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Abstract: The French gravel industry produces approximatively 6.5 million tons of gravel wash mud
each year. This material offers very promising properties which require an in-depth characterization
study before its use as a construction material, otherwise it is removed from value cycles by disposal
in landfills. We examined the suitability of gravel wash mud and seashells, with fly ash as a binder,
as an unfired earth construction material. Thermal and mechanical characterizations of the smart
mixture composed of gravel wash mud, Crepidula fornicata shells and fly ash are performed. The
new specimens exhibit high compressive strengths compared to usual earth construction materials,
which appears as a good opportunity for a reduction in the thickness of walls. The use of fly ash and
Crepidula shells in addition to gravel wash mud provides high silica and calcium contents, which both
react with clay, leading to the formation of tobermorite and Al-tobermorite as a result of a pozzolanic
reaction. Considering the reduction in porosity and improvements in strength, these new materials
are good candidates to contribute significantly to the Sustainable Development Goals (SDGs) and
reduce carbon emissions.

Keywords: earth construction; gravel wash mud; byproducts; thermal properties; mechanical
performance

1. Introduction

Earth is one of the most ancient and extensively used building materials worldwide [1].
Historically, raw earth has been one of the main building materials in ancient cities such
as Harappa (Pakistan), Duheros (España), Akhlet-Aton (Egypt), Jericho (Palestine), Chan-
Chan (Peru), Atal-Huyuk (Turkey), Babylon (Iraq), Marrakech (Morocco) and others [1–4].
During the past centuries, overshadowed by the architecture of the fossil fuel consump-
tion era, earth-based building materials are nowadays slowly regaining their status and
becoming an integral part of sustainable construction [5]. In addition, earth has excellent
abilities to maintain a more stable and higher indoor humidity level and thermal mass
potential than the most commonly used building materials [6]. Earthen building con-
struction is perhaps the most cost-effective solution to housing problems, with a limited
demand on resources.

Mud is a mixture of fine-grained earth material and water. It offers significant sustain-
ability as a building material [7–10]. One of the basic principles of sustainable construction
practice is to use locally available materials, a characteristic of mud worldwide. Almost
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any type of mud can be used for construction once all the properties are tested and vali-
dated and the required ingredients added. Recently investigated mud materials include
gravel wash muds (GWM) [11,12] and waste mud from gravel quarries. These refer to wet
deposits that are generated during the extraction of gravel and the gravel aggregates in
addition to sand washing. In France, the demand for aggregates reached 435 million tons
in 2019 according to UNICEM, the national quarry industry and construction materials
association [13], with 27% of this volume being concrete. Aggregates are used for the
realization of civil engineering works, roads and buildings. The French gravel industry
produces approximatively 6.5 million tons of gravel wash mud per year, according to
UNICEM [13]. Due to its characteristics, this material could be used as a secondary raw ma-
terial for various applications [11,12,14]. However, it is generally removed from recycling
by disposal in landfills.

Zami and Lee [15] have shown that building with mud has many advantages, such
as lower cost due to efficiency improvements and reduced energy and raw material con-
sumption. In addition, by using locally available low-energy materials, the local economy
is helped by increasing the labor cost and by generating new value. Mud is a mixture of
multiple clay minerals whose structure is of upmost importance since they directly affect
the durability and strength of the mud. The clay minerals are natural composites composed
of layered hydrated alumino-silicates classed into four main groups, i.e., kaolin, illite,
smectite and chlorite [16]. The smectite group is characterized by an extremely expandable
crystal structure (upon hydration and heavy-element uptake), while illite, kaolin, chlorite
and sepiolite are non-expandable clays. Expandable clays are subject to large volume
variations (swelling and shrinking) upon contact with water [17]. Due to this, after water
evaporation, drastic shrinkage and cracking can occur.

The use of byproducts with raw earth or GWM components can be considered a
technically feasible green-like operation. Indeed, it does not require final combustion
of the components, and this avoids the corresponding GHG emissions. Besides, it can
solve the problem of shrinkage and cracking of clay minerals [18]. Consequently, by
substituting traditional materials with such wastes, the building industry can achieve
significant environmental benefits compared to the current situation [19].

The current research focuses on adapting earthen architecture to local and modern
environments by using waste as an additive to earth for construction. For example, in
Colombia, Villamizar et al. studied the effects of the addition of cassava peels and coal
ash on the mechanical properties of compressed earth blocks [20]. They showed that
coal ash led to the stabilization of the compressed blocks and that the cassava peels
considerably improved the dry strength of the compressed blocks. In Brazil, Lima et al.
were inspired to use sugarcane bagasse ash, resulting from industrial processes, as an
additive to compressed earth blocks [21]. Their compressive strength and absorption test
studies showed that such additives do not deteriorate the mechanical properties.

