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Abstract: The agricultural and forestry waste walnut shell and copolyester hot-melt adhesives
(Co-PES) powder were selected as feedstock. A kind of low-cost, low-power consumption, and
environmentally friendly walnut shell/Co-PES powder composites (WSPC) was used for selective
laser sintering (SLS). Though analyzing the size and morphology of walnut shell particle (≤550 µm)
as well as performing an analysis of surface roughness, density, and mechanical test of WSPC parts
with different particle sizes, results showed that the optimal mechanical performance (tensile strength
of 2.011 MPa, bending strength of 3.5 MPa, impact strength of 0.718 KJ/m2) as walnut shell powder
particle size was 80 to 120 µm. When walnut shell powder particle diameter was 120 to 180 µm, the
minimum value of surface roughness of WSPC parts was 15.711 µm and density was approximately
the maximum (0.926 g/cm3).

Keywords: additive manufacturing; selective laser sintering; walnut shell; particle size; sinter-
ing quality

1. Introduction

Additive manufacturing is a processing and manufacturing method, based on the dig-
ital model file, the fusible materials are accumulated and solidified layer by layer, so as to
produce solid parts [1]. Compared with traditional methods of subtractive manufacturing,
additive manufacturing is a manufacturing method of “bottom-up” materials accumula-
tion [2]. This method has a high degree of freedom in product design and manufacturing,
thus easily fabricating customized production. Therefore, it is mainly used for iterative de-
sign, rapid prototype manufacturing and verification, and producing industrial parts [3–5].
Selective laser sintering (SLS) [6], an additive manufacturing technology, was proposed by
C.R. Decker [7]. SLS has some strengths over other additive manufacturing techniques, for
instance, materials can be reused and high-precision parts can be fabricated [8]. At present,
the powder materials applied in SLS technology mainly focus on metals composites [9–11],
ceramics composites [12,13], and polymers composites [14–17]. Because most SLS materials
have high cost, the research and development of new powder materials suitable for SLS
technology have become a hot spot in current research.

Biomass composite materials mainly consist of the remains of agriculture and forestry,
such as wood, straw, bamboo, rice husk and fruit shell, polymers, and micro additives [18].
Considering the advantages of biomass composites, such as simple preparation process, low
price, good molding performance, and texture [19,20], researchers used an environmental,
recycled, and low-cost biomass composite as a new material of SLS technology [21]. Zhang
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et al. took pine powder of 45–96 µm as raw material and studied parameters such as
different material ratios and laser energy. When the mass ratio of pine powder to Co-
PES was 1:4, the sintered parts had good toughness, and when the energy density was
0.312 J/mm3, the sintered parts had good forming effect [22]. Zhang et al. used pine
powder of 45–96 µm as raw material to conduct SLS experiment on wood powder/PES
powder with different contents of carbon nanotubes. When the content of carbon nanotubes
was 0.1%, the mechanical properties of wood powder/PES parts were highest [23]. Zeng
et al. took birch powder as raw material to prepare laser-sintered birch/Co-PES parts and
conducted wax-infiltrated treatment. The results showed that the mechanical strength and
surface quality of the treated birch/Co-PES parts were significantly improved, while the
porosity was significantly reduced [24,25]. Zhao et al. used bamboo powder of 96 µm
as raw material to prepare laser-sintered bamboo powder/Co-PES parts with different
material ratios, and the mechanical strength of the resin-infiltrated bamboo powder/Co-
PES parts was greatly improved [26]. Then, they took bamboo powder of 120 µm as raw
material to prepare the laser-sintered bamboo powder/copolyamide parts, and the tensile
strength was significantly improved compared with bamboo powder/Co-PES parts [27].
Zeng et al. used rice husk powder of 300 µm as raw material to prepare laser sintered
rice husk/Co-PES parts, and carried on the wax-infiltrated post-processing, the bending
strength of wax-infiltrated parts are significantly increased [28]. Yu et al. took walnut shell
powder of 58–96 µm as raw material to prepare WSPC powder, and verified the feasibility of
using WSPC powder for SLS by single-layer sintering experiment [29]. Through the study
of different material ratio, the mechanical properties of WSPC parts were improved [30],
and it was determined that when the volume fraction of walnut shell powder reached 40%,
the warping deformation of WSPC parts was minimum and the dimensional accuracy was
highest [31]. WSPC powder with 40% walnut shell was used to conduct SLS test by using
five-factor and four-level orthogonal experimental design method, and the optimal process
parameters were determined by using comprehensive weighted scoring method [32]. The
optimal WSPC parts were treated with wax infiltration, and the post-treatment process was
optimized. The optimized WSPC wax-infiltrated parts were conducted with investment
casting to obtain metal parts with stable structure and smooth surface [33]. The previous
research on SLS biomass composites mainly focused on the molding mechanism of SLS,
the composition of biomass composite powder materials, laser sintering process, and post-
treatment process. In the SLS process, it was found that the particle size, geometric shape
and distribution of biomass powder particles had significant effects on the SLS process of
biomass composite powder and the properties of sintered parts. However, the study on
the effect of biomass powder particle size on the properties of sintered parts had not been
reported.

