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Abstract: The remarkable adsorption capacity of graphene-derived materials has prompted their
examination in composite materials suitable for deployment in treatment of contaminated waters.
In this study, crosslinked calcium alginate–graphene oxide beads were prepared and activated by
exposure to pH 4 by using 0.1M HCl. The activated beads were investigated as novel adsorbents
for the removal of organic pollutants (methylene blue dye and the pharmaceuticals famotidine and
diclofenac) with a range of physicochemical properties. The effects of initial pollutant concentration,
temperature, pH, and adsorbent dose were investigated, and kinetic models were examined for fit to
the data. The maximum adsorption capacities qmax obtained were 1334, 35.50 and 36.35 mg g−1 for
the uptake of methylene blue, famotidine and diclofenac, respectively. The equilibrium adsorption
had an alignment with Langmuir isotherms, while the kinetics were most accurately modelled using
pseudo- first-order and second order models according to the regression analysis. Thermodynamic
parameters such as ∆G◦, ∆H◦ and ∆S◦ were calculated and the adsorption process was determined
to be exothermic and spontaneous.

Keywords: adsorption; graphene oxide; methylene blue; pharmaceuticals; kinetics; isotherms
and thermodynamics

1. Introduction

Micropollutants such as pharmaceuticals, personal care products, surfactants and
pesticides [1], as well as synthetic dyes [2], have been found virtually ubiquitously in
environmental matrices over the past decade. One major source of organic micropollu-
tants is the effluents from wastewater treatment plants (WWTPs), since most of these
emerging contaminants are poorly biodegradable [3]. In addition, the hazards presented
to human health and the ecosystem by thousands of trace contaminants in a “cocktail
effect” are not yet well understood, although advances in effect-based biomonitoring aim
to address this [4,5].

Methylene blue (MB) is a heterocyclic aromatic chemical dye used in textile, paper
and cosmetic industries [6]. It is not highly toxic but has significant adverse impacts on
aquatic ecosystems [2], retarding the photosynthetic activity of aquatic plants by affecting
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the light penetration, consuming dissolved oxygen or isolating metal ions, producing mi-
crotoxicity to organisms [7–10]. It can also be harmful to human health, causing heart rate
increase, nausea and vomiting [11]. Methylene blue is widely used as an indicator pollutant
to demonstrate the efficiency of novel adsorbent materials in the literature. Famotidine
(FMTD) is a histamine H2

-receptor antagonist used for treating gastroesophageal reflux dis-
ease and Zollinger–Ellison syndrome [12]. Famotidine has been shown to persist in WWTP
effluents [13–15]. Diclofenac (DFC) is a non-steroidal anti-inflammatory drug prescribed
to reduce inflammation, pain and dysmenorrhea; consumption is associated with serious
dose-dependent gastrointestinal, renal and hepatic adverse effects, and increases vascular
and coronary risks by about 33% [16,17]. Diclofenac is monitored in European surface
waters under the watch list mechanism for the Water Framework Directive, and has been
found almost ubiquitously in wastewater influent, wastewater effluent and surface wa-
ters [18]. Diclofenac exposure in trout has been shown to induce severe glomerulonephritis,
resulting in kidney failure [19], and it has been implicated in the collapse of Asian vulture
populations [20].

The removal of micropollutants and synthetic dyes using membrane-based technolo-
gies, ozonation, photolysis, photocatalysis [21–23], electrolysis, Fenton [24], photo-Fenton
oxidation and electrochemical oxidation [25] has been extensively investigated in the litera-
ture. In particular, adsorption technology holds a lot of advantages, such as easy operation,
fast decolorization and chemical oxygen demand removal efficiency; however, the main
limitation of adsorption technology is the low and non-selective adsorption capacity of
traditional adsorbents. The enhancement of adsorption capacity by increasing surface area
and optimizing pore size has received much research attention [26–31].

Graphene-based materials have received increasing attention as potential candidates
for composite preparation due to their high specific surface area and adsorption capacity.
Graphene oxide (GO) is a two-dimensional complex of carbon atoms decorated with
a multitude of oxygen-containing functional groups densely packed in a honeycomb
framework [32]. GO has unique properties, such as a large theoretical surface area, high
thermal and chemical stability, high conductivity and good mechanical flexibility [33],
showing a great potential as an adsorbent for the removal of pharmaceuticals [34], heavy
metals [35,36] or dyes [37]. However, using bare GO as an adsorbent agent causes the
agglomeration of GO, which requires a complex high-speed centrifuge for GO separation
from the solution [38]. Therefore, in this study, to stabilize the GO [39] and maximize the
ease of recovery, GO was incorporated into an alginate matrix (an anionic polysaccharide
used in paints, inks or pharmaceuticals). Alginate forms a hydrogel when mixed with
divalent cations, such as Ca2+, giving good mechanical properties. Acid-activation of the
beads provides an enhancement in the surface, area including micro- and mesopores [40,41].
In fact, the adsorption capacity of GO-montmorillonite/sodium alginate beads was recently
investigated [42].

In this work, the acid-activated (0.1 M HCl pH 4) adsorption capacity of calcium
alginate graphene oxide beads was evaluated as novel adsorbents for MB, FMTD and
DFC removal. In addition, the influence of initial pollutant concentration, adsorbent dose,
adsorption temperature and pH on adsorption capacity was investigated, along with an
examination of the kinetic and thermodynamic modelling of the reactions.

2. Materials and Methods
2.1. Materials

Graphite flakes (GF) were purchased from Asbury Carbons. Diclofenac sodium (DFC,
99%), famotidine (FMTC), methylene blue (MB) and alginic acid sodium salt (Na-Alg) were
purchased from Sigma Aldrich. The structure of analytes is given in Appendix A. Calcium
chloride dihydrate, sodium hydroxide, potassium permanganate and absolute ethanol
were purchased from Fischer Chemicals. Sulfuric acid (H2SO4, 95–98%) and hydrogen
peroxide (H2O2, 30%) was purchased from Merck Millipore. Hydrochloric acid (37%) was
provided by Acros Organics Dublin, Ireland.
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2.2. Methods
Preparation of Graphene oxide (GO) Solution and Ca-Alg2/GO Beads

GO was prepared according to a modified version of Hummer’s method [43]. In
this method, expanded graphite derived from graphite flasks is treated with H2SO4 to be
mixed with H2O2 in order to produce GO particles. To establish the concentration, 1 g
of GO suspension was placed in a dried, weighed beaker, dried overnight at 60 ◦C and
weighed again, and the concentration was then adjusted to 1% GO in DI water on a dry
mass basis. The details of the method and Ca-Alg2/GO bead preparation as well as dry
and wet images of Ca-Alg and Ca-Alg/GO beads are given in Appendix B.

2.3. Acid Activation of the Beads Activation

Beads for activation were placed into 600 mL beakers of DI water adjusted to pH 4
using 0.1M HCl, which were agitated for 3 h. Afterwards, the beads were collected, rinsed
three times with 300 mL of DI water and stored in a closed bottle at RT.