Thomas et al. proved that clay soil and oyster shell powder ground with rice husk
ash were suitable as a binder for unfired mud bricks [22]. The conventional unfired bricks
exhibit a larger compressive strength for 10% replacement of clayey soil by shell. The
calcium carbonate from the oyster shells reacts with alumino-silicates and silicate-rich
pozzolanic materials, leading to the formation of hydraulic products such as calcium
silicate hydrates (CSHs) and calcium aluminate silicate hydrates (CASHs) [23–25]. The
durability and the stability of these CSHs and CASHs depend on the structure of alu-
mina and calcium siliceous phases, which influence their pozzolanicity and thus their
mechanical performance.

Clayey earth soils undergo differential settlements, poor shear strength and high
compressibility, and must be stabilized to enhance their mechanical performance. Chemical
stabilization is a recently proposed technique to achieve this [26]. Fly ash (FA) stabilization
is gaining more importance recently [27–29]. Indeed, FA has been extensively used as
a binder and is a residue originating from coal-fired power plants. France generates
around 3 million of FA annually [30]. The properties of FA, such as low permeability,
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low specific gravity and a high internal friction angle, lead to an increase in the earth
bearing capacity and reduces its compressibility and settlement [27,29]. In addition, fly
ash provides additional alumino-silicates brought into the system and thus amplifies the
reactive surface for pozzolanic reaction [27,28]. These additional alumino-silicates can
also react with calcium hydroxide originating from the hydration of Crepidula shells or
clays [27,28,31].

Mud can be used either directly to construct walls or in the form of compressed mud
blocks. The most popular mud or earth building techniques are rammed earth, daub,
compressed earth blocks and cob [32]. In our region (Normandy, France), the most popular
earth building technique is cob (Bauge in French), which uses a mixture of earth and fibers,
such as straw [33].

In this paper, we study the suitability of gravel wash mud (GWM) and Crepidula fornicata
shell powder, using fly ash as a binder, as a traditional cob material. The compressive strength
and expanding properties of cob specimens based on GWM, CR and FA are investigated.
Thermal properties and analysis of the formed hydrated products are also examined.

2. Materials and Techniques
2.1. Materials
2.1.1. Gravel Wash Mud

The GWM was collected from a decantation basin of a gravel and sand company, op-
erated by LafargeHolcim granulat (located at Yville-sur-Seine and Anneville-Ambourville
in Normandy, France). The Lafarge gravel industry produces approximatively 200 tons of
gravel wash mud at the Sablons quarry per year. The GWM water content is about 75% by
weight. The GWM samples were dried for 6 h in an oven (at 105 ◦C) and then crushed into
a fine powder. The use of GWM requires an in-depth characterization study before it is
upgraded as a construction material.

2.1.2. Fibers

It is known that fibers are added in earth construction as reinforcement and insulating
materials. In this study, we use widely available and cheap wheat straws, which represent a
low environmental impact. Additionally, only residual straws are used in order to prevent
ILUC effects and keep their valorization with the largest renewability and CO2 emission
neutrality as possible. The thermal conductivity of cheap wheat straw fibers is between
0.035 and 0.054 W·m−1·K−1 [33].

The wheat straws are provided by the local farmers (Laulne, Normandy). The physical
properties of straw fibers are presented in Table 1.

Table 1. Properties of Our Wheat Straw Fibers.

Diameter
(mm)

Length
(cm)

Density
(Kg·m−3)

Initial Water Content
(%)

Tensile Strength
(MPa)

1–4 10–58 1910 ± 5 10.7 23.9 ± 3.5

2.1.3. Fly Ash

We used a class F fly ash (FA) originating from coal-fired power plants, certified to
an EN 450-1 standard with an absolute density of 2840 kg/m3 and a Blaine finesse of
3950 cm2/g. The FA byproducts were provided by the SURSCHISTE suppliers based in
the north of France (Hornaing), producing approximatively 120,000 tons of FA per year.
The used FA is a powder with spherical grains, which does not require further processing.
Its chemical composition is given in Table 2.
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Table 2. Chemical Composition of Fly Ash in Weight.% Obtained by Energy-Dispersive X-ray Spectroscopy.

Component SiO2 CaO Fe2O3 Al2O3 K2O MgO TiO2 SO3 Na2O MnO2 P2O5 Cl

wt.% 53.3 5.1 8.5 23.6 3.0 3.0 1.0 1.1 0.6 0.5 0.2 0.1

The XRD pattern of FA can reasonably refined (Figure 1) using 7 different phases
(Table 3). The agreement factors Rwp = 6.8%, RB = 5.9% and a goodness-of-fit below 2
(GoF = 1.7) both indicate the good reliability of our analyses. The microstrain values are
also fitted during this step, and remain low for all the phases.
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Table 3. The Mineralogical Composition of FA.

