anode
reduces the ionic conduction in the case of overheating by melting of the polymer layer
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when the temperature within the cell crosses critical value [175]. Likewise, the use of new
thermally stable, higher voltage anode materials such as Lithium Titanium oxide (Li4Ti5O12)
or Titanium niobates (TNO) instead of conventional carbon-based anodes improves the
safety of the batteries [176]. Silicon nanowires are also used in anode electrodes which can
withstand mechanical loadings [177].

Additives used in electrode composites enhance the temperature stability of the SEI
layer built upon the anode surface. Higher temperature stability of the SEI layer, in turn,
enhances the temperature activeness of the anode [178].
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5.1.2. Cathode Alteration

For cathode alteration, both surface coatings and element substitution are widely
explored. The use of surface coating is one of the common methods to enhance the
electrochemical performance of the cathode material. The coating materials have to be
thermally and chemically inactive [166]. As per the study conducted by Li et al. [179],
surface coatings obstruct the direct contact between the electrolyte and the cathode surface
improves the structural stability, thereby suppressing phase transition of the active material,
and restrain the disarray of cations. This is as shown in Figure 15. Iron phosphate (FePO4)
coating improves the performance in electrochemical reactions and temperature stability
of the cathode [180]. Tin oxide (TiO2) coating on a Li cathode enhances the cycling stability
and discharge strength [181]. MnSiO4 is a common coating material on LCO that improves
overcharge tolerance and increases thermal strength [99]. Fluorides are also preferred for
their excellent electrochemical inertness at high temperatures. They can be employed in the
form of AlF3, which improves cycling efficiency and reduces reactivity for side reactions
under high-temperature stress [182]. A few other coatings, such as LiNbO3-coated NMC
cathodes, are also in use.

The other important means of modification is element substitution, which is very
effective in enhancing the performance of cathodes. Aluminum is one of the most efficient
substitutions or doping agents for transition metals such as Co, Ni, and Mn, which increases
the structural stability under thermal stress as sketched in Figure 16 at the expense of
sacrificing some gravimetric capacity. A combination of Al and Ni can be used to increase
the electrochemical performance [183].
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5.1.3. Electrolyte Alteration

Additives added to the electrolyte enhance the intrinsic safety of lithium batteries by
flame retardation, overcharge shielding, thermal inhibition, and SEI enhancement [167].
The flame retardation additives inhibit the fire-catching phenomenon during thermal run-
away. Flame inhibitor additives are commonly made of phosphates (trimethyl phosphate,
triphenyl phosphate, and dimethyl methyl phosphate) or halogenated compounds [184].
Their working principle is based on the removal of free radicals (e.g., H+ and OH− ions) as
indicated in Figure 17. The H+ and OH− ions are formed due to the abstraction of hydrogen
present in organic electrolytes. This process is driven by the highly reactive oxygen ions
produced within the cell due to the high temperature caused during thermal runaway (the
mechanisms are stated in [185]). Active ions are also formed by a chain branching reaction.
Liquid flame retardation additives will release tiny radical species containing phosphorous
or halogens during thermal runaway (the mechanisms are stated in [186]). These phospho-
rous or halogen radicals scavenge H+ and OH− ions, thereby suppressing the exothermic
chain reaction. Fire inhibition can also be achieved by the condensed state formation
technique, which acts as an insulator to fire growth [187]. Although the flame-retardant
additives suppress flame propagation by reducing the electrochemical performance of elec-
trolytes, these additives must be used in calculated proportions. This is because a higher
quantity of phosphates causes capacity fade and higher viscosity of alkyl phosphates re-
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duces battery power and capacity utilization [188]. Zeng et al. developed dimethyl methyl
phosphonate (DMMP) as an electrolyte solvent and concluded that this new solvent pro-
vides excellent electro-chemical compatibility with electrodes and improved nonflamma-
bility properties [189]. The non-halogenated additive methoxyethoxyethoxyphosphazene
oligomer can increase the fire resistance of the electrolyte and also retain its high elec-
trochemical performance [170]. Additives such as fluorinated cyclotriphosphazene and
vinylene carbonate can also improve temperature inertness. The specific SEI layer formed
under the influence of these additives protects the cell constituents from thermal damage [190].
Alternatively, Lithium phosphorous oxynitride is one promising solid electrolyte that, when
employed as an artificial SEI, inhibits fires and can stop the dendrite formation [23].
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5.1.4. Separators