Walnut shell has a hard and dense texture [34]. Compared to bamboo, wood, and rice
husk, it has unique advantages, such as ease of crushing and different particle diameters,
such that it easily meets the requirements of powder particle sizes of materials by SLS.
Hence, this paper selected walnut shell powder as raw material of SLS. The ingredients
of different particle-sized walnut shell powder and Co-PES powder were systematically
studied, additionally, the sintering mechanism of walnut shell composites (WSPC) of
different particle-sized walnut shell powder were deeply analyzed, and then the density,
surface quality and mechanical performance were evaluated. It lays a foundation for
regulating the performances of WSPC parts.

2. Experimental
2.1. Composites Preparation

WSPC composites were composed of walnut shell particles, Co-PES particles as well as
micro-additive. Walnut shell particles (Ding Sheng Corundum Abrasives Ltd., Zhengzhou,
China) were yellow-brown porous-surfaced powder, particle diameter (≤550 µm) in
Figure 1a. Co-PES particles (Tiannian Material Technology Ltd., Shanghai, China) mainly
consist of 1,4 butanediol, m-phthalic acid and dimethyl terephthalate. (white powder, ap-



Materials 2021, 14, 448 3 of 14

parent density 0.7 g·cm−3; particle diameter ≤58 µm, melt flow rate 35 g/10 min at 160 ◦C,
viscosity 350 Pa·s at 160 ◦C) in Figure 1b. Microauxiliaries were mainly light stabilizers and
lubricants. The light stabilizers (density 1.18 g/cm3, melting point 80 ◦C) was purchased
from Zhenhai Jianghua Chemical Industry Ltd. (Ningbo, China), and the lubricant (zinc
stearate, density 1.095 g/cm3, melting point 125 ◦C) was obtained from Tianjin Guangfu
Fine Research Institution (Tianjin, China).

Figure 1. Morphologies of powder particles: (a) walnut shell powder particles (b) Co-PES powder
particles.

Waste walnut shell was broken into walnut shell powder particles of different sizes
by crusher. Crush the walnut shell powder particles by a winnower for air separation
to remove the impurity and diaphragm of the walnut shell powder particles, and polish
them by cylinder polishing machine to get rid of the convex peak on the surface of powder
particles. After steam washing for 1–3 h by steam washing machine, and drying at a
temperature of 85 ◦C to 90 ◦C for 20 h in the dryer, finally filtering through vibrating
screen, different particle size range of walnut shell powder was obtained as shown in
Table 1. After crushing, polishing, steaming, washing and filtering, the obtained walnut
shell powder was dehydrated at a temperature of 105 ◦C for 3.5 h in incubator and weighed
every one hour to keep the mass unchanged. Then, the dried walnut shell powder was
mixed with Co-PES powder in a 1:1.5 ratio [31] by volume in different ratios (Table 1),
using an SHR50A high-speed mixer from Hongji Machinery Ltd. (Zhangjiagang, China).
Microauxiliaries whose volume fraction was 2% was added in order to prefer powder
dispersity. Microauxiliaries include light stabilizers and lubricant. Light stabilizers enable
WSPC powders to exclude or slow down photochemical reactions under laser radiation,
prevent or delay the photoaging process, and extend the life of WSPC products. The
lubricant can reduce the friction coefficient between the mixed powder, so that the mixed
powder has a good dispersion, and at the same time, it can reduce the intermolecular
force of the blend and weaken the interface effect, playing a certain plasticizing effect. The
powder was blended not higher than 30 ◦C for 15 min at low velocity, and afterwards
for 5 min at high velocity to make the powder uniform. Finally, it was cooled to room
temperature.