Phases COD
Reference V (%) Lattice Type

+ Space Group
Lattice Parameters

(Å)
〈D〉

(nm) 〈ε2〉1/2

Calcite
CaCO3

1547347 10.5 (3) Trigonal
R-3c:H

a = 4991
c = 17,101 77 (5) 1 × 10−4

Quartz
SiO2

1526860 2.7 (2) Trigonal
P3221

a = 4919
c = 5408 362 (20) 1 × 10−4

Corundum
Al2O3

1000017 1.1 (2) Trigonal
R-3c:H

a = 4704
c = 13,653 135 (5) 1 × 10−4

Calcium
oxide
CaO

1000044 2.9 (2) Cubic
Fm-3m a = 4807 138 (5) 1 × 10−4

Gehlenite
Ca2Al2SiO7

1000048 14.7 (4) Tetragonal
P-421m

a = 7714
c = 5062 66 (2) 2 × 10−4

Portlandite
Ca(OH)2

1001768 16.9 (3) Trigonal
R-3c:H

a = 3595
c = 4914 55 (2) 6 × 10−4

Larnite
Ca2SiO4

9012789 51.2 (2) Monoclinic
P121/n1

a = 5436
b = 6769
c = 9356
β = 94,172

97 (2) 6 × 10−4

Quantitative phase analysis using Rietveld refinement indicates that the XRD pattern
is indexed by the following major phases: larnite (51.2%), portlandite (16.9%), gehlenite
(14.7%) and calcite (10.5%), with minor occurrence of quartz, calcium oxide and corundum.
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2.1.4. Crepidula Fornicata Shells

Crepidula fornicate (CR) are an invasive gastropod species causing problems in regard
to halieutic resources due to its overgrowth on the coasts. For this work, the ground CR
shells were provided by a fishing factory in Normandy. The crude shells were dried for 24 h
in an oven at 105 ◦C and ground to powders in the ESITC laboratory through a 63-micron
sieve. The specific gravity and the Blaine fineness were 2730 kg·m−3 and 8140 cm2·g−1.
The elemental composition of CR powders was achieved by energy-dispersive X-ray
spectroscopy (EDX) [34]. Calcium is the major cation. EDS also shows the presence of
traces of Na, Si, Na, Mg, Al and S. In addition, X-ray diffraction and Raman analysis show
aragonite as the main phase of Crepidula [34,35].

2.1.5. Mix Design

Different mixes with various compositions were studied before reaching the optimal mix-
ture (presented in this work), which exhibits the best mechanical and thermal performances.

The straw cuts, 5 cm long, were added randomly and mixed with the other components
until the composite became homogeneous. The straw and the water contents were 2% and
18% by weight, respectively [36].

The optimized mix (Table 4) material (GWM-FA-CR) was placed into prismatic molds
(30 cm × 30 cm × 4 cm) for thermal tests and into cylindrical molds (11 cm diameter and
22 cm height) for compressive tests (Figure 2).

Table 4. Composition of the GMW-FA-CR Mix.

Mix GWM FA CR Fiber Water

Mass (%) 50 25 5 2 18
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Figure 2. (a) Sample used for mechanical tests (Ø11 cm × 22 cm) and (b) samples used for thermal analysis
(30 cm × 30 cm × 4 cm).

After the GWM, FA and CR are mixed by hand and dry, water is added until the
mixture becomes fluid. The cheap wheat straws are added gradually for 120 s. The GWM-
FA-CR is then compacted manually and stored for 24 h at 20 ± 1 ◦C. After this period,
the mix is then compacted manually in molds. The prepared molds are stored at room
temperature for 48 h and then transferred for 48 h in an oven at 40 ◦C. The duration of
drying is 3 weeks. After the drying process period, the mixture is kept under ambient
conditions (20 ◦C and 50% relative humidity).
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The samples are ready for characterization once equilibrium is reached (the mass
difference is less than 0.1% between 2 daily weightings). Generally, the equilibrium is
obtained after 48 h at room temperature (20 ± 1 ◦C).

The first observations show that no cracking is observed and that the shrinkage
remains very low (<1%) for GWM-FA-CR after 3 weeks. The specific gravity of the specimen
is around 1910 kg·m−3.

2.2. Experimental Techniques

Chemical analyses were performed by energy-dispersive X-ray spectroscopy (EDS)
using a SUPRA™ 55 (SAPPHIRE; Carl Zeiss, Jena, Germany).

The Raman analyses were conducted using a DXR Thermo Scientific microscope
(Wattam, MA, USA), employing a 532 nm laser source with a 2 mW laser with an integration
time of 120 s and a nominal spectral resolution of 3 cm−1. The Origin software was used
to fit the spectra. The mineralogical composition was achieved using the Raman Open
Database [37].