2.4. Characterization

The surface morphological structure of the beads was examined using scanning
electron microscopy (SEM) analysis using a Hitachi 3400 SEM, following gold coating.
Functional groups of the GO sheets as well as of the Ca-Alg2 and Ca-Alg2/GO beads
were identified by Fourier transform infrared spectroscopy (Appendix C). In addition, the
GO used for the beads’ preparation was characterized by X-ray diffraction and Raman
spectroscopy (Appendix D).

2.5. Adsorption Measurements

All adsorption measurements were carried out in 250 mL flasks with 0.05 g of ad-
sorbent (Ca-Alg2, Ca-Alg2/GO5, Ca-Alg2/GO10 or Ca-Alg2/GO20 dried beads) over
24 h on a shaker table operating at 125 rpm at room temperature (22 ◦C), unless otherwise
specified. Equilibrium for all pollutants was established by 24 h. In total, 75 mL of pollutant
solution at a concentration of 10 mg L−1 was added in each case, with a pH of 7 for MB and
FMTD and a pH of 2 for DFC, unless otherwise specified. The pollutant concentration was
determined using a UV-VIS spectrophotometer (Varian) at a wavelength of 660, 286 and
274 nm for MB, FMTD and DFC, respectively. Experiments were carried out in triplicate
and the average values reported along with the error bars represent the standard deviation.

2.5.1. Initial Pollutant Concentration

The initial pollutant concentrations tested were 10, 100, 500 and 1000 mgL−1 for MB,
10, 25, 100 and 250 mgL−1 for FMTD and 1, 5, 10 and 25 mgL−1 for DFC. The absorbed
amount at equilibrium (qeq (mg g−1)) was calculating using Equation (1):

qeq =

(
C0 − Ceq

)
·V

mads
(1)

where C0 (mg L−1) is the initial pollutant concentration, Ceq (mg L−1) the equilibrium
pollutant concentration, V (L) the solution volume and mads (g) the adsorbent mass.

2.5.2. Adsorbent Dose

The effect of the adsorbent dose was studied using 0.01, 0.025, 0.05 and 0.1 g of
Ca-Alg2, Ca-Alg2/GO5, Ca-Alg2/GO10 or Ca-Alg2/GO20 dried beads.

2.5.3. pH

The adsorption was performed at pH 7, 9, 10 and 11 for MB and FMTD whereas the
adsorption for DFC was at pH 2, 3.5, 5 and 7.
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2.5.4. Temperature

The influence of the temperature was studied by performing the adsorption process
at 4, 22 and 30 ◦C.

2.5.5. Thermodynamics

The thermodynamic parameters of adsorption were determined at 4, 22 and 30 ◦C
in order to evaluate the feasibility and the spontaneous nature of the adsorption. The
adsorption distribution coefficient Kd is calculated using Equation (2):

Kd =
C0 − Ceq

Ceq
(2)

where C0 (mg L−1) is the initial concentration of the solution and Ceq (mg L−1) the equi-
librium concentration in solution. A plot of ln(Kd) versus 1/T gives a straight line where
the enthalpy change ∆H◦ (J·mol−1) and the entropy change ∆S◦ (J·K−1·mol−1) can be
calculated using (Equation (3)):

ln(Kd) =
∆S◦

R
− ∆H◦

RT
(3)

where R is the ideal gas constant (8.345 J·mol−1·K−1) and T (K) is the temperature of the
solution during the adsorption process. The standard Gibbs free energy change can be
obtained from Equation (4):

∆G◦ = ∆H◦ − T∆S◦ (4)

2.5.6. Kinetics

Kinetic parameters were studied using 0.05 g of Ca-Alg2, Ca-Alg2/GO5, Ca-Alg2/GO10
or Ca-Alg2/GO20 dried beads. The three most common models were examined as to
their fit to the experimental data [44]. The adsorbate capacity qt (mg g−1) at time t was
calculated using Equation (5):

qt =
(C0 − Ct)·V

mads
(5)

where C0 (mgL−1) is the initial concentration, Ct (mgL−1) the concentration at time t, V (L)
the volume of pollutant solution and mads (g) the adsorbent mass.

The linearized integral form of the pseudo-first-order Lagergren equation is given
by Equation (6):

ln
(

qeq − qt

)
= ln

(
qeq

)
− k1·t (6)

where k1 (min−1) is the Lagergren rate constant, qeq (mg g−1) is the maximum adsorbed
amount at equilibrium, and qt (mg g−1) is the amount of adsorption at time t (min).
The values of k1 and qeq were determined from the intercept and the slope of a plot of
ln(qeq − qt) versus t.

The linearized integral form of the pseudo-second-order model is shown in Equation (7):

t
qt

=
1

k2·q2
eq

− 1
qeq

·t (7)

where k2 (g·mg−1·min−1) is the pseudo second-order rate constant of adsorption. The
parameters k2 and qeq were determined from the intercept and the slope of a plot of t/qt
versus t.

The intraparticle diffusion model is represented in Equation (8):

qt = kip·t1/2 + Cip (8)
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where kip (mg g−1·min−0.5) is an intraparticle diffusion rate constant and Cip (mg g−1) is
related to the thickness of the diffusion boundary layer. These parameters were obtained
from a plot of qt versus t1/2.

2.5.7. Adsorption Isotherms

The Langmuir model and the Freundlich model were examined for their utility in
describing the adsorption process. The Langmuir equation is detailed in Equation (9): [45]

qeq = qmax·
Ceq

kL + Ceq
(9)

where qmax (mg g−1) is the maximum adsorption capacity corresponding to complete
monolayer coverage, Ceq (mgL−1) is the concentration at equilibrium in the solution and
kL (Lg−1) is a constant related to adsorption capacity and the energy of adsorption.

The Freundlich equation is an empirical model based on the adsorption on a heteroge-
neous surface [46], and is given in Equation (10):

qeq = kF·Cn (10)

where kF (L·g−1) and n (-) are the Freundlich constants, indicating the adsorption capac-
ity and the adsorption intensity, respectively. In order to determine the Langmuir and
Freundlich constants, Excel Solver was used to fit the adsorption isotherm models with
the experimental data. The sum of squared differences between experimental qeq and
calculated qeq was minimized by changing the constants of the models with the solver to
find the best non-linear regression.

2.6. Desorption Studies

After the concentration at equilibrium was determined, the beads were removed from
the solution and were washed three times with DI water. The desorption of pollutants from
the beads was examined using three different desorption systems, 0.1 M HCl, 1 M NaCl
and ethanol 1% v/v. The desorption process was carried out in 250 mL conical flasks with
75 mL of desorption solution at RT. The conical flasks were agitated for 24 h at 125 rpm.
Then, the final concentration in solution was determined using UV-VIS and the percentage
desorption was calculated using Equation (11):

Desorption =
(qeq,a − qeq,d)

qeq,a
·100 (11)

where qeq,d (mg g−1) is the adsorbed amount at equilibrium after 24 h of desorption, and
qeq,a (mg g−1) is the adsorbed amount at equilibrium after 24 h of adsorption.

