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Abstract: The effects of three pyridine derivative additives, 4-hydroxypyridine, 4-picolinic acid, and
4-cyanopyridine, on Al-Mn coatings were investigated in 1-ethyl-3-methylimidazolium chloride-
AlCl3-MnCl2 (EMIC-AlCl3-MnCl2) ionic liquids. The smooth mirror-like bright Al-Mn coatings were
obtained only in the EMIC-AlCl3-MnCl2 ionic liquids containing 4-cyanopyridine, while the matte
Al-Mn coatings were electrodeposited from EMIC-AlCl3-MnCl2 without additives or containing
either 4-hydroxypyridine or 4-picolinic acid. The scanning electron microscope and X-ray diffraction
showed that the bright Al-Mn coatings consisted of nanocrystals and had a strong (200) preferential
orientation, while the particle size of matte Al-Mn coatings were within the micron range. The
brightening mechanism of 4-cyanopyridine is due to it being adsorbed onto the cathode to produce
the combined effect of (1) generating an overpotential to promote Al-Mn nucleation; (2) inhibiting
the growth of the deposited nuclei and enabling them grow preferentially, making the coating
composed of nanocrystals and with a smooth surface. The brightening effect of 4-cyanopyridine on
the Al-Mn coatings was far better than that of the 4-hydroxypyridine and the 4-picolinic acid. In
addition, the bright Al-Mn coating was prepared in a bath with 6 mmol·L−1 4-cyanopyridine and
displayed superior corrosion resistance relative to the matte coatings, which could be attributed to its
unique nanocrystalline structure that increased the number of grain boundaries and accelerated the
formation of the protective layer of the corrosion products.

Keywords: ionic liquids; electrodeposition; Al-Mn coatings; bright; pyridine derivative additives

1. Introduction

Aluminum (Al) and Al alloys exhibit excellent physical properties, especially
aluminum–manganese alloys (Al-Mn). Not only do they have low density and good
strength, they possess superior hardness and outstanding corrosion resistance, which has
attracted much attention in the field of corrosion protection [1–6]. Electrodeposition is
considered to be the primary technique for the preparation of metal and alloy coatings.
Electrodeposition has certain advantages, such as convenient operation, low cost, and
low temperature, and it is relatively facile in adjusting the structure and grain size of the
deposits compared with spray coatings and physical and chemical vapor depositions [7,8].
However, Al has a high negative reduction potential (−1.67 V vs. SHE), and Al and its
alloys can only be electrodeposited in non-aqueous electrolytes [9]. More recently, non-
flammable, less volatile nature, wide potential windows, high solubility of the metal salts
and high conductivity of room temperature ionic liquids demonstrate their superiority for
the deposition of water-sensitive metals, as well as promising alternative electrolytes for
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the deposition of Al-Mn coatings [10]. In the last decade, ionic liquids have been the focus
of fundamental research for the electrodeposition of Al-Mn coatings [3,8,11,12].

The microstructure of the metal coatings has a remarkable impact on its properties,
such as brightness, hardness, and corrosion resistance. Lately, a few papers have been
published to modulate the microstructure of the Al-Mn electrodeposited from ionic liquids
by changing the Mn content, adding appropriate alloying elements, and optimizing the
current density. The Schuh group [5] elucidated the effects of Mn content on the Al-Mn
coatings’ grain size and phase. It was found that the Al-Mn coatings with a Mn content
of 0–7.5 at.% were microcrystalline (7–15 µm) face-centered cubic (fcc) solid solutions and
exhibited rough angular surface morphologies. With the Mn content rising between 8.2 and
12.3 at.%, these deposits have a smooth, nodular surface structure and encompass nanome-
ter scale crystals (10–25 nm) of the fcc solid-solution phase coexisting with an amorphous
phase. Meanwhile, the hardness of the coatings also increased from 2.8 to 5.2 GPa, com-
pared to the low Mn content (<7.5 at.%). Previous work from the Wang group [13] showed
that the Zr added to the Lewis acidic aluminum chloride-1-ethyl-3-methylimidazolium
chloride ionic liquids containing 0.04 mmol·L−1 MnCl2 could obtain dense nanocrystalline
Al-Mn-Zr alloy films with superior anticorrosion performance. This could be attributed
to the higher overpotential of the electrodeposition induced by ZrCl4 in the bath solution.
Ling et al. [11] found that the amorphous Al-Mn coating fabricated from MnCl2-AlCl3-
EMIC (0.2 mol·L−1 MnCl2 in 2:1 AlCl3-EMIC) room temperature ionic liquids at a low
current density (6 mA·cm−2) displayed anodic sacrificial protection and a low corrosion
rate for NdFeB. The use of additives was one of the key technologies needed to regulate
the microstructure and properties of the electrodeposited coatings. Furthermore, the effects
of a large number of additives on the electrodeposition of Al coatings from ionic liquids
have been studied, such as nicotinamide [14], tetraethylenepentamine [15], toluene [16],
and methyl nicotinate [17]. However, a few investigations report the effects of organic
additives on the microstructure and performances of Al-Mn coatings electrodeposited from
the ionic liquids.