X-ray diffraction analyses were recorded using a D8 Advance Vario 1 Bruker instru-
ment equipped with pure-copper Kα radiation (λ = 1.54059 Å). X-ray data presented in this
study are collected from 15◦ to 80◦ for 1 s per 0.01◦ step (with 2θ varying and 16 h per scan).
The instrumental calibration is obtained by analyzing the LaB6 standard powder [38]. Quan-
tification and crystalline phase identification were performed using the FPSM procedure
(full-pattern search-match) and the COD database [39]. The diffraction patterns for the stud-
ied samples exhibit several phases. For the assignment of all the phases present in the XRD
diagram, the elemental and chemical composition are primordial. For this purpose, the XRF
and EDS analyses on the analyzed specimen were performed before. A rapid phase analysis
using the online FPSM procedure: http://nanoair.dii.unitn.it:8080/sfpm/fpsmTest.html
(accessed on 10 September 2021) was conducted to determine the probable phases as well
as the lattice parameters for each phase. The COD database then provided the necessary
information of crystal structures and the average size of each structure. The basis of the
FPSM quantifications is the automatic identification of the first list of crystals. The complete
list of phases is obtained using micro-Raman spectroscopy due to its larger sensitivity.
Finally, a Rietveld quantification was performed using the MAUD software using the
appropriate phases [40].

The thermogravimetric measurements were carried out using the NETZSCH instru-
ment (STA 449 F5 Jupiter) on 60–80 mg of powders placed in an alumina pan with a heating
rate of 10 ◦C/min from 20 ◦C to 900 ◦C in a Ar-flowing environment (50 mL/min).

Measurements of water vapor permeability were based on the wet cup method ac-
cording to the standard NF EN ISO 12572 [41].

The dynamic vapor sorption (DVS) technique is used to investigate the solids’ interac-
tion with vapor. In present study, sorption isotherms of the mixtures are studied according
to the standard ISO 12571.

The thermal conductivity was conducted using a HFM (NETZSCH, Model HFM 436
Lambda) [26].

The specific heat capacity of a mixture is conducted according to the standard ISO
11357-4 [42] and using differential scanning calorimetry (NETZSCH, model STA 449 F3).

For the analyzes of specific surface area and the absolute density, we used the BET
method [43] and a helium pycnometer (model Accupyc II 1340), respectively.

The mechanical resistance tests of the cylindrical GWM-FA-CR sample after 28 days
were carried out by an electromechanical press of the IGM company. The compression tests
were conducted by the application of an increasing load at constant speeds of 0.05 kN/s.
The compressive strength is measured at 2% of shrinkage, which is representative of the
earth wall behavior [26].

http://nanoair.dii.unitn.it:8080/sfpm/fpsmTest.html
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3. Results and Discussion
3.1. Physical and Chemical Properties of GWM

The GWM material contains mainly silicon, iron, calcium and aluminum for the major
cations (Table 5), coherently with a clayey mud.

Table 5. Physical and chemical properties of GWM.

Element %

SiO2 61.3
Al2O3 9.8
Fe2O3 10.2
CaO 10.1
MgO 2.9
Na2O 0.1
K2O 1.8
SO3 <0.1

P2O5 <0.1
Cl− 0.11

Physical and Hygrothermal Properties -

Specific surface (in cm2·g−1) 4120
Absolute density (in kg·m−3) 925

Thermal conductivity (in W·m−1·K−1) 0.935 ± 0.01
Water vapor permeability (in

kg·m−1·s−1·Pa−1) 2.4 × 10−11

The particle size distribution of GWM powder (Figure 3), measured using laser
diffraction, exhibits d10 and d90 values of 3.67 and 46.33 µm, respectively. Particles with
sizes less than 63 µm are about 98% of all particles.
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While EDS analysis only provides element characterization, it can be important to
know what crystalline phases these elements form in the material. For instance, Si atoms
can be located in quartz and/or clays, two phases with very different behavior when
incorporated into cob. The first phase analysis by the online FPSM procedure was launched.
The FPSM uses a Rietveld fitting procedure to test all possible crystal structures from the
COD database (restricted to the EDS-detected elements) which provides a ranked list of
candidates for further quantification. The XRD diagram of the GWM powder is then fitted
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with the previous phase identification by FPSM. The XRD pattern of the GWM is reasonably
refined (Figure 4) using eight different phases (Table 6). The agreement factors Rwp = 4.7%,
RB = 3.6% and a goodness-of-fit below 2 (GoF = 1.7) both indicate the good reliability of
our analyses. The microstrain values are also fitted during this step, and remain low for all
the phases.
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Table 6. The Mineralogical Composition of GWM.

Phases COD
Reference V (%) Lattice Type

+ Space Group
Lattice Parameters

(Å)
〈D〉

(nm) 〈ε2〉1/2

Calcite
CaCO3

1547347 30.8 (3) Trigonal
R-3c:H

a = 4987
c = 17,056 392 (20) 8 × 10−4

Quartz
SiO2

1526860 14.3 (2) Trigonal
P3221

a = 4915
c = 5407 219 (10) 4 × 10−4

Albite
NaAlSiO3O8

1556999 2.3 (2) Triclinic
P1

a = 8166
b = 12845
c = 7188
α = 94,240
β = 116,590
γ = 87,715

30 (5) 6 × 10−3

Kaolinite
Al2Si2O5(OH)4

1011045 12.8 (2) Monoclinic
Cc:b1

a = 5246
b = 8886

c = 14,672
β = 100,565

26 (5) 6 × 10−4

Illite
(K,H3O)(Al,Mg,Fe)2(Si,Al)4

O10[(OH)2,(H2O)]
2300190 16.1 (4) Monoclinic

C2/m:b1

a = 5171
b = 8942

c = 10,229
β = 100,683 (1)