The most common separators are made of Polyethylene (PE) and Polypropylene (PP).
A shutdown type of separator is made up of multilayer films which help in closing the
pores and prevent the ion transport across the separator during excess thermal runaway.
The combination of PE and PP layers improves the safety of the separator, as the PE layer
will melt and fill the pores of the PP layer by the creation of a protective film that limits the
flow of current during cell abuse [191]. This irreversible restriction of current flow explains
the name ‘shutdown separators’. Even after a successful shutdown, the temperature will
continue to rise (due to the inertia effect), which will often lead to a subsequent melting
of the separator and a consequential short-circuiting of the electrodes. Therefore, there
should be a considerable difference between the shutdown and meltdown temperature of
the ‘shutdown separator’ to ensure its effectiveness. Extensive research is also made on
tri-layer separators, in which the melting temperature of the central layer is lower than for
the two outer layers. The greater time lag between reaching the shutdown temperature
and reaching the temperature of shrinking or melting buys time for additional measures
to control thermal runaway [192]. Ceramic coatings added to polyolefin separators will
enhance melting temperature and wettability along with a significant amount of reduction
in material shrinkage at high temperatures [193,194]. To prevent dendrite growth in the
anode, the separator surface facing the anode is normally coated with an ultrathin film
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of copper. This serves as a conducting agent to prevent electrically isolated Lithium on
the anode surface. Furthermore, the electrically conductive nature of Cu guides the rear
side plating of Li metal and modulates its deposition morphology through the merging
of dendrites [195]. Terephthalate-based separators are alternatives to the commonly used
polyolefin-based materials. These separators are made of polybutylene terephthalate
(PBT) which enhances the thermal stability of the entire cell by closing the gap between
the separator phase transition and cell runaway temperature. The key properties of this
type of separator are better permeability and electrolyte wettability with commonly used
carbonate-based electrolytes. These PBT-based separators are good at withstanding cell
abuse [90].

5.1.5. Battery Management Systems

Despite LiBs being the most viable option to power electric vehicles, they have issues
that need to be tackled to ensure optimum performance. The battery works at peak effi-
ciency only when maintained at a certain temperature range (20–40 ◦C (±5 ◦C)). Previously
discussed issues such as ISCs and thermal runaways can be monitored as well as prevented
to a certain extent by using Battery Management Systems (BMS). In the case of monitoring
the battery’s health, the BMS plays a vital role. It monitors parameters and stats such as
State of Charge (SOC), State of Health (SOH), Depth of Discharge (DOD), and State of
Function (SOF) for the entire pack as well as for individual cells.

BMS components can be divided into two major categories: software and hard-
ware [196]. The software component includes data collection and estimation, onboard
diagnostics, charge control, and cell balancing. The hardware part comprises multiple sen-
sors to track battery parameters, safety circuits to avoid battery over-charging, over-heating
and over-discharging, galvanostat, and potentiostat for cell balancing. Data logging is
done at fixed intervals to constantly monitor the battery’s health [197]. Parameters that are
monitored are the voltage of cell and pack, temperature and requirement of isolation and
interlocks [198]. If any abnormal parameter values occur, the BMS will alert the user or
operator regarding the same using inbuilt communication protocols and devices. The BMS
is also responsible for protecting the battery pack from potential hazards by anticipating
them using the data collected and guiding the system back to safe territory. These events,
uncontrolled, eventually could lead to battery failure and may be either intrinsic or extrinsic
in nature. BMS are the decision-makers regarding the use of relevant avant-garde methods
and mechanisms that help in safeguarding the battery from probable perilous scenarios
and operating conditions [198].