In the present study, we selected three pyridine derivatives with different functional
groups, namely 4-hydroxypyridine, 4-picolinic acid, and 4-cyanopyridine, as organic addi-
tives and investigated their effects on the microstructure and properties (e.g., brightness,
and corrosion resistance) of Al-Mn coatings electrodeposited from EMIC-AlCl3-MnCl2
ionic liquid in detail. The brightening mechanism of 4-cyanopyridine was explored.

2. Experimental
2.1. Preparation of Ionic Liquid Electrolyte

The ionic liquid electrolytes preparation and electrochemical experiments were carried
out in an Ar-filled glove box (SG1200/1000TS, Vigor Co., Chengdu, China), in which the
moisture and oxygen content was maintained below 1 ppm. The 1-ethyl-3-methylim-
idazoliumchloride (EMIC) was synthesized according to Ref. [18]. Anhydrous AlCl3 (Alfa
Aesar, Tianjin, China, 99.99%) and MnCl2 (Rhawn, Shanghai, China, 99.99%) were used
as received. The EMIC-AlCl3 ionic liquid electrolyte was prepared by mixing EMIC and
anhydrous AlCl3 at a mol ratio of 1:2. Anhydrous MnCl2 (0.04 mol·L−1) was added to
the pretreated EMIC-AlCl3 electrolyte bath before the final addition of each additive and
agitated at 333 K for 24 h to achieve the EMIC-AlCl3-MnCl2 ionic liquid. The following dif-
ferent concentrations (2 mmol·L−1, 4 mmol·L−1, 6 mmol·L−1, and 8 mmol·L−1) of the pyri-
dine derivatives were used as additives without further purification: 4-hydroxypyridine
(Rhawn, Shanghai, China, 99.86%), 4-picolinic acid (Rhawn, Shanghai, China, 99.00%),
and 4-cyanopyridine (Rhawn, Shanghai, China, 98.00%). After the additives were added
to the EMIC-AlCl3-MnCl2 ionic liquid, the electrolyte (EMIC-AlCl3-MnCl2-additive) was
continuously stirred via a magnetic bar (RET basic, IKA, Staufen, Germany) at 333 K until
a transparent liquid was obtained.
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2.2. Electrodeposition of Al-Mn Coatings