70 (5) 2 × 10−4

Goethite
α-FeO(OH) 2211652 2.4 (3) Orthorhombic

Pbnm:cab

a = 4579
b = 9945
c = 2998

21 (1) 6 × 10−4

Montmorillonite
(Na,Ca)0.3

(Al,Mg)2Si4O10(OH)2

1100106 14.8 (2) Monoclinic
C2/c:b1

a = 5451
b = 9067

c = 10,255
β = 100,780

125 (4) 6 ×10−4

Muscovite
KAl2(AlSi3O10)(F,OH)2

1100011 6.7 (4) Monoclinic
C2/c:b1

a = 5183
b = 9006

c = 20,186
β = 95,702

89 (5) 2 × 10−3
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Quantitative phase analysis using Rietveld refinement indicates that the XRD diagrams
are indexed by the following major phases: calcite (30.8%), quartz (14.3%), montmorillonite
(14.8%), illite (16.1%) and kaolinite (12.8%), with minor occurrence of albite, goethite
and muscovite.

Muscovite is a hydrated phyllosilicate mineral containing aluminum and potas-
sium [44]. Albite is a mineral of the feldspars family (silicate group, tectosilicate subgroup)
with the formula NaAlSi3O8, which may contain traces of Ca, K and Mg [45]. Goethite is a
mineral species, a variety of iron (III) oxyhydroxide and an α polymorph of the compound
FeO(OH) [44]. Kaolinite is a mineral species composed of hydrated aluminum silicate and
belongs to the subgroup of phyllosilicates [44].

Illite is the name of a group of non-swelling clay minerals. Illites are composed of
three layers of phyllosilicates—one layer of aluminum (Al) surrounded by two layers
of silicate (Si). They are structurally very close to micas (muscovite, biotite) and other
silicates (feldspar, feldspathoids, orthosis and others), from which they are produced by
bisiallitization, a reaction that takes place when water is attacked under certain temperature
and pressure conditions [44]. Montmorillonite is a mineral composed of aluminum silicate
and hydrated magnesium. Montmorillonite is a 2:1-type clay, also called TOT (tetrahe-
dron/octahedron/tetrahedron). This means that a montmorillonite sheet is formed of three
layers: an octahedral layer of Al(OH−)5O and two SiO4 tetrahedral layers [44]. One of
the most remarkable properties of montmorillonites is their swelling capacity, resulting
from the entry of water into the space between the layers. Montmorillonite dispersed in
water very easily gives a stable, colloidal suspension. On the other hand, this aptitude for
swelling and conversely for shrinkage (collapse of the clay layers during desiccation) poses
significant problems from a geotechnical point of view, causing sometimes-significant
displacements at the foundations according to variations in humidity of the sub-soil.

Some clays have the ability to increase their interfoliar spaces. This property comes
from the incorporation of hydrated cations (Na, Ca, etc.) making it possible to compensate
for permanent charge deficits. This phenomenon no longer exists if the clay charge is too
high (e.g., micas or muskovite in our sample: total clay charge of −1 perfectly counterbal-
anced by the dehydrated cations (K)) or zero (e.g., pyrophyllite, talc: total clay charge of 0,
no interfoliar cation). The expandable species are those whose charge varies from 0.3 to
0.8, which includes the subclass of smectites. It is the water incorporated via the hydrated
cations which allows the swelling of the crystalline structure. The swelling is all the more
important as the humidity is high. The only expandable species present in our GWM is
montmorillonite, with a rate of 14.8%. The presence of muscovite, illite, albite and kaolinite
in the GWM specimen will influence the shrinkage behavior. These crystals contain small
quantities of water and they have a low intercrystalline swelling behavior [46].

3.2. Characterization of GWM-FA-CR
3.2.1. Compressive Strength of GWM-FA-CR

The results also show that GWM-FA-CR produced larger strengths after 3 weeks
of curing compared to those of standard cob materials (Table 7). GWMs are subject to
differential settlement and low shear strength, and require additional stabilization to
enhance their properties. The use of FA as a stabilizer is one of the proposed solutions.
This waste is gaining more importance recently [27–29]. Indeed, FA has been extensively
used as a binder. The properties of FA such as low permeability, low specific gravity and a
high internal friction angle lead to an increase in the earth bearing capacity and reduces
its compressibility and settlement [27,29]. In addition, fly ash provides additional calcium
silicates and alumino-silicates brought into the system, and thus amplifies the reactive
surface for a pozzolanic reaction [27,28]. These additional alumino-silicates can also react
with calcium hydroxide originating from hydration of Crepidula shells or clays [27,28,31].
The formation of calcium silicate and alumino-silicate hydrate products will be confirmed
in the next XRD and Raman section.



Materials 2021, 14, 6216 10 of 19

Table 7. Compressive strength of the cob and the GWM-FA-CR specimens after 3 weeks of curing
compared to those of standard cob building materials from the literature.