Table 1. Particle size configuration of WSPC powder.

Test Number Walnut Shell Powder Particles (µm) Co-PES Powder Particles (µm)

I ≤58 ≤58
II 58–80 ≤58
III 80–120 ≤58
IV 120–180 ≤58
V 180–380 ≤58
VI 380–550 ≤58
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2.2. Forming Principle and Method of SLS

The rapid prototyping equipment (AFS-360, Beijing Longyuan Technology Ltd., Bei-
jing, China) used in the experiment mainly composed of powder spreading system, laser
scanning system, working cylinder (Figure 2a), heat control system, and CO2 laser genera-
tor (laser power of 55 W and wavelength of 10.6 µm). Based on the CAD model, through
depositing repeatedly a thin layer of fusible powder with laser beam in a repetitive manner,
and then a three-dimensional solid object is obtained. The schematic diagram of process
is displayed in Figure 2b. Set adjacent samples distance as 5mm, aiming to stop thermal
interference. Figure 2c,d shows sintering method and experiment. Table 2 shows the
processing parameters for SLS.

Figure 2. Process of WSPC for SLS: (a) AFS-360 rapid prototyping equipment (b) schematic diagram
of SLS (c) sintering method (d) sintering state.

Table 2. The SLS process parameters of WSPC [32].

Laser Power
(W)

Scan Speed
(mm/s)

Layer
Thickness

(mm)

Scan
Spacing

(mm)

Preheating
Temperature

(◦C)

Processing
Temperature

(◦C)

12 2000 0.15 0.2 80 75

2.3. Characterization and Test

Powder particle size analysis: a certain amount of walnut shell powder particles were
weighed, then the obtained particles were dehydrated for 3.5 h at 105 ◦C in an incubator
(Beijing Longyuan Technology Ltd., Beijing, China) to remove their moisture. Based on the
dry measurement principle, powder particles of different sizes and good dispersion were
tested by S3500 laser particle size analyzer (Microtrac Inc., Montgomeryville, PA, USA).
The test results were repeated for 3 times, and the average value was obtained. The particle
sizes and particle size distribution curves of walnut shell powder were plotted.

Walnut shell powder, Co-PES powder, surfaces and cross-sections of WSPC parts were
first sputtered with gold because the specimens were non-conductive, and then they were
observed using a scanning electronic microscopy (SEM) (FEI Quanta200, Dutch company,
Rotterdam, The Netherlands).
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Density test: the density of walnut shell powder and WSPC powder was tested by
ST-2106A apparent density tester (Xiamen Ester Instrument Co., Xiamen, China). The test
was identical with the ISO60:1977 standard [35], repeated for 3 times. The average value of
the test results was taken to obtain the density of walnut shell powder of different particle
sizes and WSPC powder.

Using an electronic balance and vernier caliper, the mass and dimensions of the WSPC
parts were measured. The test was repeated three times and the test results were averaged.
The density was calculated using the relation [36]:

ρ =
W

l × b × h
(1)

where W denotes the mass of parts (g), l represents the length of parts (mm), b is the width
of parts (mm), and h denotes the thickness of parts (mm).

Cube specimens were selected as roughness test samples, the size of 20 mm × 20 mm
× 20 mm, using VK-X1000 shape measurement laser microscopic system (Keyence Corpo-
ration, Osaka, Japan) to test the surface roughness of WSPC parts with different walnut
shell powder particle sizes. The test was repeated three times. Their three-dimensional
structure figures and the surface roughness values Ra and Rz were obtained.

Through a tensile testing machine (CMT5504, MTS System Ltd., Sunnyvale, CA, USA)
and a TCJ-4 impact testing machine, the mechanical performance of the WSPC parts with
different walnut shell powder particle sizes was measured. The test was repeated three
times and the test results were averaged value. The tensile strength is identical with
ISO527-2 [37]. The gauge length was 50 mm, and the crosshead speed was 5 mm/min.
The tree-point bending strength is identical with ISO178 [38]. The span length was 64 mm,
and the crosshead speed was 5 mm/min. The U-notched impact strength is identical with
ISO179-2 [39]. The span length was 60 mm, and the pendulum impact power was 4 J.

3. Results and Discussion
3.1. Particle Size Analysis

The particle size of organic filler in SLS process play a strong part in the effect of
spread powder. The effect of spread powder directly affects the forming quality of parts.
As the walnut shell powder particles are made by mechanical crushing, their shapes are
not uniform. Therefore, it is necessary to analyze the influence of the size distribution and
shape of walnut shell powder particles on the effect of spread powder.