Electrodeposition was conducted in a two-electrode cell in the Ar-filled glove box,
using a power source (YS9000DDB-1220, Shanghai Yi Sheng Electronics Co., Shanghai,
China). Highpurity Al plates (99.999%, 2.5 cm × 3 cm) were used as the anode, and the
copper (Cu) plates (1 cm × 4 cm) were used as the cathode. The distance between the
anode and the cathode was about 20 cm. Prior to each electrodeposition, the Cu plates were
mechanically polished with a 4000# grit waterproof abrasive paper, then ultrasonically
cleaned by deionized water and anhydrous ethanol, respectively. After the cleaning, a
part of each substrate was covered with PTFE tape so that a square area (1 cm × 1 cm)
could be exposed. Al plates were polished and rinsed in sodium hydroxide solution,
deionized water and ethanol prior to use, respectively. In order to prevent reoxidation, the
dried plates were transferred to the Ar-filled glove box with the least delay possible. The
Al-Mn coatings on Cu substrates were electrodeposited with a constant-current mode of
10 mA·cm−2 for 30 min. During the electrodeposition, the bath was stirred at 230 rpm and
the temperature of the bath was kept at 303 K with a thermostat (RET basic, IKA, Staufen,
Germany). After electrodeposition, all coating specimens were immediately transferred
from the glove box, washed in succession by deionized water and ethanol, and finally dried
with air. The Al-Mn coatings electrodeposited from EMIC-AlCl3-MnCl2 bath containing no
additives, 6 mmol·L−1 4-hydroxypyridine, 6 mmol·L−1 4-picolinic acid, and 6 mmol·L−1

4-cyanopyridine additives were labeled as Al-Mn-BK, Al-Mn-HP, Al-Mn-PA, and Al-Mn-
CP, respectively. The schematic diagrams of whole fabrication procedures about the Al-Mn
coatings were depicted in Figure 1.
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Figure 1. Schematic diagrams about fabrication procedures of the Al-Mn coatings.

2.3. Characterization

A scanning electron microscope (SEM, JSM-7800F, JEOL, Tokyo, Japan) with an energy
dispersive spectroscopy (EDS) was used to observe the surface morphology of the Al-Mn
coatings. The compositions of various coatings were determined by X-ray diffractometer
(XRD, SmartLab-9, RIGAKU Co., Tokyo, Japan) with Cu Kαradiation (λ = 0.15405 nm). The
cathodic polarization curves of EMIC-AlCl3-MnCl2 with and without pyridine derivative
additives were investigated using a Princeton Parstat 2273 electrochemical workstation
(ARAMTEK Co., Philadelphia, PA, USA) in the glove box at 303 K. The Cu plate (1 cm2) was
used as the working electrode, and the Al plates (99.999%) were regarded as the reference
and counter electrodes. The Raman spectrum was obtained using a LabRam HR Evolution
(Jobin Yvon-Horiba, Paris, France) with a 532 nm Ar-Kr 2018 RM laser (Spectra Physics,
Milpitas, CA, USA) as the excitation source. The potentiodynamic polarization curves
of various Al-Mn coatings were tested using a Princeton Parstat 2273 electrochemical
workstation (ARAMTEK Co., Philadelphia, PA, USA), with the coated sample as the
working electrode, the platinum plate as the counter electrode, and the saturated calomel
electrode (SCE) as the reference electrode. The potentiodynamic polarization curves for all
samples were obtained by automatically changing the electrode potential from −0.4 V to
0.6 V with reference to the open circuit potential (OCP) at a sweep rate of 2 mV·s−1.
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3. Results and Discussion
3.1. Characterization of the Al-Mn Coatings

The surface morphology of all coated specimens was examined by SEM (Figure 2). The
Al-Mn-BK coating consisted of randomly dispersed inhomogeneous angular grains with a
diameter of 0.2–1.5 µm (Figure 2a,b). With the addition of 6 mmol·L−1 4-hydroxypyridine
to the EMIC-AlCl3-MnCl2 ionic liquid, a dense Al-Mn-HP deposit with a uniform grain
size of approximately 0.5–1.5 µm was observed (Figure 2c,d). When 4-picolinic acid
(6 mmol·L−1) was used as the additive, the obtained Al-Mn-PA coating exhibited a
smoother appearance than the Al-Mn-HP coating, although the grain size of both samples
shared a resemblance (Figure 2e,f). Using 6 mmol·L−1 4-cyanopyridine as the additive
produced a smoother and flatter Al-Mn-CP deposit with nanocrystals (Figure 2g,h and
Figure S1).
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Figure 2. SEM images obtained for the (a,b) Al-Mn-BK, (c,d) Al-Mn-HP, (e,f) Al-Mn-PA, and
(g,h) Al-Mn-CP coatings. (a,c,e,g) are the corresponding SEM images of coated samples at a
2000× magnification, (b,d,f,h) are the corresponding SEM images of the coated samples at a
20,000× magnification.

