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Abstract: Binary composite was synthesized via coupling BiOCl with alkali leached natural clinoptilo-
lite (40B0/CN), which showed retarded recombination of photo-generated carriers. The clinoptilolite
was pretreated with alkali leaching, resulting in a larger pore size and high cation exchange capacity.
The modified clinoptilolite was more feasible for the growth of BiOCl and to promote the adsorption
ability for formaldehyde (HCHO). In addition, the cation exchange capacity was conducive to anchor
Bi3+, further leading to the reduction of the particle size of BiOCl. The carrier effect of alkali leached
natural clinoptilolite promoted the amorphous transformation of BiOCl at low temperature, which
simultaneously produced more distortions and defects in the BiOCl lattice. The 40B0/CN composite
exhibited the superior light absorption ability with a narrower band gap. The photocatalytic degra-
dation rate for HCHO of 40B0/CN under solar light reached 87.7%, and the reaction rate constant
was 0.0166 min−1, which was 1.6 times higher than that of BiOCl. This paper gave a deep insight
into photocatalytic technology to efficiently degrade formaldehyde.

Keywords: BiOCl; clinoptilolite; formaldehyde; photocatalysis

1. Introduction

Owning to the increasing attention to the living environment, indoor air quality
(IAQ) has traditionally been regarded as an important factor that affects the health of
humans [1–3]. In particular, formaldehyde, as one of the most concerned volatile organic
compounds (VOCs), has emerged as being one of the main reasons causing cancer due to
its widespread source and high toxicity [4–6]. To date, massive research efforts have been
devoted to the development of adsorption [7], biodegradation [8], thermal catalysis [9], and
photocatalysis [10] technologies to remove formaldehyde. Due to uncomplicated processes
and an efficient treatment effect, adsorption technology has recently been widely studied.
As a kind of natural zeolite and an efficient and environmental adsorption material, natural
clinoptilolite (NC) has received widespread attention owing to its abundant resources, low
price, and its massive mesoporous structure, which could promote the diffusion and mass
transportation of formaldehyde and active species [11,12]. However, its formaldehyde
adsorption capacity is limited. On the other hand, when external environmental conditions
change, formaldehyde molecules are easily desorbed from the surface of NC, resulting
in secondary pollution. Therefore, to make NC more feasible for practical application, it
is very necessary to endow NC adsorbents with formaldehyde degradation function to
ensure the continuous purification ability of materials to formaldehyde.

Among various degradation technologies for formaldehyde purification, photocataly-
sis has been proven to be effective in degrading or mineralizing formaldehyde. Thereinto,
BiOCl is an inexpensive and promising photocatalyst with the advantages of a suitable band
gap (3.40 eV), its non-toxicity, and being cost-effective and environmentally friendly [13,14].
Moreover, BiOCl displays the typical layered structure, which is conducive to the separa-
tion and migration of electron and hole pairs, and so it shows better photocatalytic activity.
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Massive reports have been proved that formaldehyde could be degraded by BiOCl under
ultraviolet or solar light irradiation [15,16]. However, it is currently constrained by the
shortcoming of lower degradation efficiency under solar light irradiation and tendency
to form larger particle size, which inevitably decreases the number of active sites [17]. In
view of the large specific surface area, NC is a promising carrier candidate for BiOCl to
construct a coupling system with a higher formaldehyde adsorption capacity, adsorption
selectivity, and efficient formaldehyde degradation performance. However, the smaller
pore size of NC may hinder the diffusion of BiOCl into the holes. Previous studies have
been proved that alkali leaching process could enlarge the pore size significantly [18,19].
Predictably, the NC after alkali leaching treatment would be more feasible for the deposition
of BiOCl. Based on the above assumptions, combining alkali leached natural clinoptilo-
lite and BiOCl is a satisfactory strategy to enhance the removal of formaldehyde, which
would not only possess superior adsorption performance, but also exhibit formaldehyde
degradation performance.

Overall, the BiOCl/alkali leached natural clinoptilolite was successfully prepared
via facile liquid-phase hydrolysis method and well characterized by various instruments.
The catalytic performance was examined by degrading formaldehyde in different systems.
Meanwhile, the effect of preparation parameters such as reaction temperature and mass
ratio of BiOCl were studied as well. Besides, the mechanism of the composite was fully
explored and proposed.