Figures 3 and 4 show the particle size distribution and microscopic morphology of
different walnut shell powder particle sizes. In the Figures 3a,b and 4a,b, type I presented
most walnut shell powder particle sizes gathered in 45 µm, and type II showed sizes
gathered in 75 µm. These kinds of powder particle shapes were very diverse, like dendritic,
flake, and clavate. As shown in Figures 3c–e and 4c–e, type III presented most walnut
shell powder particle sizes gathered in 114 µm, type IV showed sizes gathered in 148 µm
and type V showed sizes gathered in 290 µm. These kinds of powder particle shapes were
relatively simple, only like dendritic and clavate. In Figures 3f and 4f, type VI presents
most walnut shell powder particle sizes gathered in 439 µm, powder particle shape is the
simplest, only like clavate. Therefore, it can be concluded that the smaller the walnut shell
powder particles sizes were, the more the particle shape types were, and the more complex
the particle system was. However, with increasing the walnut shell powder particles sizes,
the particle shape types decreased, and the particle system became simple. In the process
of SLS, flake and dendritic powder particles were inconvenient for spreading powder, but
clavate-shaped particles closer to spherical particles, which was advantageous to spread
powder. Importantly, the walnut shell powder particles should not be too big, and in
type VI, large powder particle size led to big dimension deviation of sintered parts under
process parameters in Table 2. Hence, type VI was ignored in the follow-up study.
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Figure 3. Particle size distribution of walnut shell powder: (a) type I (b) type II (c) type III (d) type V (e) type IV (f) type VI.

Figure 4. Microscopic morphology of walnut shell powder particle: (a) type I, (b) type II, (c) type III,
(d) type IV, (e) type V and (f) type VI.

3.2. Surface Quality

Particle size of organic filler and dispersion in amorphous polymer matrix play an
important role in the surface quality of WSPC parts in SLS process. The surface quality of
parts directly affects the usability of parts. Therefore, the surface morphologies of SLS parts
need to be observed to study the influence of walnut shell powder of different particle sizes
on the surface morphologies of WSPC parts.

The upper surface of the sintered sample shown in Figure 2c is used as the test surface
to obtain the microstructure and three-dimensional morphology of the upper surface of
WSPC parts with walnut shell powder of different particle sizes in Figure 5. The roughness
values of the upper surface are shown in Table 3. Figure 5 shows micro-morphologies and
three-dimensional morphologies of WSPC parts surface with different walnut shell powder
particle size. Table 3 presented surface roughness of WSPC parts. In Figure 5a,b, type I
present there were many holes, powder particles agglomeration and amount of material loss
zones on the surface of WSPC parts, thus the surface was very rough. Surface roughness