The elemental compositions of all Al-Mn coatings are shown in Figure 3, and the
corresponding elemental content of the different coatings is listed in Table 1. In the EDS
spectrum, all samples exhibited strong Al and Mn peaks. This demonstrates that the Al-Mn
coatings were synthesized from the EMIC-AlCl3-MnCl2 ionic liquid containing no and
various pyridine derivative additives. Furthermore, weak O and Cl peaks were found in
all the Al-Mn coatings. The small proportion of O originates from the oxidation of the
surface of the Al-Mn coatings in atmospheric conditions. The emergence of Cl could be the
result of trace amounts of AlCl4− or some other chloroaluminate species intercalated into
the Al-Mn coatings during the electrodeposition process [19].
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Table 1. Elemental compositions of various Al-Mn coatings obtained from the EDS spectra in Figure 3.

Element Al-Mn-BK Al-Mn-HP Al-Mn-PA Al-Mn-CP

Al (at.%) 90.44 89.38 90.38 90.15
Mn (at.%) 7.49 6.87 7.26 4.85
O (at.%) 1.99 3.31 2.29 2.47
Cl (at.%) 0.08 0.44 0.08 2.53

Figure 4 reveals the XRD patterns of the Al-Mn-BK, Al-Mn-HP, Al-Mn-PA, and Al-Mn-
CP coatings. For the Al-Mn-BK coating, the diffraction peaks of the Al and Cu substrates
were confirmed from the XRD patterns. Among them, the four characteristic diffrac-
tion peaks (denoted by

1 
 

 ) were attributed to the (111), (200), (220), and (311) crystal
planes of a typical well-crystallized face-centered cubic (fcc) structure Al materials (JCPDS
no. 01-1180) [13]. No evidence of Al-Mn intermetallic formation or metallic Mn was de-
tected in the XRD patterns; however, the EDS data confirmed the presence of Mn in the
Al-Mn-BK coated samples and the Al-Mn deposits can be solid solutions of fcc Al. This
is in agreement with previous studies [5]. A similar XRD pattern was observed for the
Al-Mn-HP coating, and only the intensity of the characteristic diffraction peaks was altered
slightly compared to the Al-Mn-BK coating. However, the (220) and (311) characteristic
diffraction peaks of the Al-Mn-PA and Al-Mn-CP coatings vanished, and the intensity of
the peak on the (200) crystal plane was significantly enhanced. This phenomenon implied
that the pyridine derivative additives significantly modified the crystallographic structure
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of the Al-Mn coatings. The results of the texture calculations for the various Al-Mn coatings
obtained from the XRD patterns in Figure 4 are demonstrated in Table S1. The Al-Mn-BK
deposit was preferentially textured, taking the orientation of both the (200) and (220) crystal
planes. Nevertheless, the ionic liquid, including various additives, resulted in the Al-Mn-
HP, Al-Mn-PA, and Al-Mn-CP coatings having a strongly preferred (200) reflection [20].
A careful comparison of the (200) peaks of the various Al-Mn coatings revealed that the
(200) peak of the Al-Mn-CP coating was observably broadened, suggesting that the smaller
grain sizes were obtained during the Al-Mn-CP coating (Figure 4). According to the Scher-
rer equation, the average crystalline size of the Al-Mn-CP deposit was estimated to be
36 nm [21]. Moreover, the determined crystallite size confirmed by XRD was consistent
with the SEM micrographs in Figure 2g,h.
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The brightness of the Al-Mn coatings was evaluated by observing whether they could
reflect the front stripes. The brightness of the metal coatings was related to the smoothness
of the surface. As shown in Figure 5a, the Al-Mn-BK coatings obtained from the pure
EMIC-AlCl3-MnCl2 bath presented a dull surface and did not legibly reflect the stripes in
front of it. The matte Al-Mn-BK coating composed of Al-Mn particles with a size range of
0.2–1.5 µm resulted in the irregularity of the coating surface with an average roughness
of about 243 nm (Table S2) [15]. The Al-Mn-HP coating remained a lusterless surface
(Figure 5b); its average roughness was about 239 nm (Table S2), which was mainly due
to its micron-sized grains. The Al-Mn-PA coating with micron grains reflected the stripes
clearer than the Al-Mn-BK and Al-Mn-HP coatings (Figure 5c). This could be attributed
to its strong grain preferential orientation, which made the coating surface flatter with an
average roughness of approximately 76 nm (Table S2). The Al-Mn-CP coating exhibited a
silvery and mirror-like bright appearance and reflected the stripes (Figure 5d). The SEM
images (Figure 2g,h) and the XRD spectrums (Figure 4) of the Al-Mn-CP coating revealed
that the 4-cyanopyridine additive led to the coating grain size reaching the nanometer level
and possessing a strong (200) crystal plane preferential orientation, which made the coating
attained a smooth surface with an average roughness of only 18 nm (Table S2) [22,23].
Therefore, the Al-Mn-CP coating was bright.
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reflection stripes.