2. Experimental
2.1. Materials

Sodium hydroxide (NaOH), bismuth nitrate (Bi(NO3)3), glycol (C2H6O2), sodium
chloride (NaCl), and formaldehyde solution (37 wt%) were purchased from Beijing Reagent
Co. (Beijing, China). All the above reagents were analytical reagent grade without any
further purification. The natural clinoptilolite was provided by Bayannur City, Inner
Mongolia Province, China. Deionized water was used throughout the experiments.

2.2. Composites Preparation

Alkali leached natural clinoptilolite (labeled as NC-Na-3.0) was prepared via impreg-
nation method. In a typical synthesis, the NC and NaOH (3.0 mol/L) solutions were
transformed into deionized water and the solid/liquid ratio was 1:10. The above suspen-
sion was further stirred for 6 h in a water bath at 60 ◦C. Then, the suspension was filtrated,
dried in an oven (DHG-9240A, Huiyi Sifang Technical Service Co., Beijing, China) and
collected for further use.

BiOCl/alkali leached natural clinoptilolite was synthesized through liquid-phase hydrol-
ysis. Typically, 2.0 g NC-Na-3.0 was added into 61.42 mL Bi(NO3)3 ethylene glycol solution
with the molar concentration of (m = 0.0125, 0.025, 0.0375, 0.05, 0.0625 mmol/L) under mag-
netic stirring to form a homogeneous suspension, then the suspension was continuously
stirred in a water bath under different temperatures. After that, 92.13 mL sodium chloride
solution with the same molar concentration of Bi(NO3)3 was added into the above suspension
through the peristaltic pump (BT100M, Chuangrui Pump Co., Baoding, China), and finally
the suspension was further reacted for 1 h. Then, the powder was collected after washing and
drying. The composites with a different mass ratio of BiOCl were marked as XBY/CN (X and
Y present the mass ratio of BiOCl and reaction temperature, respectively. X = 10%, 20%, 30%,
40%, and 50%, Y = 0, 25, 50, 75, and 90 ◦C). Moreover, pure BiOCl (labeled as B25 and B0) was
obtained according to the abovementioned method at 25 ◦C and 0 ◦C water bath, respectively,
without using NC-Na-3.0.

2.3. Characterizations

D8 advance X-ray diffractometer (Bruker, Karlsruhe, Germany) equipped with Cu-
Kα radiation (λ = 0.154056 nm) was applied to investigate the phase structure of as-
prepared composite. The range of 2θ was from 5◦ to 80◦ with a scanning rate at 8◦/min.



Materials 2021, 14, 6469 3 of 12

The morphology was studied on a scanning electron microscopy (SEM) (S-4800, Tokyo,
Hitachi, Japan). The optical performance of composite was recorded through a UV-vis
spectrophotometer (UV-9000s, Metash Instruments Co., Shanghai, China). The specific
surface area and pore distributions were obtained by JW-BK (JWGB Sci. & Tech., Beijing,
China) at liquid nitrogen temperature (77 K). Photoluminescence (PL) spectra was recorded
through a fluorescence spectrophotometer (F-7000 PL, Tokyo, Hitachi, Japan) at 360 nm
emission wavelength.

2.4. Evaluation of Photocatalytic Activity

One gram of as-prepared composite was evenly dispersed at the bottom of a glass-
surface vessel (ϕ = 10 cm). Then, the glass-surface vessel was put on the support platform in
the reaction chamber with a volume of 60 L. After that, the reaction chamber was closed and
20 µL formaldehyde diluent (18.5 wt%) was injected through a micro syringe. The electric
heating plate and fan were employed to accelerate the volatilization of formaldehyde and
finally the formaldehyde was evenly dispersed in the reaction chamber. After 2 min, the
electric heating plate was turned off. The temperature was maintained at room temperature
and the relative humidity maintained at around 50% (when testing under high humidity
conditions, the relative humidity was maintained at about 75%). Before the simulated
sunlight irradiation, 45 min of dark reaction was conducted to achieve the adsorption-
desorption equilibrium on the surface of the composites. Then, the catalytic process
was examined with a light intensity of 50 mW/cm2 at the sample surface. Generally,
the degradation rate of formaldehyde was equal to the formation rate of CO2, thus the
degradation rate of formaldehyde could be calculated according to the following formula:

D =
M1 ×4CO2

M2 ×C0
. (1)

M1 and M2 represent the relative molecular weights of formaldehyde and carbon dioxide,
respectively. 4CO2 is the increment of CO2 (mg/m3). C0 represents the initial concentration of
formaldehyde (mg/m3), and the theoretical calculation value is 66.8mg/m3. The concentration
of CO2 and formaldehyde was monitored through a photoacoustic spectrum.