Sample Compressive Strength (Mpa)

GWM-FA-CR 5.38 ± 0.23
Standard cob 2.03 ± 0.02

Cob materials from the literature [33] 1.42–1.52

3.2.2. Analyses of GWM-FA-CR Sample Using XRD

An XRD pattern of the GWM-FA-CR sample is refined using seven main phases
(Figure 5 and Table 8). The agreement factors are: Rwp = 7.8% and RB = 9.7% (GoF = 1.55).
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Table 8. The mineralogical composition of GWM-FA-CR after 3 weeks of curing.

Phases COD
Reference V (%) Lattice Type

+ Space Group
Lattice Parameters

(Å)
〈D〉

(nm) 〈ε2〉1/2

Calcite
CaCO3

1547347 26.3 (5) Trigonal
R-3c:H

a = 4984
c = 17,047 308 (20) 8 × 10−4

Quartz
SiO2

1526860 22.3 (3) Trigonal
P3221

a = 4913
c = 5404 690 (10) 5 × 10−4

Montmorillonite
(Na,Ca)0.3

(Al,Mg)2Si4O10(OH)2

1100106 6.4 (2) Monoclinic
C2/c:b1

a = 5441
b = 9003

c = 10,250
β = 100,323

66 (4) 6 × 10−4

Illite
(K,H3O)(Al,Mg,Fe)2(Si,Al)4

O10[(OH)2,(H2O)]
2300190 7.1 (3) Monoclinic

C2/m:b1

a = 5183
b = 8986

c = 10,171
β = 100,50

66 (5) 1 × 10−4

Tobermorite
Ca5Si6O16(OH)2·4H2O 9005498 19.5 (3) Monoclinic

Cm:c2

a = 6806
b = 7402

c = 22,390
γ = 124,345

58 (1) 5 × 10−4

Al-tobermorite
Al0.5Ca4.9H10.7O22Si5.5

1527001 15.6 (3) Monoclinic
Cm:c2

a = 6770
b = 7359

c = 22,227
γ = 123,770

43 (4) 6 × 10−2

Goethite
α-FeO(OH) 2211652 2.6 (3) Orthorhombic

Pbnm:cab

a = 4588
b = 10,093
c = 2984

19 (1) 6 × 10−4
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Quantitative phase analysis indicates that the XRD lines of the GWM-FA-CR sample
are dominated by calcite, quartz, tobermorite and Al-tobermorite. In addition to these
phases, montmorillonite, illite and goethite originating from GWM are also detected in
lower amounts. Consequently, part of these phases did not react, neither with FA nor with
CR. The calcium originating from CR and GWM reacts with alumino-silicates from GWM
and silicate-rich FA pozzolanic materials, which leads to the formation of hydrated phases,
mainly calcium aluminate silicate (Al-tobermorite) and calcium silicate (Al-tobermorite)
hydrates. Tobermorite minerals exhibit orthorhombic symmetry and a basal spacing
of 11 Å with the formula Ca4+x(AlySi6–y)O15+2x–y·5 H2O, where x and y are from 0 to
1 [47]. Tobermorite has a high cation exchange capacity and high selectivity towards
Al [48]. The Al-substituted tobermorite is considered to be a new family of selective cation
exchangers [48]. The substitution of Si by Al occurs in the bridging and non-bridging
tetrahedron sites [49,50]. The synthesized Al-substituted forms of tobermorite are formed
in the presence of some raw materials, such as FA [51,52] and/or phases from the CaO-
SiO2-H2O system [53].

3.2.3. Analyses of GWM and GWM-FA-CR Sample by DSC

Figure 6 shows the derivative thermogravimetry calorimetry (DTG) skeletons of the
GWM and GWM-FA-CR samples. The mass loss between 100 and 130 ◦C is attributed to
the dehydration and evaporation of free water. The DTG peak present in the GWM-FA-CR
from 85 to 100 ◦C is assigned to the evaporation of free water and the dehydration of CSH
gel [54]. The other peak located at 130 ◦C indicates a dehydration of CASH-type reaction
products [55], and the peak above 460 ◦C the dehydration of portlandite [56].
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For the GWM sample, the first endothermic peak, which begins at 110 ◦C, corresponds
with the removal of hygroscopic water between the clay particles [57].

The mass loss between 500 and 560 ◦C is attributed to the dehydration of the clay
minerals [58,59]. For GWM-FA-CR, we can observe that the clay’s dehydration peaks are
very low compared to those of the GWM sample. This phenomenon is due to the reactivity
of these clay minerals with FA and CR to form CSH and CASH hydrated products. The



Materials 2021, 14, 6216 12 of 19

mass loss at 295 ◦C is attributed to the decomposition of hydroxides, such as goethite [60].
A discrete endothermic peak around 575 ◦C can also be observed. This peak is attributed
to the allotropic transformation of α into β-quartz [61].