3. Results and Discussion
3.1. Characterisation of Beads

SEM analysis was carried out in order to characterize the morphological structure of the
beads, and the results are given Figures 1 and 2 at 500× and 5000× magnification, respectively.

The SEM images show that increased graphene oxide concentration altered the mor-
phological structure of the beads by providing increased porosity and roughness. Due
to that increase, the beads had a greater surface available for interactions between ad-
sorbate and adsorbent. The Ca-Alg2/GO20 was typically carbonaceous with similarities
to the structure of activated carbon. The FTIR spectrum of GO sheets, Ca-Alg2 and Ca-
Alg2/GO beads is given in S4. No significant difference was observed between Ca-Alg2
and Ca-Alg2/GO beads, as the functional groups of the alginate overlap with GO.



Materials 2021, 14, 6343 6 of 27
Materials 2021, 14, x FOR PEER REVIEW 6 of 29 
 

 

 
Figure 1. SEM images of beads at 500× magnification: Ca-Alg2 (A), Ca-Alg2/GO5 (B), Ca-Alg2/GO10 
(C), Ca-Alg2/GO20 (D). 

 
Figure 2. SEM images of beads at 5000×; Ca-Alg2 (A), Ca-Alg2/GO5 (B), Ca-Alg2/GO10 (C), Ca-
Alg2/GO20 (D). 

The SEM images show that increased graphene oxide concentration altered the mor-
phological structure of the beads by providing increased porosity and roughness. Due to 
that increase, the beads had a greater surface available for interactions between adsorbate 
and adsorbent. The Ca-Alg2/GO20 was typically carbonaceous with similarities to the 
structure of activated carbon. The FTIR spectrum of GO sheets, Ca-Alg2 and Ca-Alg2/GO 
beads is given in S4. No significant difference was observed between Ca-Alg2 and Ca-
Alg2/GO beads, as the functional groups of the alginate overlap with GO. 

3.2. Effect of Operating Parameters on the Adsorption 
3.2.1. Contact Time 

The effect of the contact time on qt was examined by taking samples over 24 h. The 
average of the results obtained for the adsorption of MB, FMTD and DFC is given in Fig-
ure 3A–C, respectively. 

Figure 1. SEM images of beads at 500× magnification: Ca-Alg2 (A), Ca-Alg2/GO5 (B), Ca-
Alg2/GO10 (C), Ca-Alg2/GO20 (D).

Materials 2021, 14, x FOR PEER REVIEW 6 of 29 
 

 

 
Figure 1. SEM images of beads at 500× magnification: Ca-Alg2 (A), Ca-Alg2/GO5 (B), Ca-Alg2/GO10 
(C), Ca-Alg2/GO20 (D). 

 
Figure 2. SEM images of beads at 5000×; Ca-Alg2 (A), Ca-Alg2/GO5 (B), Ca-Alg2/GO10 (C), Ca-
Alg2/GO20 (D). 

The SEM images show that increased graphene oxide concentration altered the mor-
phological structure of the beads by providing increased porosity and roughness. Due to 
that increase, the beads had a greater surface available for interactions between adsorbate 
and adsorbent. The Ca-Alg2/GO20 was typically carbonaceous with similarities to the 
structure of activated carbon. The FTIR spectrum of GO sheets, Ca-Alg2 and Ca-Alg2/GO 
beads is given in S4. No significant difference was observed between Ca-Alg2 and Ca-
Alg2/GO beads, as the functional groups of the alginate overlap with GO. 

3.2. Effect of Operating Parameters on the Adsorption 
3.2.1. Contact Time 

The effect of the contact time on qt was examined by taking samples over 24 h. The 
average of the results obtained for the adsorption of MB, FMTD and DFC is given in Fig-
ure 3A–C, respectively. 
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3.2. Effect of Operating Parameters on the Adsorption
3.2.1. Contact Time

The effect of the contact time on qt was examined by taking samples over 24 h. The
average of the results obtained for the adsorption of MB, FMTD and DFC is given in
Figure 3A–C, respectively.

The adsorption gradually increased with the contact time and slowed down progres-
sively to reach an equilibrium after 24 h. An increased adsorbate capacity was achieved with
an increased concentration of GO in the composites. Ca-Alg2/GO20 beads were the most
efficient for the adsorption of each compound, as expected. For the adsorption of MB, Ca-
Alg2/GO10 and Ca-Alg2/GO20 beads caused a significant improvement in the adsorbate
capacity by increasing it from 6.91 ± 0.83 mg g−1 to 9.18 ± 0.08 and 10.63 ± 0.17 mg g−1,
respectively, in comparison to Ca-Alg2 (control), with the p values of 0.034 and 0.023. For
the adsorption of FMTD, regardless the level of GO, Ca-Alg2/GO composites showed
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a significant improvement (p < 0.05) in adsorbate capacity from 2.78 ± 0.34 mg g−1 to
a maximum of 7.95 ± 0.54 mg g−1. On the other hand, for the adsorption of DFC, no
significant enhancements were seen (high level of error bars), which is attributed to the
molecular limitations of DFC.

Materials 2021, 14, x FOR PEER REVIEW 7 of 29 
 

 

 
Figure 3. Effect of the contact time on qeq of MB (A), FMTD (B) and DFC (C). 

The adsorption gradually increased with the contact time and slowed down progres-
sively to reach an equilibrium after 24 h. An increased adsorbate capacity was achieved 
with an increased concentration of GO in the composites. Ca-Alg2/GO20 beads were the 
most efficient for the adsorption of each compound, as expected. For the adsorption of 
MB, Ca-Alg2/GO10 and Ca-Alg2/GO20 beads caused a significant improvement in the 
adsorbate capacity by increasing it from 6.91 ± 0.83 mg g−1 to 9.18 ± 0.08 and 10.63 ± 0.17 
mg g−1, respectively, in comparison to Ca-Alg2 (control), with the p values of 0.034 and 
0.023. For the adsorption of FMTD, regardless the level of GO, Ca-Alg2/GO composites 
showed a significant improvement (p < 0.05) in adsorbate capacity from 2.78 ± 0.34 mg g−1 
to a maximum of 7.95 ± 0.54 mg g−1. On the other hand, for the adsorption of DFC, no 
significant enhancements were seen (high level of error bars), which is attributed to the 
molecular limitations of DFC. 

3.2.2. Pollutant Concentration 
The effects of the different concentrations of methylene blue, famotidine and diclo-

fenac on the adsorption density (qeq) and the percentage removal are shown in Figures 4–
6. 

Figure 3. Effect of the contact time on qeq of MB (A), FMTD (B) and DFC (C).

3.2.2. Pollutant Concentration

The effects of the different concentrations of methylene blue, famotidine and diclofenac
on the adsorption density (qeq) and the percentage removal are shown in Figures 4–6.
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to 32.2 ± 0.8 mg g−1 (p: 0.004) for FMTD and from 14.1 ± 0.329 to 20.4 ± 0.427 mg g−1

(p: 0.0001) for DFC at the highest pollutant concentrations.
Ca-Alg2/GO20 beads showed the highest adsorption percentage for each pollutant,

as expected. The highest adsorption percentages were found to be 89.4 ± 0.25, 56.0 ± 1.7
and 80.9 ± 1.35 for MB, FMTD and DFC, respectively, which were significantly higher than
the corresponding control.