3. Results and Discussion
3.1. Cation Exchange Effect of Catalyst

Since NC possessed a superior cation exchange effect, it is necessary to further in-
vestigate whether the cation exchange performance is conducive to the growth of BiOCl,
which is important for understanding the mechanism of the catalyst. A certain amount of
NC-Na-3.0 was transferred into Bi(NO3)3 ethylene glycol solutions and the suspension was
dispersed evenly under vigorous stirring. Then, the suspension was transferred to a water
bath at 0 ◦C and 90 ◦C, respectively. After stirring for 2 h, the suspension was filtrated
and dried, then the as-prepared composites were marked as CN-0 and CN-90, respectively.
The chemical components of the above two samples were further analyzed. As shown in
Table 1, the content of Bi in CN-0 and CN-90 was higher than NC-Na-3.0, while the content
of Na and Ca in CN-0 and CN-90 are significantly lower than NC-Na-3.0, indicating that
ion-exchangeable reaction between the Na+, Ca2+ in NC-Na-3.0 and Bi3+ was carried out.
Moreover, there is little difference in the chemical components between CN-0 and CN-90,
indicating that a low temperature could hardly inhibit the ion exchange between Na+, Ca2+

in NC-Na-3.0 and Bi3+.

Table 1. X-ray fluorescence spectroscopy (XRF) results of clinoptilolite supports before and after ion
exchange with bismuth nitrate at different temperatures (wt%).

Sample SiO2 Al2O3 CaO MgO K2O Na2O Fe2O3 Bi2O3

NC-Na-3.0 61.39 21.46 5.35 ± 0.11 2.23 2.38 6.32 ± 0.13 0.83 0.01 ± 0.00
CN-0 64.31 22.37 3.39 ± 0.08 2.28 2.13 1.58 ± 0.06 0.63 2.86 ± 0.06

CN-90 64.25 21.92 3.23 ± 0.08 2.21 2.26 1.54 ± 0.06 0.85 2.76 ± 0.07
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3.2. Phase Structure of Catalysts

The phase structure of XBY/CN composites and the contrastive samples were in-
vestigated by XRD spectra. As shown in Figure 1a, the spectrum of B25 was basically
consistent with the standard spectrum of BiOCl (JCPDS: 06-0249), indicating that the purity
and crystallinity of BiOCl in B25 synthesized at room temperature were high [20]. The
peaks appeared at 26.0◦, 32.5◦, and 46.8◦, and could be indexed as (101), (110), and (200)
planes of BiOCl in XB25/CN, respectively, and the peak intensity gradually enhanced
with the increase of the loading ratio of BiOCl. Meanwhile, the peaks located at 26.0◦,
32.5◦, and 46.8◦, which were attributed to (101), (102), and (200) planes of clinoptilolite,
were gradually decreased. This implies that more BiOCl were successfully grafted on the
surface of NC-Na-3.0. Moreover, the peak relative intensity of (110) crystal face of BiOCl
in XBY/CN was higher than (101) crystal face of B25 and standard spectrum of BiOCl,
which revealed that BiOCl presented an evident (110) preferred orientation on the surface
of NC-Na-3.0.
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spectra of NC and NC-Na-3.0.

The XRD spectra of 40BY/CN composites under different reaction temperatures
were shown in Figure 1b. As can be seen, compared with B25, the diffraction peaks
of BiOCl in B0 were significantly sharpened and the intensity was improved as well,
indicating that the lower temperature was beneficial to increasing the crystallinity of
BiOCl. However, the peaks’ intensity was enhanced gradually with the increased reaction
temperature, indicating that the existence of NC-Na-3.0 exhibited a significant impact on
the crystallization and actual loading amount of BiOCl.