Materials 2021, 14, 448 7 of 14

Ra and Rz were 27.567 µm and 177.338 µm. The main reason is in typeIthe walnut shell
powder particle size is small, surface area is large, the adhesion force between particles is
large, causing the powder particles adhesion on the powder spreading roller, widespread
lack of material, easy to make the powder particles agglomeration to form larger particles.
Fused Co-PES powder particles cannot fill pores between larger particles, forming holes
on surface of the WSPC sintering parts. Larger particles caused by agglomeration, loss
of material area and the holes result in a big distance between baseline and points on the
measured surface profile, forming the peaks and troughs, even a large number of peaks and
troughs, therefore, in type I WSPC parts show fairly rough upper surface and the surface
quality is poor. In Figure 5c,d, type II showw that there were many holes and powder
particle agglomeration on the surface of WSPC parts, but the material loss zone was small.
Its surface was still rough because of material loss, surface roughness Ra and Rz were 23.973
µm and 171.641 µm. The main reason is in typeIIthe walnut shell powder particle size
increases, the surface area decreases, and adhesion force between particles decrease, the
powder particles adhesion on the powder spreading roller decrease, forming a small area of
the material lack, agglomeration of powder particles decreases, but fused Co-PES powder
particles cannot fully fill pores between larger particles, forming holes on surface of the
WSPC parts. A few particles, because of agglomeration, loss of material area, and the holes,
cause a big distance between baseline and points on the measured surface profile, forming
the peaks and troughs, but a small number of peaks and troughs. Therefore, in type II
WSPC parts show rough upper surface and the surface quality is poor. From Figure 5e–h,
types III and IV present that there were few holes and no material loss zone on the surface of
WSPC parts. Compared with type IV, type III presented more evenly particles distribution.
Because there was no lack of material zone, walnut shell powder particles did not stand
out obviously. Type IV presented a flat surface, and its surface roughness was minimum.
Ra and Rz were 15.711 µm and 99.721 µm. In type III, walnut shell powder particles stood
out obviously, the surface was relatively rough, Ra and Rz were 21.271 µm and 161.617
µm, respectively. The main reason is in type III and type IV walnut shell powder particle
size increases, the particle surface area decreases, and adhesion force between particles
continue to decrease [40], cannot cause powder particles adhesion on spread powder roller
and lack of material. At the same time, nearly no agglomeration phenomenon of the
powder particles was observed, and fused Co-PES powder particles almost fully fill pores
between larger particles, forming a few holes on surface of the WSPC parts. A few holes
and outstanding walnut shell powder particles cause a big distance between baseline and
points on the measured surface profile, forming the peaks and troughs. Therefore, in type
III WSPC parts show rough upper surface and the surface quality is poor. In type IV only a
few holes also cause a big distance between baseline and points on the measured surface
profile, forming the peaks and troughs, but a small number of peaks and troughs, therefore,
type IV WSPC parts show smooth upper surface and the surface quality is good. From
Figure 5i,j, type V show there was no lack of material but more holes on the surface area,
and the walnut shell powder particles was distributed unevenly and stood out obviously.
Type V presented very rough surface, and its surface roughness was maximum. Ra and Rz
were 36.028 µm and 204.952 µm. When the particle size of walnut shell powder increased,
the surface area of powder particles decreased and the adhesion force among particles
decreased, so the agglomeration and adhesion of powder particles did not occur on the
powder spreading roller, causing no material loss zone on the surface of parts. However,
the size difference between walnut shell powder particles and Co-PES powder particles is
too large, thus, walnut shell powder particles cannot be distributed evenly on the powder
bed, which leads to its uneven distribution and standing out obviously on the surface.
Large size of walnut shell powder particles make the molten Co-PES powder particles not
completely fill the pores between powder particles, causing large holes on the surface of
WSPC parts.
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Figure 5. Micro-morphologies and three-dimensional morphologies of WSPC parts with different
walnut shell powder particle sizes. (a) and (b) type I, (c) and (d) type II, (e) and (f) type III, (g) and
(h) type IV, (i) and (j) typeV.
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Table 3. Surface roughness of WSPC parts.

Test Number Surface Roughness Ra (µm) Surface Roughness Rz (µm)

I 27.567 177.338
II 23.973 171.641
III 21.271 161.617
IV 15.711 99.271
V 36.028 204.952

3.3. Morphologies

Particle sizes of organic filler and dispersion in amorphous polymer matrix have a
significant influence on the inner structure of WSPC parts in SLS process. The degree of
compactness of the internal structure of parts directly affects their performance. Therefore,
the inner morphologies of SLS parts need to be observed to explore the effect of walnut
shell powder of different particle sizes on the morphologies of WSPC parts.

Figure 6 shows the SEM figures of sections of WSPC parts with different particle-sized
walnut shell powder. From Figure 6a,b, it can be seen that types I and II presented the
majority of walnut shell powder particles exposed and could not be fully wrapped by
Co-PES matrix, causing low interface bonding strength and forming a few small sintering
necks, but sintering necks were blocked by the self-contact of walnut shell powder particles.
The size and quantity of the inner pores of the WSPC parts were more, the density was
relatively low. The main reason was walnut shell powder particle size was small and
surface energy was big, causing the self-contact. At the same time, the molten Co-PES
accelerated the walnut shell powder particles movement, and made them float on the
Co-PES matrix surface, leading to the walnut shell powder particles unwrapped. Therefore,
the inner pores of the WSPC parts was large, and the density was relatively low.

From Figure 6c,d type III shows that walnut shell powder particles were distributed
evenly in the Co-PES matrix, and almost all the walnut shell powder particles were fully
wrapped by Co-PES matrix, and the interface bonding strength was strong, forming a lot of
sintering necks and a net structure. However, the internal pores of WSPC parts were more,
and the density was relatively low. The main reason was walnut shell powder particles
blocked the flow of molten Co-PES. The molten Co-PES rearranged and wrapped walnut
shell powder particles. The walnut shell powder particles and the molten Co-PES were
combined with each other, forming a net structure and locking each other, but there were
many internal pores. Therefore, the density was relatively low.