3.2.3. Adsorbent Dose

The effects of the adsorbent dose on adsorption density and adsorption percentage
were observed by using four different masses of beads varying from 0.01 to 1.0. The
adsorption densities (qeq) of four different types of beads and the percentages of adsorption
of MB, FMTD and DFC on Ca-Alg2/GO20 beads are given in Figures 7–9, respectively, as a
function of the amount of adsorbent.

A decreased adsorption density has been observed with the increased adsorbent dose
regardless of the type of beads and of pollutant. On the other hand, adsorption percent-
age increased significantly (p < 0.05) when using Ca-Alg2/GO20 beads from 52.9 ± 1.7
to 76 ± 0.4% for MB, from 12.2 ± 0.9 to 58.2 ± 0.5% for FMTD and from 39.7 ± 4.1
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to 96.1 ± 1.7% for DFC, due to the increase in adsorbent dose from 0.1 to 1.0. On the
contrary, the adsorption density decreased significantly (p < 0.05) from 38.9 ± 1.6 to
5.7 ± 0.1 mg g−1 for MB, from 9.2 ± 1.3 to 4.3 ± 0. mg g−1 for FMTD and from 29.5 ± 2.5
to 7.2 ± 0.1 mg g−1 for DFC due to the increase in adsorbent dose from 0.1 to 1.0. The
reduction in the adsorption density was attributed to a lower quantity adsorbed per unit
weight of the adsorbent, causing the presence of unsaturated adsorption sites [47] when
the adsorbent dose was increased [48,49]. Ca-Alg2/GO20 beads were shown to exhibit
significantly better adsorption than Ca-Alg2 beads.
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3.2.4. pH

The impact of the pH on adsorption was observed by using four pH values (7, 9, 10,
and 11.5 for cationic molecules and 2, 3.5, 5 and 7 for anionic molecules). The averages of
the results obtained for the adsorption of MB, FMTD and DFC are shown in the figures
below (Figure 10A–C).
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The adsorption percentage of MB at pH 7 was 62.9 ± 0.75%, which slightly increased
up to 68.6 ± 0.7% at pH 10 and attained a maximum value (Figure 10A) when Ca-
Alg2/GO20 beads were used. Similarly, the highest MB adsorptions were obtained at
pH 10 with other beads. The adsorption percentage of FMTD showed a peak at pH 10
with for different types of beads, with the maximum of 49.2 ± 1.6% (Figure 10B) when
Ca-Alg2/GO20 was used. Therefore, the adsorption of cationic molecules, MB and FMTD,
increases with higher pH solutions until they reach a pH of 10, then it starts to decrease.
This observation can be explained by looking at the pKa values of the analytes and Ca-
Alg2/GO20 beads. At pH 10, FMTD is in the neutral form, since its pKa value is 6.98 [50],
and it possess lower water solubility, thereby enhancing the adsorption process at this
pH. MB still possesses a positive charge at pH 10; however, GO has an increased negative
charge at pH 10 since the phenolic groups of GO now becoming ionized (GO pKa = 4.3;
6.6; 9.8 all acid groups and 50% of GO phenolic groups will be ionized) [51], enhancing
the charge attraction between MB and the adsorbent, which explains the larger adsorption
capacity between Ca-Alg2/GO20 and Ca-Alg2 in Figure 10A.

On the other hand, for the anionic molecules, DFC, the highest adsorption percentage
was observed as 96.1 ± 1.7% (Figure 10C) when Ca-Alg2/GO20 beads were used at pH
2. The adsorption percentage showed a sudden drop when the pH level increased to 3.5,
and further increases in pH level had a negative impact on adsorption for four different
bead types. The observed decrease in the adsorption of diclofenac at higher pH is a
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consequence of the non-ionized to ionized form of diclofenac (pKa = 4.0), alginate (pKa
mannuronic = 3.38 and guluronic acid = 3.65 [52]) and GO. At pH 2, the ratio of non-ionized
to ionized diclofenac is 100:1, that to alginate is 45:1 (pKa 3.65), and that to GO is 200:1 (see
Appendix E). These ratios change at pH 3.5 to 3.16:1, 1.4:1 and 6.3:1 for diclofenac, alginate
and GO, respectively. Thus, diclofenac, alginate and GO gain negative charge, and as a
consequence repulsion occurs. Furthermore, as diclofenac becomes negatively charged, its
water solubility is significantly enhanced, consequently reducing adsorption [53,54]. The
calculation of the pKa values of the pollutants and adsorbents is given in Appendix E.

3.2.5. Temperature

Adsorption studies were performed across three temperatures ranging from 4 to 30 ◦C
(4, 22 and 30 ◦C). The averages of the results obtained for the adsorption of MB, FMTD and
DFC are shown in Figure 11A–C.
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The coldest temperature (4 ◦C) showed the highest adsorption percentages of 65.3 ± 0.9%
(Figure 11A), 53.3 ± 1.2% (Figure 11B) and 87.3 ± 3.4% (Figure 11C) for MB, FMTD and DFC,
respectively when Ca-Alg2/GO20 beads were used. The adsorption of MB, FMTD and
DFC decreased significantly due to stepwise increases in temperature to 22 and 30 ◦C, and
it reached 61.1 ± 1.0, 38.6 ± 4.0 and 47.1 ± 2.0%, respectively, under the same conditions.
This may be explained by an exothermic adsorption process [55].

3.3. Thermodynamics

Thermodynamic studies were conducted based on the feasibility and the spontaneous
nature of adsorption [44]. The distribution coefficients for the adsorption Kd, enthalpy
change ∆H◦, entropy change ∆S◦ and Gibbs free energy change ∆G◦ were calculated using
Equations (2)–(4). The results are given in the Tables 1–3.
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Table 1. Thermodynamic parameters for MB adsorption on Ca-Alg2, Ca-Alg2/GO5, Ca-Alg2/GO10 and Ca-Alg2/GO20 beads.

Adsorbent
Kd ∆G◦ (kJ·mol−1) ∆H◦ (kJ·mol−1) ∆S◦ (J·K−1·mol−1)

4 ◦C 22 ◦C 30◦C 4 ◦C 22 ◦C 30 ◦C

Ca-Alg2 1.07 0.59 0.48 −0.144 1.240 1.855 −21.44 −76.9
Ca-Alg2/GO5 1.18 0.77 0.73 −0.341 0.504 0.879 −13.34 −46.9

Ca-Alg2/GO10 1.19 1.08 1.04 −0.401 −0.186 0.091 −3.712 −12.0
Ca-Alg2/GO20 1.88 1.68 1.60 −1.459 −1.272 −1.189 −4.338 −10.4

Table 2. Thermodynamic parameters for FMTD adsorption on Ca-Alg2, Ca-Alg2/GO5, Ca-Alg2/GO10 and Ca-Alg2/GO20 beads.