Furthermore, the XRD spectra of B0 and 40B0/CN composites after calcination at
500 ◦C for 1 h (B0-500, 40B0/CN-500) was further studied to confirm the carrier effect of
NC-Na-3.0. As shown in Figure 1c, the diffraction peaks of B0 did not change significantly
after calcination, while the peak of BiOCl diffraction peaks in 40B0/CN were significantly
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sharpened and enhanced after calcination. This phenomenon could be attributed to the
amorphous transformation of BiOCl at low temperature caused by the introduction of
NC-Na-3.0. The induced transformation of NC-Na-3.0 might produce more distortions
and defects in the BiOCl lattice, which would effectively promote the photocatalytic
performance of the composites under solar light [21].

3.3. Pore Structure and Specific Surface Area of Catalysts

The specific surface area, pore volume, pore distributions of composites, and the
average crystallite sizes of BiOCl in composites (calculated based on the Debye-Scherrer
equation) are summarized in Table 2. NC-Na-3.0 possesses the largest specific surface area,
total pore volume, and average pore diameter, which are beneficial for the adhesion and
dispersion of BiOCl nanoparticles. Compared with B25 and B0, the specific surface area
and pore volume of XBY/CN is improved, and the average pore size decreases apparently,
suggesting that a large number of microporous pores were formed. When the mass ratio of
BiOCl is small, the crystallite size of BiOCl loaded on NC-Na-3.0 carrier increases compared
with B25, which may be due to the acid-base characteristics of the carrier surface. After
alkali leaching treatment, more active centers that can react with acid remained on the
mineral surface of natural clinoptilolite. These active centers would react with HNO3,
which was produced by the hydrolysis of Bi(NO3)3 in NaCl aqueous solution, and finally
the neutralization reaction could be realized. Therefore, the pH would be maintained to
neutral, and the higher pH value promoted the rapid nucleation and growth of BiOCl.
With the increase of the mass ratio of BiOCl, the crystallite size of BiOCl in XB25/CN
gradually decreases as well as the total pore volume and average pore size (compared with
NC-Na-3.0), indicating that the loading of BiOCl particles on the carrier may be completed
preferentially in the pores of the carrier.

Table 2. Specific surface area, total pore volume, average pore diameter, and crystallite size of
different samples.

Sample
Crystallite Size

of BiOCl
(nm)

SBET
(m2/g)

Total Pore
Volume
(cm3/g)

Average Pore
Diameter

(nm)

NC-Na-3.0 —— 61.43 0.310 16.67
B25 19.5 29.29 0.160 15.63

10B25/CN 19.9 56.63 0.283 15.43
20B25/CN 12.5 45.29 0.181 13.61
30B25/CN 12.3 43.68 0.176 12.97
40B25/CN 12.2 42.55 0.162 12.38
50B25/CN 12.9 36.75 0.158 11.57

B0 18.6 23.89 0.148 15.84
40B0/CN 11.3 65.54 0.254 12.2

40B25/CN 12.2 42.55 0.162 12.38
40B50/CN 18.1 45.78 0.206 12.72
40B75/CN 23.3 50.82 0.209 13.52
40B90/CN 26.8 55.47 0.254 15.76

When the mass ratio of BiOCl was 40%, the smallest crystallite size of BiOCl and
smaller average pore size of 40B0/CN appeared, which not only improved the photocat-
alytic activity of the composites but also facilitated the diffusion and mass transportation
of reactants and active species. Besides, the uniformly BiOCl significantly improved the
specific surface area and pore volume of 40B0/CN composite, and the surface area of
40B0/CN was 2.24 and 2.79 times as high as that of B0 and B25, respectively. It can also be
seen from Table 2 that a higher reaction temperature is unfavorable to the formation of a
smaller crystallite size of BiOCl.
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3.4. Morphology and Structure of Catalysts

The morphology and structure of as-prepared composites were investigated by SEM
images. As shown in Figure 2, the B25 sample prepared at 25 °C exhibited a flake structure
with a diameter of about 110~160 nm and a thickness of about 20~40 nm. The aggregate
exhibit flake structure with a diameter of about 2~3 µm. The B0 sample prepared at
0 ◦C was mainly composed of flake structure with a diameter of about 60~80 nm and
a thickness of about 20 nm. The BiOCl nanosheets were agglomerated into flower-like
structure with a diameter of about 500 nm. As shown in Figure 2a,b, the particle size of B0
was significantly smaller than B25, and the size of B0 aggregates was small and uniform as
well, which further indicated that a lower temperature could inhibit the growth of BiOCl
and contribute to the dispersion on the surface of NC-Na-3.0. As shown in Figure 2c, the
NC-Na-3.0 exhibited massive macropores with the pore size of 70~400 nm, while most
of the original macropores of NC-Na-3.0 disappeared after loading of BiOCl (Figure 2d),
which was ascribed to the growth of BiOCl in the macropores. As shown in Figure 2d,
massive aggregates of BiOCl with the diameter of 100~200 nm and nanosheets of BiOCl
with the diameter of 20~40 nm and a thickness of about 10 nm were dispersed on the
surface of NC-Na-3.0. The smaller size of BiOCl might be caused by the carrier effect of
NC-Na-3.0.
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3.5. Optical Properties and Photoelectrochemical Performance of Catalysts