The role of BMS for an easier understanding can be further classified as system
management, identification, or prediction of an endangering scenario, and the response
and decisions to be taken once the system’s abnormal behavior is observed [199]. Firstly, in
the case of system management, BMS’s role is to monitor the various operations, detecting
and setting up a Safe Operating Area (SOA) for each cell, deciding the fault criteria, and
finally identification and authentication of system. In the next type, i.e., while detecting or
predicting a perilous scenario, the parameters affecting the safety of the system are further
classified depending on whether the affecting parameter is either intrinsic or extrinsic to
the pack. In the intrinsic case, the electrical parameters of a cell are mostly taken into
consideration and in the case of the external case, the key parameters to be monitored are
overall pack level parameters. Apart from its decision-making towards predicting failures,
BMS should run fault diagnostic checks regularly, along with the managing of thermal
effects, the managing working cycles, and also update the main vehicle control system
regarding the onboard events occurring in the system [199]. Once a fault is identified, it
is required to take necessary countermeasures. These countermeasures involve isolating
the faulty cell/cells or even an entire module depending on the severity of the damage.
Furthermore, the user is informed of the damage and a limp home mode is engaged to
minimize or avoid further damage. If the severity of the fault requires, the entire battery
pack is cut off from the electrical system.
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5.2. Protective Devices
5.2.1. Protection Vents

Protection vents act as a response mechanism to release excess pressure developed
inside the battery beyond the threshold by letting the gas escape into the atmosphere. The
escaping gas is typically mainly CO2 and solvents, but will also contain HF, POF3 and
in the case of a fire, the combustion products are formed from above. A mechanism can
be designed with a mechanical link using a metal disc, which is attached to the cathode.
This breaks the circuit and makes way for the gases to escape. The protection vent can be
seen in Figure 18, in the Li-ion cell assembly. To test this mechanical link, Kato et al. [200]
deliberately added lithium carbonate to the cathode and charged the system to a voltage
greater than 4.8 V. The added lithium carbonate reacts with the deintercalated LixCoO2
at higher voltage releases of carbon dioxide within the system and hence the pressure
was built up. This actuated the aluminum disc, which disconnected the cathode from the
circuit there by protecting the internal components. This protection vent acts as a backup
safety device as it is irreversible and accompanies the release of organic compounds which
may pose additional risks that need to be managed. Usually, the POTC will overrun the
operation of the protection vent by reversibly limiting the current in the circuit under
overheating conditions, as described below [171].
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5.2.2. Positive Thermal Coefficient Device (POTC)

POTCs typically consist of conductive polymers and operate on the principle that
heating caused by the joule effect correspondingly increases the resistance in the device.
This will strongly, but reversibly, inhibit the current passage if the cell is overheated. Under
normal operation temperatures, the POTC should contribute only negligibly to the overall
cell resistance [172]. The POTC device is shown in Figure 18. The standard 18,650 cells
have POTC devices whose surfaces are metal-coated, which enclose PE layers mixed with
carbon black [203]. The POTC can be classified as a ceramic and polymer type. The ceramic
type POTC is suitable to work at a high voltage and is suited for high-voltage circuits.
The conductive polymer-type POTCs are non-linear POTCs, which are made of composite
polymers, such as e.g., PE coated with acetylene black [164,165].
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5.2.3. Other Circuit Cut off Devices

Some of the other (typically reversible) circuit cut-off devices include magnetic
switches, bimetallic thermostats, and electronic Protection Circuit Modules (PRCM), which
can be used to shield the battery pack, preventing the need to trigger irreversible shutdown
mechanisms. The PRCM is attached to the battery circuit independently. When there is a
malfunction in the circuit, the PRCM will break and the circuit is shielded [204]. Thus, LiBs
need an overcharging protection circuit. This can be done by a control unit. Thermal fuses
are the oldest and still most common current inhibitor device. It is a one-shot fuse that
consists of a wire, which is made of a fusible metal or alloy. The principle is based on the
melting when the current reaches the threshold level and sufficient heat is generated to melt.
The advantage of this device is its simple construction; it is economical and easily designed
for a wide range of voltage and current levels. The fuse wire is connected in series to the
battery pack and the melting point is above the maximum operation temperature [171].

5.3. Thermal Management

As discussed in Section 4.3, LiBs operate efficiently in certain temperature ranges and
hence thermal management of batteries plays a key role in maintaining battery health.
The strategies involved in a battery thermal management system (BTMS) can be classified
based on many factors, such as the control methodologies applied, their position, or the
type of contact to the heat source. Based on control methodologies, there are two types,
namely active and passive cooling; in terms of position, there are internal and external
cooling and by contact, it is indirect and direct. According to the cooling medium, the
BTMS may be classified as air cooling, liquid cooling, phase change material cooling, and
heat pipe cooling.