Adsorbent
Kd ∆G◦ (kJ·mol−1) ∆H◦ (kJ·mol−1) ∆S◦(J·K−1·mol−1)

4 ◦C 22 ◦C 30 ◦C 4 ◦C 22 ◦C 30 ◦C

Ca-Alg2 0.11 0.04 0.01 4.747 9.465 11.56 −67.85 −262
Ca-Alg2/GO5 0.17 0.11 0.05 3.926 6.226 7.248 −31.46 −128

Ca-Alg2/GO10 0.44 0.38 0.32 1.847 2.505 2.797 −8.277 −36.6
Ca-Alg2/GO20 1.14 0.98 0.63 −0.418 0.473 0.868 −14.13 −49.5

Table 3. Thermodynamic parameters for DFC adsorption on Ca-Alg2, Ca-Alg2/GO5, Ca-Alg2/GO10 and Ca-Alg2/GO20 beads.

Adsorbent
Kd ∆G◦ (kJ·mol−1) ∆H◦ (kJ·mol−1) ∆S◦ (J·K−1·mol−1)

4 ◦C 22 ◦C 30 ◦C 4 ◦C 22 ◦C 30 ◦C

Ca-Alg2 2.90 1.55 0.55 −2.758 −0.042 1.165 −44.56 −151
Ca-Alg2/GO5 4.96 1.80 0.58 −3.982 −0.704 0.753 −54.43 −182

Ca-Alg2/GO10 5.48 2.61 0.74 −4.352 −1.342 −0.004 −50.67 −167
Ca-Alg2/GO20 6.88 3.81 0.93 −4.896 −2.047 −0.781 −48.74 −158

A significant decrease (p < 0.05) in the distribution coefficient (Kd) was observed
in all cases when the adsorption temperature was increased from 4 to 30 ◦C, indicating
better adsorption at lower temperatures. For example, the Kd value for the adsorption
of MB, FMTD and DFC on Ca-Alg2/GO20 beads decreased from 1.88 to 1.60, 1.14 to
0.63 and 6.88 to 0.93, respectively, as a result of increasing the temperature from 4 to
30 ◦C. Furthermore, negative enthalpy (∆H◦) and entropy (∆S◦) changes were seen in
the adsorption of MB, FMTD and DFC on Ca-Alg2 and Ca-Alg2/GO beads (Tables 1–3).
Negative enthalpy change indicates that the adsorption process is exothermic in nature,
while negative entropy change suggests a reduction in randomness at the solid–solute
interface during adsorption [56]. Moreover, the adsorption of MB and DFC on all beads
was found to be spontaneous at 4 ◦C and 22 ◦C, respectively, due to the negative Gibbs free
energy changes (∆G◦); however, the spontaneity decreased with the increasing tempera-
ture. Spontaneity was achieved when Ca-Alg2/GO20 beads were used as the adsorbent.
The adsorption of FMDT on Ca-Alg2/GO20 was only found to be spontaneous at 4 ◦C.
Several studies indicate that the absolute magnitude of the change in Gibbs free energy for
physisorption is between −20 kJ·mol−1 and 0 kJ·mol−1, and chemisorption occurs between
−80 kJ·mol−1 and −400 kJ·mol−1 [57,58]. Thus, the adsorption process observed seems to
be physisorption.

3.4. Kinetics

Three models, pseudo-first-order Lagergren, the pseudo-second-order model and
intraparticle diffusion, were fitted to the experimental data, and the models are given in
Figure 12. All the kinetic parameters for the adsorption of MB, FMTD and DFC are given
in Tables 4–6.

The adsorbed amounts of MB and FMTD predicted using the pseudo-first-order model
are lower than the experimental data, and the values of R2 are better under the pseudo-
second-order model. The experimental values for MB are 6.91 mg g−1 and 10.63 mg g−1

for Ca-Alg2 and Ca-Alg2/GO20, respectively, but the results for the pseudo-first-order
model are 6.27 mg g−1 and 9.79 mg g−1 for Ca-Alg2 and Ca-Alg2/GO20, respectively; for
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the pseudo-second-order model, the results are 7.84 mg g−1 and 12.66mg g−1 higher than
in the experimental data; however, the R2 values are 0.9907 instead of 0.9657 for the case
of Ca-Alg2, and 0.9993 instead of 0.9991 for Ca-Alg2/GO20. For FMTD, the experimental
results are 2.78 mg g−1 and 7.95 mg g−1, but the predictions of the pseudo-first-order
model are 2.57 mg g−1 and 8.50 mg g−1 for Ca-Alg2 and Ca-Alg2/GO20, respectively; for
the pseudo-second-order model, the predictions are 2.93 mg g−1 and 8.50 mg g−1; as we
can see, the experimental data are higher than those from the pseudo-first-order model and
lower than those from the pseudo-second-order model only for the Ca-Alg2 beads, while
for the Ca-Alg2/GO20 beads the experimental results are lower than the predicted ones.
However, the R2 results are better for the pseudo-second-order model. This indicates that
the adsorption process does not fit the pseudo-first-order model, and shows applicability
to the pseudo-second-order model for describing the adsorption of methylene blue and
famotidine onto Ca-Alg2 and Ca-Alg2/GO beads [59].
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case of Ca-Alg2, and 0.9993 instead of 0.9991 for Ca-Alg2/GO20. For FMTD, the experi-
mental results are 2.78 mg g−1 and 7.95 mg g−1, but the predictions of the pseudo-first-order 
model are 2.57 mg g−1 and 8.50 mg g−1 for Ca-Alg2 and Ca-Alg2/GO20, respectively; for 
the pseudo-second-order model, the predictions are 2.93 mg g−1 and 8.50 mg g−1; as we can 
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Materials 2021, 14, 6343 14 of 27

Table 4. Kinetic parameters for MB adsorption onto Ca-Alg2, Ca-Alg2/GO5, Ca-Alg2/GO10 and Ca-Alg2/GO20 dried beads.

Adsorbent

Pseudo-First-Order Pseudo-Second-Order Intraparticle Diffusion

qeq (mg g−1) k1 (min−1) R2 (-) qeq (mg g−1) k2
(g·mg−1·min−1) R2 (-) kid

(mg g−1·min−0.5) C (mg g−1) R2 (-)

Ca-Alg2 6.27 5.1 × 10−3 0.9657 7.84 8.3 × 10−4 0.9907 0.479 −1.68 0.9580
Ca-Alg2/GO5 7.22 3.6 × 10−3 0.9974 8.70 5.0 × 10−4 0.9995 0.358 −0.957 0.9997

Ca-Alg2/GO10 8.55 3.0 × 10−3 0.9979 10.81 3.5 × 10−4 0.9991 0.409 −1.10 0.9996
Ca-Alg2/GO20 9.79 2.8 × 10−3 0.9991 12.66 2.7 × 10−4 0.9993 0.457 −1.28 0.9998

Table 5. Kinetic parameters for FMTD adsorption onto Ca-Alg2, Ca-Alg2/GO5, Ca-Alg2/GO10 and Ca-Alg2/GO20 dried beads.