The endothermic peaks at 720 ◦C, with a large range in the DSC curve, are due to the
decomposition of calcium carbonates [62]. It is important to note that these endothermic
peaks are strongly asymmetric, which indicates that the decomposition kinetic increases
with temperature until the depletion of carbonates. The carbonate decomposition leads to
CO2 release to the atmosphere.

The exothermic DTA peaks above 800 ◦C, present only in the GWM sample, are
associated with the decomposition of clay minerals. They form a new mineral with a
spinel-type structure [63].

3.2.4. Raman Spectroscopy Analyses

The Raman analyses of the hydrated structures formed in the GWM-FA-CR after
28 days show the presence of tobermorite and Al-tobermorite (Figure 7). In addition to
the CSH and CSAH phases, the Raman spectra also show the presence of quartz as well
as calcite [64,65]. It is important to note that no trace of aragonite was detected. This is
probably due to the complete dissolution of this phase. Indeed, the solubility (LogKsp) of
aragonite in water at 25 ◦C is −8.336 ± 0.020, leading to the formation of Ca2+ and CO3

2−

ions [66]. Therefore, the dissolved Ca2+ ions will participate in the hydration reactions and
then in the formation of the CSH and CASH phases.
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The nature of the hydrated CSH and CSAH structures have been largely studied
by Raman spectroscopy [67,68]. All Raman spectra of tobermorite show the presence of
the most intense vibration mode attributed to the Si–O stretching vibration at 665 cm−1

(Figure 7a). The band near 440 cm−1 is attributed to the Si–O–Si twisting and stretching
modes. The vibration modes attributed to the lattice vibrations of Ca-O polyhedra are
present at low-wavenumber zones (<350 cm−1). The vibration modes in the wavenumber
region between 850 and 1100 cm−1 are assigned to the Qn symmetric stretching modes of
silicate Si-O.

The Raman spectra show that the Q2 symmetric stretching mode present at 1005–1020 cm−1

in the GWM-FA-CR specimen split into two vibration bands at 1007 and 1016 cm−1. This split-
ting is the signature of the Si–O–Si chain length modification by a change in the amount of
silica tetrahedron Q2p (pairing) and Q2b (bridging) [69]. The split of Q2 is mainly due to a
high quantity of fly ash silicon. Indeed, the silicates, brought by FA, react with the calcium
originating from CR and GWM to form additional CSH gel as a result of a pozzolanic reaction,
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and thus lead to a reduction in porosity and enhanced strength. The Raman spectra show also
the presence of the C-O stretching mode in the CaCO3 group at 1085 cm−1.

For Al-tobermorite, we can observe that the wavenumbers of the vibration modes
are red-shifted compared to those of pure tobermorite. This phenomenon is due to Al
substitution in tobermorite. Al substitution in tobermorite induces a decrease in the cell
parameters compared to those of tobermorite (Table 8). The Al substitution leads to an
increase in the (002) interplanar crystal spacing due to the larger radius of Al3+ compared
to Si4+ [70]. The substitution of Al enhanced the degree of the silicate chain polymerization
in tobermorite [70].

The main hydration products responsible for the increase in mechanical performance
properties are: tobermorite and alumino-silicate hydrates (Al-tobermorite).

3.2.5. Thermal Conductivity of GMW-FA-CR

A thermal conductivity (λ) lowered to two-third the one of the standard cob is also
observed for GMW-FA-CR (Table 9), with 0.58 W·m−1·K−1 and 0.35 W·m−1·K−1, respec-
tively. This shows that the FA-CR addition improves the thermal insulation character of
the GMW construction material.

Table 9. Thermal Conductivity of GWM-FA-CR Specimen and the Standard Cob Compared to Those
of Cob Building Materials from the Literature.

Sample Density (kg·m−3) Thermal Conductivity
(W·m−1·K−1)

GMW-FA-CR 1910 ± 5 0.35 ± 0.03
Standard cob 1843 ± 5 0.58 ± 0.02

Cob materials from the
literature [33,36,70–72] 1200–2000 0.47–0.93

This behavior is peculiar because the density of the standard cob is smaller than
the one of GMW-FA-CR. In this latter, the greater density results in a smaller thermal
conductivity, a sign of significant modifications of the thermal carriers in the material
with the introduction of FA and CR. Our measurements cannot dissociate between the
contribution of electrons and phonons to thermal conductivity, but the former contribution
is generally more affected by density than the latter. In such low-electronic-conduction
materials, the former can be expected to mainly contribute.

3.2.6. Moisture Sorption Isotherm of GMW-FA-CR

The curve shapes are similar for GMW-FA-CR and the cob specimens, and correspond
to a sigmoid (Figure 8). The moisture sorption curves belong to type II isotherms [73].
An increase in the mass difference from the GWM-FA-CR to the cob specimen is noticed.
This increase could be attributed to two main factors: porosity and differences in phase
fractions (quantity of clay minerals) in the cob and the GMW-FA-CR specimen [74]. In the
GWM-FA-CR, the addition of FA and aragonite originating from CR on the GWM lead to
a decrease in clayey minerals. In addition, the porosity of the GWM-FA-CR mix is only
two-third that of the standard cob (Table 10), further decreasing the mass difference.