5.3.1. Air Cooling of LiBs

Air cooling is the most popular method for small battery packs where the heat gener-
ated is not so high. There are different methods of air cooling of LiBs in terms of contact,
namely direct air cooling and indirect air fin cooling. Based on the type of energizing air to
pass through, there is forced air and free air-cooling. A pump is utilized to force the air
from the atmosphere to the battery packs in the forced mode of air-cooling. The forced
mode of air cooling is mainly used when a large amount of heat is to be removed from
the battery packs, or when there is no duct present in the vehicle for air passage from the
atmosphere. In free air cooling, the vehicle motion drives the passage of air into the battery
packs through proper ventilation [205].

In the direct mode of air-cooling, the air is passed directly over the surface of the cells
through the tubes or ducts. As the air passes the exposed surfaces of the battery, the heat
is taken away by the airflow via convective heat transfer. The effectiveness of the cooling
system is based on several parameters, such as the heat transfer coefficient of air and the
battery surface, which exposed the face area of the batteries in contact with airflow [205].
In indirect air cooling, a metallic heat sink is used as the fin material, which provides a
larger surface area, and as they are exposed to the atmosphere, the heat from the battery
cells is transferred to the fins by conduction and surrounding air takes away the heat from
the exposed fin surfaces through convection [206]. This method of air cooling has the
advantages of a low cost, lighter packaging, and a simple design [197], but is best suited
for small battery packs, e.g., in two-wheelers, where the amount of heat to be removed
is limited.

5.3.2. Liquid Cooling of LiBs

Liquid cooling is always considered a better alternative to air cooling, especially for
larger battery packs, because of their higher thermal conductivity and the high specific
heat of the coolant compared to the air [207]. Liquid cooling can be classified as internal
and external cooling.
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Internal cooling is the process [207] where the cooling system is implemented inside
the battery pack. This cooling method is very efficient, and the heat is transferred to the
coolant from its origin by a microchannel evaporator, which is sandwiched between two
separate collectors. The advantage of this method is that buoyancy drives the circulation
of the coolant liquid. As an alternative (e.g., for data centers or transformer stations),
immersion cooling is explored, where a sufficiently stable dielectric coolant is circulated
throughout the energy storage module in contact with cell walls, tabs, and electrical wiring.

External cooling refers to cooling by a liquid that is passed along the outer periphery
of the battery pack. Among its advantages are low cost and flexibility in design. Different
equipment used here can be in the form of tubes, jackets, and channels designed according
to the battery layout [207,208]. The supplementary components which carry the coolant cre-
ate a negative impact on heat conduction. External cooling is considered a safer alternative,
as it evades direct contact between coolant and the battery surface [207].

The selection of an appropriate coolant is very critical to obtain better efficiency. Major
coolants include water, oil, nano-fluids, and liquid metals. Water is mainly utilized in
various cases of cooling. It possesses better properties in terms of specific heat capacity,
thermal conductivity, and viscosity. Water consumes less power and is circulated through
pads, jackets, and tubes to avoid the short circuit that might occur if it comes in contact with
the battery terminals [209]. Oil is another alternative, which is mostly used for an immersed
type of cooling system. The efficiency, in this case, is the highest and the packaging is easier.
Due to higher viscosity, more pumping power is required to push the fluid to flow but can
give three times better cooling than its counterpart because of direct contact of the fluid
with the battery [173]. Nano additives will enhance the properties of water or glycol in
terms of thermal conductivity. Common nano additives are Al2O3, CuO, Fe3O4, TiO2, Al,
Cu, Ni, Ag, and other metals or metal oxides. The thermal conductivity of metals is higher
compared to standard cooling fluids. The addition of these particles into the cooling fluid
can increase its thermal conductivity to a large extent. The impact of an additive on the
thermal conductivity is related to the atomic size. In general, the lower the atomic radius,
the higher the thermal conductivity [207].