In Figure 6e,f, types IV and V show the walnut shell powder particles could not
be fully wrapped by Co-PES matrix. The interface bonding strength was high, but only
a few bigger sintering necks formed, causing that walnut shell powder particles in the
Co-PES matrix distribution was not uniform, and it was easy to generate a large number
of local accumulations in the Co-PES matrix. Type IV presented fewer inner pores and
relative higher density. The main reason showed that the size difference between walnut
shell powder particles and Co-PES powder particles was large, the molten Co-PES easily
flowed and filled the big gaps between walnut shell powder particles, but causing local
accumulation of Co-PES matrix. Type V showed bigger inner pores and relative lower
density. The main reason showed that the size difference between walnut shell powder
particles and Co-PES powder particles was very large, it was hard for the walnut shell
powder particles to be uniformly distributed in the powder bed when spreading powder.
Meanwhile, the molten Co-PES could not fully wrap walnut shell powder particles and
completely fill the big gaps between walnut shell powder particles, and thus it was easy to
cause local accumulation of molten Co-PES. Therefore, the inner pores and quantity of the
WSPC parts was large, and the density was relatively low.
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Figure 6. SEM figures of sections of WSPC parts with different walnut shell powder particle sizes: (a)
type I, (b) type II, (c) and (d) type III, (e) type IV and (f) type V.

3.4. Density of Parts

Particle sizes of organic filler and dispersion in amorphous polymer matrix are im-
portant factors affecting the density of WSPC parts in SLS process. The density of parts
indirectly reflects the degree of compactness of the internal structure of parts. Therefore, it
is necessary to test the density of SLS parts to explore the effect of walnut shell powder of
different particle sizes on the density of WSPC parts.

Figure 7 shows histograms of density of walnut shell powder, WSPC powder and
WSPC parts with different walnut shell powder particle sizes. It can be seen from Figure 7,
with walnut shell powder particle size increased, the bulk densities of walnut shell powder
particle and WSPC powder increased. The main reason is that walnut shell powder particle
size increases gradually but Co-PES powder particle size is unchanged, causing the size
difference between walnut shell powder particles and Co-PES powder particles gradually
increased, and Co-PES powder particles fill the gaps between walnut shell powder particles.
Therefore, with walnut shell powder particle size increased, the bulk density of WSPC
powder increased. With the increase of particle size of walnut shell powder, the density of
WSPC parts first increases and then decreases. The main reason is types I and II show the
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walnut shell powder particle size is small and molten Co-PES makes walnut shell powder
particles move, making walnut shell powder particles float on the surface of the liquid and
not be wrapped by molten Co-PES, thus entities cannot be formed. The size difference
between walnut shell powder particle and Co-PES powder particle is not big, causing a big
gap among the composite powder particles and decreasing bulk density of powder bed, so
the internal pores of WSPC parts are more and the compactness is relatively low. Therefore,
the density of WSPC parts is low. In type III walnut shell powder particle size is bigger than
that of types I and II, with the increase of walnut shell powder particle size, size difference
between walnut shell powder particles and Co-PES powder particle is big, thus improving
the bulk density of powder bed, and Co-PES powder particle size is small, under the action
of laser, sintering rate is fast and melting is sufficient, but walnut shell powder particles
hinders the flow of molten Co-PES, not making molten Co-PES completely fill the gap
between the walnut shell powder particles, which causes many internal pores of WSPC
parts, with a relatively low density. In type IV walnut shell powder particle size is bigger
than that of type III, the molten Co-PES easily flows into the gap between walnut shell
powder particles, the internal pores of WSPC parts are less. The density is high and reaches
maximum, where its value is 0.926 g/cm3. In type V the size difference between walnut
shell powder particles and Co-PES powder particle is bigger. The bulk density of powder
bed is improved, and molten Co-PES easily flows to the gap between the walnut shell
powder particles, but molten Co-PES cannot fully wrap walnut shell powder particles and
fill a larger gap between the walnut shell powder particles. So, the internal pores of WSPC
parts are more and the compactness is relatively low. Therefore, the density of WSPC parts
is low.

Figure 7. Histograms of density of powder particles and parts.