Adsorbent

Pseudo-First-Order Pseudo-Second-Order Intraparticle Diffusion

qeq (mg g−1) k1 (min−1) R2 (-) qeq (mg g−1) k2
(g·mg−1·min−1) R2 (-) kid

(mg g−1·min−0.5) C (mg g−1) R2 (-)

Ca-Alg2 3.70 2.4 × 10−3 0.9756 4.64 5.5 × 10−4 0.9405 0.248 −0.882 0.8809
Ca-Alg2/GO5 4.28 1.6 × 10−3 0.9820 5.72 4.4 × 10−4 0.9147 0.340 −1.23 0.9355

Ca-Alg2/GO10 4.74 1.9 × 10−3 0.9865 6.31 3.3 × 10−4 0.9422 0.409 −0.821 0.8817
Ca-Alg2/GO20 4.26 1.8 × 10−3 0.9879 6.33 7.7 × 10−4 0.9712 0.556 −1.44 0.9992

Table 6. Kinetic parameters for DFC adsorption onto Ca-Alg2, Ca-Alg2/GO5, Ca-Alg2/GO10 and Ca-Alg2/GO20 dried beads.

Adsorbent

Pseudo-First-Order Pseudo-Second-Order Intraparticle Diffusion

qeq (mg g−1) k1 (min−1) R2 (-) qeq (mg g−1) k2
(g·mg−1·min−1) R2 (-) kid

(mg g−1·min−0.5) C (mg g−1) R2 (-)

Ca-Alg2 3.70 2.4 × 10−3 0.9756 4.64 5.5 × 10−4 0.9405 0.095 0.107 0.9684
Ca-Alg2/GO5 4.28 1.6 × 10−3 0.9820 5.72 4.4 × 10−4 0.9147 0.117 0.110 0.9740

Ca-Alg2/GO10 4.74 1.9 × 10−3 0.9865 6.31 3.3 × 10−4 0.9422 0.131 −0.130 0.9858
Ca-Alg2/GO20 4.26 1.8 × 10−3 0.9879 6.33 7.7 × 10−4 0.9712 0.117 1.190 0.9835

The diffusion mechanism during the adsorption process was studied using the intra-
particle diffusion model. The plot of qt versus t1/2 shows a non-linear form, indicating that
the adsorption process occurs in more than one step, as there are two distinct linear regions.
The first straight region is attributed to macro-pore diffusion, and the second linear region
to micro-pore diffusion. The first portion characterizes the instantaneous utilization of the
adsorbing sites on the adsorbent surface. On the other hand, the second region is attributed
to the slow diffusion of the methylene blue from the surface film into the micro-pores [60].

The predictions for the adsorbed amount of diclofenac obtained using the pseudo-
first-order model fit the experimental data better than those obtained using the pseudo-
second-order model. The experimental results are 3.78 mg g−1 and 5.81 mg g−1 for Ca-Alg2
and Ca-Alg2/GO20, respectively; for the pseudo-first-order model, the predictions are
3.70 mg g−1 and 4.64 mg g−1 for Ca-Alg2 and Ca-Alg2/GO20, respectively; for the pseudo-
second-order model, the predictions are 4.26 mg g−1 and 6.33 mg g−1 for Ca-Alg2 and
Ca-Alg2/GO20, respectively. The predictions are higher in every case except for the
pseudo-first-order model and the Ca-Alg2/GO20 beads. Moreover, the values of the
correlation coefficient R2 are higher for the pseudo-first-order model, meaning that the
adsorption process of diclofenac into Ca-Alg2 and Ca-Alg2/GO beads can be described by
the Lagergren model. The intraparticle diffusion model shows a straight line, indicating
the adsorption process, because the intercept is close to 0 [61].

3.5. Adsorption Isotherms

The adsorption isotherms for methylene blue were built by testing nine different
concentrations, namely, 1, 5, 10, 25, 50, 100, 250, 500 and 1000 mg·L−1. The adsorption
was carried out over 24 h at 125 rpm, room temperature, and pH 7, with 0.05 g of beads.
The isotherms obtained for each kind of bead are shown in Figure 13, and the data fit
results are given in Table 7. The results show that an increase in GO concentration of the
beads improves the adsorbed amount of dye at equilibrium. The Langmuir model fits the
experimental data better than the Freundlich model, as indicated by the goodness-of-fit
tests (Table 7).
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and (D) Ca-Alg2/GO20 dried beads.

Table 7. Langmuir and Freundlich isotherm constants for MB adsorption onto Ca-Alg2 and Ca-Alg2/GO beads.

Adsorbent
Langmuir Freundlich

qmax (mg·g−1) KL (L·g−1) R2 (-) KF (L·g−1) n (-) R2 (-)

Ca-Alg2 1064 85.56 0.9778 43.26 0.503 0.9270
Ca-Alg2/GO5 1153 88.93 0.9716 41.02 0.530 0.9109
Ca-Alg2/GO10 1212 84.21 0.9782 42.64 0.537 0.8941
Ca-Alg2/GO20 1334 76.21 0.9894 45.10 0.558 0.8541

The adsorption isotherms for FMTD were performed by using 1, 5, 10, 25, 50, 100 and
250 mgL−1 of solution, whereas for diclofenac, the concentrations were 1, 5, 10, 15 and
20 mgL−1. The adsorption process was carried out over 24 h at 125 rpm, room temperature,
and pH 7, with 0.05 g of beads. The adsorption models of FMTD and DFC are given in
Figures 14 and 15, while the data fit results are given in Tables 8 and 9, respectively.

The results for the adsorption isotherms of FMTD and DFC indicate similar behaviour
to MB. Indeed, the Langmuir model better fits the experimental data between each com-
pound and each different kind of bead. Tables 7–9 shows the Langmuir and Freundlich
isotherm constants and correlation coefficients for MB, FMTD and DFC adsorption.

The values of R2 are higher with the Langmuir model, indicating that this model
better fits the experimental data than the Freundlich isotherm for each kind of bead and
each pharmaceutical. The Langmuir model presumes that the adsorption process occurs
on a homogenous surface via monolayer adsorption.
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Table 8. Langmuir and Freundlich isotherm constants for FMTD adsorption onto Ca-Alg2 and Ca-Alg2/GO beads.

Adsorbent
Langmuir Freundlich

qmax (mg·g−1) KL (L·g−1) R2 (-) KF (L·g−1) n (-) R2 (-)

Ca-Alg2 28.96 123.2 0.9809 0.680 0.615 0.9351
Ca-Alg2/GO5 31.69 85.39 0.9733 1.190 0.552 0.9173
Ca-Alg2/GO10 33.57 57.02 0.9611 2.099 0.479 0.8593
Ca-Alg2/GO20 35.50 23.10 0.9214 4.647 0.374 0.7491

Table 9. Langmuir and Freundlich isotherm constants for DFC adsorption onto Ca-Alg2 and Ca-Alg2/GO beads.