5.3.3. Phase Change Material (PCM) Cooling of LiBs

PCM cooling is another alternative that is used for LiBs cooling. The PCM materials
possess a high latent heat of fusion and ideal fusion point. The flow pathway of heat in the
battery of PCM cooling is that the heat generated in the battery is passed to PCM and it
reduces the maximum of the heat without passing it to further materials such as the battery
casing. The concept of PCM is that when the heat is absorbed by the material there is a
phase change from solid to liquid and as soon as that heat is pulled out of the system the
PCM material changes its state back to solid [210].

The key property of PCM material is a suitable melting temperature within the range
of operation of the battery. This is very critical to achieve effective heat dissipation. The
packaging of the battery pack has to be done carefully with additional volume available for
the PCM material when it changes to the liquid state. To tailor the heat transfer properties
of PCM materials, a metal matrix can be embedded, or high thermal conductivity additives
and additional fins for heat removal can be added. The system can also be designed with
a dual function as a latent heat storage system. The PCM approach has an advantage in
terms of weight and flexibility in the packaging of the battery pack [211]. Common PCM
materials are paraffin, fatty acids for low-temperature applications, and molten salts for
high-temperature applications. Examples of low-melting metal salts used in this application
are sodium sulfate, potassium hydroxide, sodium chloride with potassium chloride, etc.
In automotive applications, some of the most widely used PCM materials, especially for
a hybrid electric vehicle or electric vehicle application, are PCM with aluminum foam,
graphite matrix, or copper foam to optimize heat conduction [210].
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5.4. Mechanical Mitigation Strategies

The most basic mitigation strategies for different mechanical failures due to compres-
sion and penetration of the batteries are to optimize the battery casings. These casings can
adopt different cross-sections like the double layer metal sheet, NavTruss (as shown in
Figure 19), BRAS, etc. [212] The battery casings shield the battery from mechanical forces
by the principle of absorption of the kinetic energy by compression of the structure. The
main parameters which influence the energy absorption are the stroke length, peak force,
and energy absorption [213]. Zhu et al. [212] conducted a simulation where a compar-
ison of the shortening length of different structures, namely double-layered, NavTruss,
and BRAS, was done. In comparison, BRAS yielded the lowest shortening length, which
implies that it has the maximum kinetic absorption capability when compared to other
structures [212]. Similarly, Halimah et al. found from nonlinear finite element methods
simulations comparing NavTruss and BRAS structures [214] that the energy absorbed by
the BRAS structure is higher. The structural phenomenon involved in the structures is
progressive buckling in BRAS and small bending in NavTruss [213]. The structures like
BRAS and NavTruss can be used for shielding the battery packs against impact loads from
the bottom or side of the vehicle.
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5.5. Fire Control
5.5.1. Fire Diagnosis Device

Fire propagation has become more prominent and can cause devastating damage.
Plenty of research is focused on the early diagnosis of fire in the battery pack and the
addition of fire suppressors to limit the damage caused. Common diagnosis devices are
heat detectors, smoke detectors, and a combination of both which diagnose the ignition in
the LiBs. Research finds that smoke detectors are more apt for this solution when compared
to fire detectors as the response time of smoke detectors is much shorter [99].

5.5.2. Fire Extinguishing

Fires generated during the failure will not depend on external oxygen to burn actively,
but rather are fed by internal reactions within the cell. Water is one of the cheapest and
abundantly available agents to suppress fire [99]. During this suppression, fluorides from
the electrolyte of the cell will react with water and can produce HF, which is toxic to human
health [216]. Lithium can also reduce the water to flammable hydrogen gas. Water mist
has advantageous inhibition characteristics and cooling efficiency, but the spray time of the
water mist has to be more and should almost be equivalent to the time elapsed from the
initial rupture of the cell. The addition of a surfactant can aid the water mist in absorbing
flammable gasses, such as methane and carbon monoxide [99]. Compared with water
or water mist, their combination with fire-fighting foams and powders has a higher fire
repression efficiency [217].