3.5. Mechanical Properties

The interface bonding strength between particle size of organic filler and amorphous
polymer matrix plays a strong part in the mechanical properties of parts. The mechanical
properties of parts directly affect the usability of parts. Therefore, it is necessary to test the
mechanical properties of SLS parts to study the effect of walnut shell powder of different
particle sizes on the mechanical properties of WSPC parts.

Figure 8 shows the change curves of tensile strength, bending strength and impact
strength of WSPC parts with different walnut shell powder particle sizes. The tensile,
bending and impact strengths of WSPC parts show the same change trend, increasing first
then decreasing with the increase of walnut shell powder particle size. Type III shows the
tensile, bending and impact strength of WSPC parts reach highest, its values are 2.011 MPa,
3.5 MPa and 0.718 KJ/m2. The main reason is in type I and type II internal pores and
quantity of WSPC parts are large, most of walnut shell powder particles are exposed and
cannot be fully wrapped by Co-PES matrix, causing low interface bonding strength, so
the tensile, bending and impact strengths are low. Type III shows many inner pores of
WSPC parts, but the walnut shell powder particles distributed evenly in the Co-PES matrix,
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almost all of the walnut shell powder particles are wrapped by Co-PES matrix, forming
a net structure and mutual lock. The interface bonding strength between walnut shell
powder particles and Co-PES matrix is strong, so the tensile, bending, and impact strengths
are high and reach the largest. In type IV internal pores of WSPC parts are small, but
walnut shell powder particles in the Co-PES matrix was unevenly distributed, which is
easy to generate a large number of local accumulations in the Co-PES matrix, causing stress
concentration, so the tensile, bending and impact strengths are low. In type V internal
pores and quantity of WSPC parts are larger, the walnut shell powder particles cannot be
fully wrapped by Co-PES matrix. The interface bonding strength was stronger, but the
walnut shell powder particles in the Co-PES matrix distribution is uneven, which is easy
to generate a large number of local accumulations in the Co-PES matrix, causing stress
concentration, so the tensile, bending, and impact strengths are low.

Figure 8. The mechanical properties change curves of WSPC parts with different walnut shell powder
particle sizes: (a) tensile strength, (b) bending strength and (c) impact strength.

4. Conclusions

1. Through the analysis of the sizes and shapes of walnut shell powder particles, due to
the large particle size and a few types of particle shapes, the melt-viscosity is low, and
the spread powder effect is good.

2. After analyzing surface morphologies and surface roughness of WSPC parts, smaller
walnut shell powder particles result in more holes on the surface of WSPC parts.
Walnut shell powder particles agglomeration and loss of material areas lead to rough
surface. Large particles result in large holes on the surface of WSPC parts. At the
same time, walnut shell powder particles are distributed unevenly and stand out
obviously, which also causes rough surface. When the particle size of walnut shell
powder is 120 to 180 µm, there are a few holes on the surface of WSPC parts, and
walnut shell powder particles are evenly distributed. Moreover, there is no loss of
material area, showing a flat surface, and its surface roughness was minimum. Ra
and Rz are 15.711 µm and 99.721 µm.

3. By morphologies analysis, it can be indicated that smaller walnut shell powder
particles result in larger and more internal pores of WSPC parts, lower density,
smaller sintering necks and lower interface bonding strength. Large walnut shell
powder particles tend to cause uneven distribution of walnut shell powder particles
in the Co-PES matrix, resulting in a large number of local aggregation phenomenon
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in the Co-PES matrix, which leads to larger and more internal pores of WSPC parts,
and lower density. When the particle size of walnut shell powder is 80–120 µm, the
interfacing strength between Co-PES matrix and walnut shell powder particles is
the best in WSPC parts. However, when the walnut shell powder particle size is
120–180 µm, the internal pores of WSPC parts are few and density is relatively high.

4. Through density analysis, the density of WSPC parts first increases and then decreases
as the walnut shell powder particle size increases. When the walnut shell powder
particle size is 80–120 µm, the density of WSPC parts closes to the maximum, and its
value is 0.926 g/cm3.

5. Mechanical test analysis of WSPC parts shows that the tensile strength, bending
strength and impact strength of WSPC parts first increases and then decreases because
of increasing walnut shell powder particle size. When the walnut shell powder
particle size is 80–120 µm, the mechanical properties of WSPC parts are the best,
namely the tensile, bending, and impact strengths reach 2.011 MPa, 3.5 MPa, and
0.718 KJ/m2, respectively.
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