The optical performance of the as-prepared composites was measured via UV-Vis
DRS spectra. The light absorption intensity of B25, B0, and 40B0/CN in the UV region,
especially in the UV region of 230~315 nm, increased in turn, indicating that the smaller
size of BiOCl was helpful to improve the utilization of ultraviolet light. In the region of
>355 nm, especially in the region of 355~565 nm, the light absorption ability of B0, B25,
and 40B0/CN increased in turn, indicating that the lower crystallinity of BiOCl might
facilitate improving the utilization of visible light. In addition, the band gap values (Eg)
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were calculated using the Kubelka–Munk method [22], and the results were displayed
in Figure 3b. The band gap of B25, B0 and 40B0/CN were estimated as 3.41 eV, 3.46 eV,
and 3.37 eV, respectively. The narrower band gap of 40B0/CN further revealed that more
visible light could be harvested.
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3.6. Photocatalytic Activity and Stability of Photocatalysts

Since the mass ratio of BiOCl could directly affect the catalytic performance of
XB25/CN composites, the degradation rate of formaldehyde with a different loading
amount of BiOCl was studied systemically. As depicted in Figure 4a, the concentration of
HCHO showed a declining trend with the extension of time under dark condition, and
gradually reached adsorption equilibrium within 45 min. Moreover, the concentration
of CO2 remained almost unchanged during the dark adsorption process, which demon-
strated that the decrease of HCHO was mainly attributed to the materials’ adsorption
rather than degradation. B25 exhibited the smallest reduction of HCHO, resulting from
poor adsorption ability. The XB25/CN composites possessed the higher adsorption of
HCHO, which revealed that the introduction of NC-Na-3.0 significantly enhanced the
adsorption performance. As shown in Figure 4b, the concentration of CO2 under different
systems increased significantly, and the formation efficiency increased with the increase
of BiOCl loading from 10% to 40%, and decreased when the BiOCl loading was excessive
(X > 40%), suggesting that higher BiOCl loading amount was not conducive to the degra-
dation of formaldehyde by composites. The corresponding first-order kinetics plot shown
in Figure 4c,d demonstrated that the 40B25/CN composite shows superior formaldehyde
purification performance under sunlight and the degradation efficiency was higher than
of pure BiOCl. The K value of 40B25/CN (0.0133 min−1) was 1.32 times higher than
that of B25 (0.0101 min−1) [23,24], further indicating that the introduction of NC-Na-3.0
significantly improves the photocatalytic performance of BiOCl.

It can be seen from Figure 5, that the formation efficiency of CO2 gradually increased
with the decrease of reaction temperature. Moreover, the reaction rate constant gradually
increased as well, which indicated that the lower reaction temperature was conducive
to the improvement of the catalytic performance of B/CN. Specifically, when the reac-
tion temperature decreased to 0 ◦C, the composite displayed the faster formation rate of
CO2, and the K value of 40B0/CN (0.0166 min−1) was 1.61 times higher than that of B0
(0.0103 min−1). Thus, 40B0/CN was selected for further use in this work.