The gaseous suppression agent dodecafluoro-2-methylpentan-3-one (C6F12O) is a
commercially used agent to enhance fire suppression. Figure 20 compares the maximum
temperature reached and the time taken to reduce the temperature with water mist, C6F12O,
and a combination of both. It can be observed that the combination of C6F12O with the
water mist will reduce the peak temperature of the surface and also reduce the temperature
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in the shortest interval of time [218]. ABC powder, carbon dioxide, and aqueous solution
were able to curb open flames in the LiBs [99]. Halons are also used to repress fire, but
the drawback is that as soon as the repression stops, the temperature of the cell increased
again. Therefore, the halons did not prevent the re-ignition of fire. The usage of halons
is reduced as it is harmful to the ozone layer of the earth [219]. Heptafluoropropane is
another extinguishing agent which can be used to fight fires in small battery packs. The
repressed fire might reignite due to the exothermal chemical reactions that take place inside
the battery when the agent is applied. Once again, the application of this agent has to be in
the early stages of fire development [220]. Though several safety systems are implemented
in electric vehicles, fire accidents still exist and they cannot be avoided completely due to
unpredictable field failures and the high energy density desired.
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6. Summary

This review summarizes materials, failure modes and mechanisms, and different
mitigation strategies that can be adopted for the improvement of Lithium-ion battery safety.
NMC and LFP are promising cathode materials. Moving forward, graphite is commercially
widely used as an anode material. However, research is going on to implement lithium
metal or silicon as an anode owing to its advantages. In the area of electrolytes, the focus is
on solid and gel polymer electrolytes. Furthermore, different mechanisms and modes of
failure were studied using the FMMEA method. It was observed that anode active material
is more susceptible and plays a critical role in leading to system-wide failure. Therefore, this
component needs to be re-worked and its safety should be improved. In the case of modes,
mechanical is one of the most perilous, as it rapidly deteriorates the health of the battery,
simultaneously leading to other modes of failure. Understanding failures will help us to
formulate mitigation strategies. Among them, innate safety strategies include alterations
made in cell materials where additives are coated on the electrodes which will aid the
cell performance; additives are also added to electrolytes, which make the electrolytes
fire-resistant. Protection devices are introduced to shield the battery pack from variation
current passage. In the thermal management of battery packs, different strategies are used
in different applications, such as air cooling used in small battery packs with less heat
generation, liquid cooling used in large battery packs with higher heat generation and PCM
cooling can be used in small battery packs with packaging constraints. All these strategies
are used to evade the excessive heat generated in the batteries. The fire control strategy is
used to suppress the fire after the lithium-ion battery fails. It includes fire diagnosis devices
like smoke detectors, which have a better response time compared to fire detectors, and in
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extinguishing agents, water mist with suitable additives is a viable option as it is available
in abundance and has fewer side effects during the process of extinguishing.
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ALD Atomic Layer Deposition
ARC Accelerated Rate Calorimetry
BMS Battery Management System
BRAS Blast Resistant Adaptive Sandwich
BTMS Battery Thermal Management System
DEC Diethyl Carbonate
DMC Dimethyl Carbonate
DOD Depth of Discharge
DSC Differential Scanning Calorimetry
EC Ethylene Carbonate
EMC Ethylmethyl Carbonate
FIB Focused Ion Beam
FMEA Failure Mode Effects Analysis
FMMEA Failure Mode Methods Effects Analysis
FTIR Fourier Transform Infrared Spectroscopy
ISCs Internal Short Circuits
LCO Lithium Cobalt Oxide
LFP Lithium Iron Phosphate
LiBs Lithium-ion batteries
LMO Lithium Manganese Oxide
LTO Lithium Titanate
NavTruss Navy Truss
NCA Lithium Nickel Cobalt Aluminium
NMC Lithium Nickel Manganese Cobalt
NMR Nuclear Magnetic Resonance
PAN Polyacrylonitrile
PBT Polybutylene Terephthalate
PC Propylene Carbonate
PE Polyethylene
PET Polyethylene Terephthalate
PoE Polymer Electrolyte
POF Physics of Failure
POTC Positive Thermal Coefficient Device
PRCM Protection Circuit Modules
PP Polypropylene
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PCM Phase Change Material
PVdF Polyvinylidene Fluoride
SEI Solid Electrolyte Interface
SEM Scanning Electron Microscope
SOA Safe Operating Area
SOC State of Charge
SOF State of Function
SOH State of Health
TGA Thermo-Gravimetric Analysis
ZS Zero Strain
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