Adsorbent
Langmuir Freundlich

qmax (mg·g−1) KL (L·g−1) R2 (-) KF (L·g−1) n (-) R2 (-)

Ca-Alg2 30.74 11.10 0.9457 2.795 0.725 0.8937
Ca-Alg2/GO5 31.81 9.020 0.9175 3.441 0.705 0.8707
Ca-Alg2/GO10 33.72 5.988 0.8886 5.055 0.662 0.8401
Ca-Alg2/GO20 36.35 5.066 0.8872 5.992 0.672 0.8322

The constants KF and n indicate the adsorption capacity and the adsorption intensity,
respectively. As indicated by the experimental data, the adsorption capacity KF increases
gradually with graphene oxide concentration, and the constant n is lower than 1, meaning
the adsorption isotherm is favourable. The maximum adsorption capacities qmax obtained
are 1334, 35, 50 and 36.35 mg g−1 for the uptake of methylene blue, famotidine and
diclofenac, respectively. This means that Ca-Alg2/GO beads are an efficient adsorbent for
the removal of these contaminants, particularly for methylene blue as, to our knowledge,
this is the highest adsorption capacity for MB that has been reported in the literature.

3.6. Desorption

The desorption of each compound adsorbed onto Ca-Alg2 and Ca-Alg2/GO beads
was studied using HCl/NaOH 0.1M, NaCl 1M and ethanol 1% v:v. The results of the
percentage desorbed after 24 h are shown in Figure 16.

The desorption of MB from the beads was higher when using HCl 0.1 M than with
NaCl or ethanol. The results show that 89 ± 9.9% and 44 ± 0.6% of MB are desorbed for
Ca-Alg2 and Ca-Alg2/GO20 beads, respectively. Indeed, excesses of H+ protons seem to be
able to force the cationic dye to be released by arising on the adsorption sites on the surfaces
of the beads. It is more difficult to cause the release of MB from beads with graphene oxide
due to the stronger affinity. NaCl 1 M also showed good results for the desorption of MB.
However, the ionic strength of sodium chloride 1 M destabilizes the structure of calcium
alginate beads, making them soft, fragile, and crumbly. As such, a high-concentration
salt solution cannot be use as a desorbent due to the inability to reuse the beads. Ethanol
solution showed low desorption of MB, as the main interactions between adsorbate and
adsorbent are typically ionic bonds, and ethanol has a low ability to remove the dye from
the beads with van der Waals’ forces.

On the other hand, the desorption of famotidine using HCl 0.1 M showed less satisfac-
tory results. This might be due to the poor solubility in a low pH solution or to the presence
of hydrogen bonds between the adsorbent and the adsorbate, making hydrochloric acid
unable to release the drug into the solution. Hydrogen bonds could also explain why the
ionic strength of NaCl is insufficient to remove the cationic pharmaceutical from the beads,
in addition to destroying the stability of the beads. As for MB, ethanol has little effect on
the van der Waals’ interaction for the removal of famotidine because of the stability of
hydrogen bonds.
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The results regarding the desorption of diclofenac from the beads showed that ethanol
1% v:v is able to release the pharmaceutical into solution. The percentages of desorption
are high, around 70%, and the results present little difference between each of the kinds
of beads. Diclofenac was desorbed from the beads with NaOH 0.1 M, mainly due to a
change in the pH of the solution. As the results of the effect of pH showed, the adsorption
of diclofenac was low in high pH solution. Similarly, to other compounds, NaCl is not
an efficient desorbent, and it damages the stability of the beads by interacting with the
structure of the polymer.

4. Conclusions

The SEM analysis showed that an increase in graphene oxide modified the morpho-
logical structure of the beads. Indeed, they become more porous and rougher with a
higher surface available for the interactions between adsorbate and adsorbent. As expected,
during the adsorption process, Ca-Alg2/GO20 beads present the best adsorption for each
compound. The effect of initial concentration, adsorbent dose, pH and temperature all
play an important role in the adsorption. The results show that a higher concentration
of pharmaceuticals increases the force of the diffusion of the drug adsorbed by the beads.
With a lower concentration of beads, the adsorbed amount at equilibrium qeq increases
because of a higher amount adsorbed per unit of weight of the adsorbent. On the other
hand, the percentage of removal decreases due to the fewer adsorption sites available.
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The pH can modify the structure of the beads along with the pharmaceuticals, causing a
change in the interactions between adsorbate and adsorbent. The adsorption process is
better at low temperature than high temperature, meaning the adsorption mechanism is
exothermic (as confirmed by H◦), and thermodynamic studies show that the physisorption
is spontaneous. The pseudo-second-order model is the best fit for the experimental data
concerning the kinetics of adsorption for methylene blue and famotidine; however, the
Lagergren pseudo-first order model is better suited to diclofenac. Furthermore, each com-
pound follows the Langmuir model for isotherm adsorption, with a maximum adsorption
capacity of 1334, 35.50 and 36.35 mg·g−1 for methylene blue, famotidine and diclofenac,
respectively. It should be noted that the adsorption capacity of MB onto calcium alginate
graphene oxide beads, particularly Ca-Alg2/GO20 composites, was found to be superior
in comparison to other adsorbents, ranging from commercial activated carbon adsorption
capacity (980.3 mg·g−1) to bioadsorbents adsorption capacity, such as modified biomass
of baker’s yeast (869.6 mg·g−1), and many other natural adsorbents, such as biomass and
coal-derived activate carbon, as reviewed in detail by [62]. In addition, GO and alginate
incorporation outperformed a graphene-derived nanocomposite (Fe3O4

- graphene at meso-
porous SiO2), wherein the adsorption capacity of this graphene-derived nanocomposite
was reported to be 178.49 mg·g−1 in terms of MB removal [32]. Furthermore, the adsorption
capacity of MB was recently published as 150.66 mg·g−1 when GO was incorporated with
sodium alginate to produce aero gel beads. Therefore, it can be concluded that graphene
oxide calcium alginate composite is a superabsorbent useful for MB removal from water, in
addition to being superior to the previously researched compounds [42,63]. Furthermore,
by treating the Alg2/GO20 composites that had come in contact with the absorbates MB
or diclofenac with 0.1 M HCl and ethanol 1% v:v, the absorbates could be efficiently re-
moved/desorbed, and the Alg2/GO20 composite beads were regenerated without damage
to bead integrity. Further investigations need to be performed for famotidine, as little
desorption was observed with the desorption candidates examined.

These beads appear to be an efficient adsorbent for dyes and pharmaceuticals, partic-
ularly for methylene blue. This novel technology could be applied as a polishing step in
water treatment in order to reduce the concentration of these micropollutants, as well as of
the synthetic dyes that negatively impact the environment, human health and aquatic life.
Methylene blue is widely used a model pollutant in adsorption studies. It is interesting to
note that while the performance of the beads assessed in this study is excellent for MB, it
is less than ideal for FMTD and DFC. This calls into question the validity of the common
approach of using a single-component pollutant for novel adsorbent testing. However,
the treatment of an MB, FMTD and DFC mixture via Alg2/GO beads might have an in-
fluence on the adsorption/desorption capacities. Therefore, conducting an experimental
study targeting the removal of mixed pollutants via Alg2/GO beads is suggested as a
future direction.