Figure 6 shows the effect of the different concentrations (2 mmol·L−1, 4 mmol·L−1,
6 mmol·L−1, and 8 mmol·L−1) of 4-hydroxypyridine, 4-picolinic acid, and 4-cyanopyridine
additives on the quality of the Al-Mn coatings electrodeposited at 303 K in EMIC-AlCl3-
MnCl2 bath. The 4-hydroxypyridine and 4-picolinic acid were used as the additive, and
only the matte Al-Mn coatings were obtained, revealing that both additives possessed a
poor brightening effect on the surface of the Al-Mn coatings. The matte Al-Mn coatings
were also electrodeposited in EMIC-AlCl3-MnCl2-4-cyanopyridine (2 mmol·L−1) ionic
liquid. However, with an increase in the 4-cyanopyridine concentration to 4 mmol·L−1

and greater, the Al-Mn coatings turned from matte to mirror-like bright. Therefore, this
result shows that the brightening effect of 4-cyanopyridine was superior to the other two
additives. This was due to the stronger grain refinement and crystal plane preferential
orientation effects of the 4-cyanopyridine, confirmed with the SEM and XRD results.
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Figure 6. The statistical results of the quality of the Al-Mn coatings electrodeposited at 303 K in
EMIC-AlCl3-MnCl2 containing no, 4-hydroxypyridine, 4-picolinic acid, and 4-cyanopyridine at
different additive concentrations (2 mmol·L−1, 4 mmol·L−1, 6 mmol·L−1, and 8 mmol·L−1). The
cyan blue columns represent that the deposited Al-Mn coatings are bright, and the gray columns
represent that the deposited Al-Mn coatings are matte.

3.2. The Action of Additives

The cathodic polarization curves of the copper substrates recorded in EMIC-AlCl3-MnCl2
without and with pyridine derivative additives at 303 K are shown in Figure 7. As shown
in Figure 7, the bulk deposition of Al-Mn started at ca.−20 mV vs. Al in the EMIC-AlCl3-
MnCl2 bath solution [14]. When 6 mmol·L−1 4-hydroxypyridine and 4-picolinic acid were
added separately as the additives, a slightly negative shift in the onset potential of the
deposited Al-Mn was detected. However, the initial deposition potential of the Al-Mn
underwent a considerable negative migration in the EMIC-AlCl3-MnCl2-4-cyanopyridine
(6 mmol·L−1) ionic liquid, shifting to ca. −120 mV vs. Al. The shift implied that a
high overpotential was required to initiate the nucleation and subsequent growth of Al-
Mn in the ionic liquid, leading to an increased rate of Al-Mn nucleation, and thus a
decrease in grain size. [14]. In addition, it is worth noting that compared with the EMIC-
AlCl3-MnCl2 ionic liquid, the addition of the pyridine derivative additives promoted the
decrease in the cathodic deposition current at the identical deposition potential (Figure 7
inset). This indicates that the deposition process of Al-Mn was inhibited by adding these
additives. Moreover, the ability of these additives to hinder Al-Mn deposition is as follows:
4-cyanopyridine > 4-picolinic acid > 4-hydroxypyridine.