The stability of photocatalytic performance is of great significance to the practical
application of photocatalyst. The stability mentioned in this work includes the reusability
of 40B0/CN and the photocatalytic performance of HCHO under high humidity conditions.
It can be seen from Figure 6 that the degradation rate of HCHO and the formation rate
of CO2 have no obvious reduction after three reuse experiments of 40B0/CN, indicating
that the composite possessed the superior sustainable degradation performance for HCHO
under solar light. Additionally, there was a minor reduction of HCHO and CO2 in the high
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humidity environment, which further indicated that 40B0/CN displayed good moisture
resistance and had the application conditions in the high humidity environment.
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The XRD spectra of 40B0/CN, B0 and B25 before and after photocatalytic reaction were
depicted in Figure 7. Obviously, the peak of BiOCl in B25 and B0 after the photocatalytic
reaction was significantly sharpened and the intensity was enhanced, suggesting that the
stability of the pure BiOCl was poor. The pure BiOCl synthesized by precipitation method
had a smaller particle size. Moreover, the structural stability and crystallinity of it were
generally lower than those of BiOCl after calcination. Therefore, it is also understandable
that the structure and crystallinity changed after receiving light radiation energy. However,
only slight changes were observed in 40B0/CN, which might be attributed to the existence
of NC-Na-3.0, which could effectively maintain the stability of BiOCl.
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3.7. Reaction Mechanism

For the photocatalyst, the separation efficiency of photogenerated carriers was closely
related to the photocatalytic activity. Based on the above analysis and discussion, it
could be proved that the adsorption performance and photocatalytic performance of the
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composites were improved compared with BiOCl. The PL spectra was carried out to further
investigate the separation efficiency of photogenerated carriers. As depicted in Figure 8a,
the composites were excited under 290 nm and all of them revealed a wide emission peak
from 350 to 800 nm. It is clearly observed that 40B0/CN showed weaker intensity than
B25 and B0, which demonstrated that 40B0/CN possessed a lower recombination rate of
electron-hole pairs [25,26]. This is consistent with the experimental results of the HCHO
degradation rate in Figure 8b.

In conclusion, the preparation mechanism of 40B0/CN composite was as follows:
After alkali leaching, NC-Na-3.0 obtained more large pores, and due to the existence of a
strong electric field inside and around pores, more equilibrium ions Na+ and Ca2+ could be
gathered. When NC-Na-3.0 was added into Bi(NO3)3 ethylene glycol solution, NC-Na-3.0
would carry out the ion exchange between Bi3+ and Na+, Ca2+ in the pores of NC-Na-3.0.
Then, with the addition of NaCl aqueous solution, BiOCl preferentially nucleated and
deposited around Bi3+ in the pores. Due to the confinement effect of the carrier, the growth
of BiOCl would be inhibited, and the size of BiOCl would be reduced and the dispersion
would be improved [27]. Moreover, the lower reaction temperature further decreased the
deposition size of BiOCl on NC-Na-3.0 and further promoted its dispersion. The existence
of NC-Na-3.0 also induced the transformation of BiOCl nanocrystals to an amorphous state.

The possible degradation mechanism was discussed, and the conclusion was depicted
as three aspects: (1) Compared with pure BiOCl, the specific surface area of the 40B0/CN
increased significantly and the adsorption of HCOH was significantly enhanced. The
probability of collision between BiOCl particles and HCHO molecules could be greatly
increased, which promoted the efficiency of photocatalytic degradation of HCHO; (2) More
nano-scale BiOCl particles were evenly distributed on the surface of the carrier, and these
particles have the tendency of amorphous transformation, resulting in increased distortion
in the lattice. Thus, more visible light could be harvested by 40B0/CN, and the utilization
of solar light was improved; (3) The combination of BiOCl and NC-Na-3.0 effectively
promoted the separation and migration of photogenerated carriers, further improving
photocatalytic performance.
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Figure 8. Photoluminescence spectra (a) and formaldehyde degradation rate under sunlight (b) of
B25, B0 and 40B0/CN composites.

4. Conclusions

The BiOCl/alkali leached natural clinoptilolite with superior photodegradation per-
formance of gaseous formaldehyde were successfully prepared via facile liquid-phase
hydrolysis method. There were a large number of BiOCl nanosheets with a diameter of
20~40 nm and a thickness of about 10 nm growth in the pores of NC-Na-3.0. The photo-
catalytic degradation rate of HCOH under solar light reached 87.7%, and the reaction rate
constant was 0.0166 min−1, which was 1.6 times higher than that of BiOCl. Moreover, the
composites possessed superior adsorption properties, good reusability, and moisture resis-
tance. The introduction of NC-Na-3.0 as the carrier enhanced the adsorption performance
for HCHO, promoted the directional deposition of BiOCl, and reduced the particle size of
BiOCl. On the other hand, the improvement of dispersion and the induced transformation
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of BiOCl effectively reduced the band gap value, which enhanced the solar light absorption
and boosted the separation and migration of photogenerated carriers.
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