Author Contributions: Conceptualization, Z.G., B.Q., A.M., K.N. and J.L.; methodology, B.G., D.M.,
Z.G., B.Q., A.M., K.N. and J.L.; validation, D.M., K.N. and J.L.; formal analysis, Z.G. and K.N;
investigation, B.G., Y.J., L.S., R.P., D.M., Z.G., B.Q., A.M., K.N. and J.L.; resources, K.N. and J.L.;
data curation, Y.J., B.G., K.N. and J.L.; writing—original draft preparation, B.G., Y.J., K.N. and J.L.;
writing—review and editing, B.G., K.N. and J.L.; visualization, Y.J., L.S., R.P. and B.G.; supervision,
B.G., B.Q., A.M., K.N. and J.L.; project administration, K.N., B.Q., A.M. and J.L.; funding acquisition,
B.Q., A.M., K.N. and J.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Environmental Protection Agency, grant number 2011-W-MS-
8, and the APC was funded by Qatar Environment and Energy Research Institute.

Acknowledgments: The authors acknowledge the immense support of Environmental Protection
Agency Ireland for funding the project and for unwavering support. The authors are most grateful
to Qatar Environment and Energy Research Institute for covering the publication charge. Yannick
Jaquet, Laura Sánchez, Rebecca Pumarino was funded with the support of the Erasmus+ program of
the European Union.



Materials 2021, 14, 6343 20 of 27

Conflicts of Interest: The authors declare no conflict of interest.

Disclaimer: The European Commission’s support for the production of this publication does not
constitute an endorsement of the contents, which reflect the views only of the authors, and the Com-
mission cannot be held responsible for any use that may be made of the information contained therein.

Appendix A

Materials 2021, 14, x FOR PEER REVIEW 21 of 29 
 

 

life. Methylene blue is widely used a model pollutant in adsorption studies. It is interest-
ing to note that while the performance of the beads assessed in this study is excellent for 
MB, it is less than ideal for FMTD and DFC. This calls into question the validity of the 
common approach of using a single-component pollutant for novel adsorbent testing. 
However, the treatment of an MB, FMTD and DFC mixture via Alg2/GO beads might 
have an influence on the adsorption/desorption capacities. Therefore, conducting an ex-
perimental study targeting the removal of mixed pollutants via Alg2/GO beads is sug-
gested as a future direction. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1. 

Author Contributions: conceptualization, Z.G., B.Q., A.M., K.N. and J.L.; methodology, B.G., D.M., 
Z.G., B.Q., A.M., K.N. and J.L.; validation, D.M., K.N. and J.L.; formal analysis, Z.G. and K.N; inves-
tigation, B.G., Y.J., L.S., R.P., D.M., Z.G., B.Q., A.M., K.N. and J.L.; resources, K.N. and J.L.; data 
curation, Y.J., B.G., K.N. and J.L.; writing—original draft preparation, B.G., Y.J., K.N. and J.L.; writ-
ing—review and editing, B.G., K.N. and J.L.; visualization, Y.J., L.S., R.P. and B.G.; supervision, B.G., 
B.Q., A.M., K.N. and J.L.; project administration, K.N., B.Q., A.M. and J.L.; funding acquisition, B.Q., 
A.M., K.N. and J.L. All authors have read and agreed to the published version of the manuscript. 

Funding: This research was funded by Environmental Protection Agency, grant number 2011-W-
MS-8, and the APC was funded by Qatar Environment and Energy Research Institute. 

Acknowledgments: The authors acknowledge the immense support of Environmental Protection 
Agency Ireland for funding the project and for unwavering support. The authors are most grateful 
to Qatar Environment and Energy Research Institute for covering the publication charge. Yannick 
Jaquet, Laura Sánchez, Rebecca Pumarino was funded with the support of the Erasmus+ program 
of the European Union. 

Conflicts of Interest: The authors declare no conflict of interest. 

Disclaimer: The European Commission’s support for the production of this publication does not 
constitute an endorsement of the contents, which reflect the views only of the authors, and the Com-
mission cannot be held responsible for any use that may be made of the information contained 
therein. 

Appendix A 

 
Figure A1. Structure of Analytes. 

Appendix B 
Appendix B.1. Preparation of GO 

Figure A1. Structure of Analytes.

Appendix B

Appendix B.1. Preparation of GO

Graphite flakes were microwaved in small portions in a glass beaker in a 700 W
microwave (modified, vented) on maximum power three times for 10 s each time to produce
expanded graphite; 2 g of expanded graphite, 10 g of dried potassium permanganate and
250 mL of H2SO4 were added to a 2 L round bottomed flask, and stirred overnight at room
temperature (RT). After that, 500 mL of deionized (DI) water was added into the flask,
maintaining the temperature below 80 ◦C using an ice bath.

In total, 100 mL of H2O2 was added slowly to the mixture (color change to golden
brown), after that the mixture was stirred for 30 min and the resulting particles were
washed with 750 mL of 10% HCl solution and centrifuged three times. To remove any
residual traces of preparatory chemicals, the obtained GO was resuspended in 750 mL of
DI water and centrifuged three times, and the washed GO was resuspended in 50 mL of DI
water to achieve a thick paste. To establish the concentration, 1 g of GO suspension was
spread in a dried, weighed beaker, dried overnight at 60 ◦C and weighed again, and the
concentration was then adjusted to 1% GO in DI water on a dry mass basis.

Appendix B.2. Preparation of Ca-Alg2/GO Beads

Na-Alg/GO solutions were prepared by weighing 5, 10 or 20 g of 1% w/w GO
concentrate into a conical flask, then 50 mL of DI water was added to the flask. The
suspension was ultrasonicated for 20 min to ensure good dispersion of GO, and was then
added to 250 mL of a 2% w/w Na-Alg solution and stirred until a homogenous mixture
was obtained.

Ca-Alg2 beads were prepared using the Na-Alg solution without GO by using a
syringe pump with a flow rate of 20 mL min−1 and two 10 mL syringes with a 1 mm needle.
The solution was dropped into an aqueous coagulation bath of CaCl2 6% w/v, and the bath
was continuously agitated with a magnetic stirrer in order to prevent beads agglomeration.
The beads were left for 24 h without agitation to achieve the complete formation of Ca-



Materials 2021, 14, 6343 21 of 27

Alg2 gel beads, and the beads were collected and washed three times with 500 mL of
DI water. The same procedure was used to prepare Ca-Alg2/GO5, Ca-Alg2/GO10 and
Ca-Alg2/GO20 beads. Activated beads were then dried at 60 ◦C over 2 days in order to
reach a constant weight. The beads were stored in plastic vials at room temperature.
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Appendix D.

XRD pattern of GO used in the preparation of the alginate beads
It can be seen that the as-prepared GO shows a distinct peak at 10◦ attributed to the

(002) plane and corresponding to a layer-to-layer distance (d-spacing) of about 0.82 nm. The
crystallite size of graphene oxide sheets is about 7.5nm based on the calculations from the
half width at maximum (HWFM) of the X-ray diffraction peak using Scherrer’s equation.
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