The Raman spectra and photographs of the EMIC-AlCl3-MnCl2 ionic liquids with
and without pyridine derivative additives are shown in Figure 8. As seen from the Ra-
man spectra of the pure EMIC-AlCl3-MnCl2 ionic liquid, there are five peaks at 175 cm−1,
180 cm−1, 310 cm−1, 347 cm−1, and 432 cm−1. Among them, 175 cm−1, 310 cm−1, and
432 cm−1 correspond to the Raman peaks of Al2Cl7−, 180 cm−1, and 347 cm−1, which be-
long to the Raman peaks of AlCl4− [24]. No new Raman peaks and color shifts of the ionic
liquid were detected with the addition of each of the three pyridine derivative additives
(6 mmol·L−1) to the ionic liquids, indicating that the coordination environment of Al (III)
did not vary with the addition of the additives [14,15]. Therefore, the inhibitory effects of
4-hydroxypyridine, 4-picolinic acid, and 4-cyanopyridine additives on the electrodepo-
sition of Al-Mn might be attributed to their adsorption onto the electrode and/or the
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surface of the Al-Mn deposit [25]. The electron-withdrawing ability of the cyano group in
4-cyanopyridine was stronger than that of the hydroxy group in 4-hydroxypyridineand and
the carboxyl group in 4-picolinic acid, which made 4-cyanopyridine more easily adsorbed
on the cathode surface. Accordingly, 4-cyanopyridine exhibited the greatest hindering
action for the electrodeposition of Al-Mn among the three additives, which is in line with
the cathodic polarization curves results in Figure 7 [15].
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Figure 7. Cathodic polarization curves for electrodeposition of EMIC-AlCl3-MnCl2 contain-
ing no (black line), 6 mmol·L−1 4-hydroxypyridine (red line), 4-picolinic acid (blue line), and
4-cyanopyridine (magenta line) at 303 K on the Cu substrate. Scan rate: 10 mV s−1. The in-
set shows the cathodic polarization curves corresponding to a wider range of horizontal and
vertical coordinates.
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and 6 mmol·L−1 (b) 4-hydroxypyridine, (c) 4-picolinic acid, and (d) 4-cyanopyridine additives.

Based on the double electrical layer’s theory, the schematic diagram of the mechanisms
of 4-cyanopyridine in the EMIC-AlCl3-MnCl2 ionic liquid is displayed in Figure 9. In the
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EMIC-AlCl3-MnCl2 ionic liquid, the matte Al-Mn coating was co-deposited smoothly, and
there was almost no hindrance during the deposition process. Wang et al. [17] had reported
that the active center of pyridine derivative additives is the nitrogen atom of the pyridine
ring. On the pyridine ring of the 4-cyanopyridine additive, the cyano group with strong
electron-withdrawing ability caused the electron density around the nitrogen atom to
decrease, which was conducive to the additive adsorbed onto the cathode when a potential
was applied. The adsorbed 4-cyanopyridine primarily had the following two actions:
(1) generating overpotential to promote Al-Mn nucleation; (2) inhibiting the growth of
the deposited nuclei and making them grow preferentially. Under the combined action, a
mirror-like bright Al-Mn-CP coating with nanocrystals and smooth surface was fabricated.
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3.3. Corrosion Properties of the Al-Mn Coatings