3.2.7. Specific Heat Capacity of GWM-FA-CR

The specific heat capacity values for the GWM-FA-CR mix are between 925 and
1250 J·kg−1·K−1. These values are very high compared to those of the standard cob speci-
men at all temperatures. (Figure 9). For the construction sector, building with materials
with a high specific heat capacity performance is very important in regard to the energy
aspect. In addition, the specific thermal capacity of materials is very important in the
construction industry for the evaluation of the indoor comfort of the building’s occupants.
In summer, walls with a high thermal capacity keep rooms cool for a long time. In winter,
they retain heat in buildings longer.
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3.2.8. Thermal Insulating Wall with GWM-FA-CR

There is a strong tradition for cob constructions in Germany [75]. This system of
construction is made with a secondary layer. The first layer is composed of traditional
cob as a structural wall and the second layer, based on light earth, is used as a thermal
insulating wall (Figure 10).
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For this purpose, we investigated the performance of the thermal and mechanical per-
formance of a thermal insulating material based on a GWM-FA-CR mixture incorporating
reed fibers (length between 4 and 6 cm). According to the usual method in bibliography [33],
the reed content used was 25%.

The thermal conductivity of the light-earth wall based on GWM-FA-CR is
0.112 W·m−1·K−1 at 20 ◦C (Table 11). For the standard cob insulating specimens, λ is
0.157 W·m−1·K−1 at 20 ◦C. This showed that the use of GWM-FA-CR lead to a decrease
in thermal conductivity compared to light-earth material. In addition, we show that this
GWM-FA-CR mixture enhanced the compressive strength of the earth insulating materials.
This result is surprising and shows that we can use this GWM-FA-CR mixture for both
structural and insulating walls. In terms of performance criteria, the suitability of GWM
for earth construction without further additives was not possible due to the presence of
swelling clay.

Table 11. Physical Properties of the Thermal Insulating Materials Based on GWM-FA-CR and 25% Reed Fiber after 28 Days
of Curing Compared to Those of Standard Cob Insulating Building Materials from the Literature.

Sample Compressive Strength (MPa) Thermal Conductivity (W·m−1·K−1)

GMW-FA-CR + 25% reed fiber 0.140 ± 0.01 0.112 ± 0.005
Standard cob insulating wall [26] 0.079 ± 0.01 0.157 ± 0.005

It is important to note that different GWM powders from 12 various quarries in
Normandy have been studied by EDS, XRF and X-ray, and the quantitative analysis shows
that the crystalline phases identified were quartz, calcite and muscovite, kaolinite and illite
as clay minerals followed by iron oxy-hydroxides (Table 12). However, a rapid strength
was observed and the maximal compressive strength achieved after 3 weeks of drying
was around 5 MPa for all the specimens made with GMW, 25% of FA and 5% of CR.
Furthermore, with this addition, the content of swelling clays is reduced whatever the
origin of GWM.
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Table 12. Chemical and Mineralogical Properties of Different GWM Specimens.

Chemical Analyses (in Weight.%) Mineralogy

SiO2: from 41 to 78% Quartz: from 10 to 25%
Al2O3: from 6 to 15% Kaolinite: from 8 to 20%

Fe2O3: from 5 to 12.5%
CaO: from 3 to 16%

Calcite: from 23 to 35%
Illite: from 11 to 19%

MgO: from 0.6 to 3.6% Smectites: from 10 to 28%
Na2O < 0.2% Feldspaths: from 0 to 5%

K2O: from 1 to 2.1% Plagioclases: from 0 to 1%
SO3 < 0.1 Iron oxy-hydroxides: from 1 to 6%

P2O5 < 0.1 Micas: from 2 to 9%
Cl− < 0.2% Swelling clays: from 9 to 18%

4. Conclusions

This study presents the effect of the use of a GMW-FNS-CR mix as an earth con-
struction material. The thermal and mechanical characterizations of the GWM-FA-CR
sample as well as the microstructural properties yield some encouraging results, which are
highlighted as follows:

1. The use of GWM, CR and FA can greatly contribute to the Sustainable Development
Goals (SDGs) and to reducing carbon emissions.

2. The formation of tobermorite and Al-tobermorite leads to high mechanical perfor-
mance properties of the GWM specimen.

3. The increase in compressive strength compared to usual cob materials results in a
reduction in the cob wall thickness, and therefore a gain in the quantities of materials
used in cob construction.

4. The use of FA and CR provides two advantages:

(1) The high silica and calcium contents originating from FA and CR, respectively,
react with clays and lead to the formation of tobermorite and Al-tobermorite
as a result of a pozzolanic reaction, and thus lead to a reduction in porosity
and enhanced strength.

(2) The thermal conductivity of the GMW-FA-CR is reduced and the specific heat
capacity is enhanced compared to those of the usual cob construction materials
used in Normandy.
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