The corrosion resistance of the Cu substrate, Al-Mn-BK, Al-Mn-HP, Al-Mn-PA, and Al-
Mn-CP coatings was estimated via potentiodynamic polarization curves in a 3.5 wt. % NaCl
aqueous solution, and the corresponding results are displayed in Figure 10 and Table 2.
It was found that the Cu substrate exhibited a significant corrosion potential of −239 mV.
The Al-Mn coatings electrodeposited onto the Cu substrate surface showed a much more
negative corrosion potential than the Cu substrate, revealing that they could have an
anodic protective effect on the Cu substrate. Moreover, all Al-Mn coatings displayed the
passivation behaviors in the anodic potential region, implying the anodic reaction processes
were restrained and could be due to the spontaneous generation of an oxide layer on the
surface of the Al-Mn coating [4,26]. Table 2 summarized the Al-Mn specimens’ corrosion
potential (Ecorr) and corrosion current density (Icorr). The Al-Mn coatings deposited from
the EMIC-AlCl3-MnCl2 ionic liquid had superior corrosion resistance compared to the
Cu substrate. In addition, the corrosion resistance of the Al-Mn coatings obtained from
the EMIC-AlCl3-MnCl2-additive was better than that of the Al-Mn-BK coating. In the
four Al-Mn coating samples, the Al-Mn-CP coating possessed the lowest corrosion current
density (0.98 µA·cm−2), which was approximately four and nine times lower than the
correspondence corrosion parameter values of the Al-Mn-BK coating (3.81 µA·cm−2) and
Cu substrate (8.50 µA·cm−2), respectively. The excellent corrosion resistance of the Al-Mn-
CP coating was due to its nanocrystal structure. Moreover, the nanocrystals increased the
number of grain boundaries, which increased the corrosion resistance of the Al-Mn-CP
coating [27]. Furthermore, the nanocrystals in the Al-Mn-CP coating induced an increase
in the number of active atoms on the surface; this behavior accelerated the formation of
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the protective layer of the corrosion products. Therefore, the Al-Mn-CP coating had better
corrosion resistance than the Al-Mn-HP and the Al-Mn-PA coatings.
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Figure 10. Potentiodynamic polarization curves of the Cu substrate, Al-Mn-BK, Al-Mn-HP, Al-Mn-
PA, and Al-Mn-CP coatings in a 3.5 wt % NaCl solution at a scan rate of 1 mV s−1.

Table 2. Corrosion parameters received from the polarization curves in Figure 10.

Materials Ecorr (mV) Icorr (µA cm−2)

Cu substate −239 8.50
Al-Mn-BK −747 3.81
Al-Mn-HP −446 1.72
Al-Mn-PA −609 3.24
Al-Mn-CP −578 0.98

4. Conclusions

The effects of three pyridine derivative additives with different functional groups,
4-hydroxypyridine, 4-picolinic acid, and 4-cyanopyridine, on the microstructure and prop-
erties of the Al-Mn coatings electrodeposited in the EMIC-AlCl3-MnCl2 ionic liquid were
investigated at 303 K. The mirror-like bright Al-Mn-CP coating was successfully fabri-
cated in an EMIC-AlCl3-MnCl2-4-cyanopyridine ionic liquid. In contrast, matte Al-Mn
coatings were obtained in EMIC-AlCl3-MnCl2 ionic liquids containing 4-hydroxypyridine
and 4-picolinic acid. The bright Al-Mn-CP coating consisted of nanocrystals and had a
strong (200) preferential orientation, while the matte Al-Mn-HP and Al-Mn-PA coatings
had a strong (200) preferential orientation; however, the particle size was in the micron
range. The mirror-like bright Al-Mn-CP coating was obtained from the adsorption of
4-cyanopyridine onto the cathode producing the following actions: (1) generating over-
potential to promote Al-Mn nucleation; (2) inhibiting the growth of the deposited nuclei
and enabling them grow preferentially; making the coating composed of nanocrystals and
with a smooth surface. In addition, the Al-Mn-CP coating exhibited a higher corrosion
resistance compared to the Al-Mn-BK, Al-Mn-HP, and Al-Mn-PA coatings, which could be
attributed to its nanocrystalline structure increased the number of grain boundaries and
accelerated the formation of the protective layer of the corrosion products.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390/
ma14206226/s1, Figure S1: Cross-section morphology of the (a) Al-Mn-BK, (b) Al-Mn-HP, (c) Al-Mn-
PA, and (d) Al-Mn-CP coatings, Table S1: Texture calculations for various Al-Mn coatings obtained
from the XRD patterns in Figure 4, Table S2: Average roughness of Al-Mn coatings.
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