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Abstract: Based on molecular dynamics simulations, the creep behaviors of nanocrystalline Ni before
and after the segregation of Mo atoms at grain boundaries are comparatively investigated with the
influences of external stress, grain size, temperature, and the concentration of Mo atoms taken into
consideration. The results show that the creep strain rate of nanocrystalline Ni decreases significantly
after the segregation of Mo atoms at grain boundaries due to the increase of the activation energy. The
creep mechanisms corresponding to low, medium, and high stress states are respectively diffusion,
grain boundary slip and dislocation activities based on the analysis of stress exponent and grain size
exponent for both pure Ni and segregated Ni-Mo samples. Importantly, the influence of external
stress and grain size on the creep strain rate of segregated Ni-Mo samples agrees well with the
classical Bird-Dorn-Mukherjee model. The results also show that segregation has little effect on the
creep process dominated by lattice diffusion. However, it can effectively reduce the strain rate of
the creep deformation dominated by grain boundary behaviors and dislocation activities, where the
creep rate decreases when increasing the concentration of Mo atoms at grain boundaries within a
certain range.

Keywords: creep behavior; segregation; strain rate; molecular dynamics simulation; Ni-Mo system

1. Introduction

In the past few decades, nanocrystalline (NC) materials have attracted more and
more attention because of their excellent properties such as ultra-high strength at room
temperature [1–7]. However, when functioned at high temperatures and under continuous
stresses, creep deformation, which may cause accidental deformation or even failure of
materials and structures [8–10], is an inevitable important issue. Thus, extensive researches
have been performed to study the creep mechanism of nanometallic materials, through
both experiments and simulations [9–18].

Previous simulation results have clarified that the main creep mechanisms in NC
materials are the lattice diffusion, grain boundary (GB) diffusion, GB sliding and dislocation
activity. Different applied stresses may activate different creep mechanisms [9,19,20]. The
well-known Brid-Dorn-Mukherjee classical equation [21], which comprehensively describes
the effects of external stress, temperature and grain size, is widely used to analyze the creep
behavior of NC materials. Its expression is as follows [21]:
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where
.
ε is the creep strain rate of the material in the steady-state creep stage, A is a

dimensionless constant, D0 is the diffusion coefficient, G is the shear modulus of the
material, b is the magnitude of the Burgers vector, kB is the Boltzmann constant, T is
the absolute temperature, d is the average grain size of the polycrystalline material, σ is
the applied stress, ∆Q is the activation energy of a specific thermally activated creep
mechanism, and p and n are the grain size exponent and stress exponent, respectively.
Among them, the exponents n and p play an important role in determining the creep
mechanism of materials. Specifically, different exponents correspond to different creep
mechanisms. When n = 1, the creep deformation is always dominated by diffusion, and in
this case, if p = 2, the vacancy diffusion occurs in the crystal, which is usually called the
lattice diffusion (i.e., the Nabarro-Herring diffusion) [22]; if p is equal to 3, the vacancies
flow along the GBs, which is called the GB diffusion, that is, the Coble diffusion [13].
When the stress exponent n = 2 or the grain size exponent p = 3, the creep process is
dominated by the GB slip [12,19]. At the same time, it is worth noting that, the diffusion
and slip of GBs always occurs simultaneously [19,23]. When the stress exponent n is larger
than 4, the nucleation, slip, and climb of dislocations are the dominant creep deformation
mechanisms [23], which is called as the dislocation creep.

One of the most intriguing properties of NC materials that are utilized at various
applications is the ultra-high strength [24,25]. It is well accepted that its ultra-high strength
is due to the existence of a large number of GBs and the related structures in the crystal.
Generally speaking, the strength of NC materials increases with the decrease of grain size.
However, when the grain size is refined to a certain extent, for example, about 10 nm to
30 nm, NC materials will soften, i.e., the strength will decrease with the further decrease of
grain size [26]. This is mainly caused by the transition of plastic deformation mechanism
from dislocation activities to GB behaviors [27]. At the same time, due to the large number
of GB structures in NC materials, these materials are sensitive to high temperatures. The
instability of GBs also greatly limits the application of NC materials in high temperature
areas [28].

Accordingly, strategies against the softening behavior of NC materials caused by GB
instability at extremely fine grain size are essential for the potential applications, which
have attracted continuous efforts. The experimental results of Lu et al. showed that adding
the second-phase atoms and inducing them to segregate towards GBs can effectively avoid
the softening phenomenon [29]. Molecular dynamics simulations performed by Sellers
et al. also showed that the segregation of Cu and Ag atoms at the GBs of β-Sn material
affects the GB energy and shear stress [30]. The study conducted by Meyers et al. suggested
that the segregated impurity atoms can pin the GBs, thus reducing the mobility of the
GBs [31]. Based on these studies, it can be known that the segregation of the second-phase
atoms to GBs has a significant effect on the GB behaviors. That is, the GB segregation effect
can change the mechanical properties of NC materials by affecting the deformation process
dominated by the GB behaviors.

The research based on molecular dynamics simulations that was conducted by Ke-
blinski et al. indicated the Coble creep (the creep process dominated by GB diffusion) is
one of the main creep mechanisms of ultrafine grained materials [32,33]. Therefore, the
GB diffusivity, which was proved to be affected by the orientation of GBs, interface atoms
diffusion, and the segregation of solute atoms at GBs, is a very important factor affecting
the creep of NC materials [34–36]. Thus, is it possible to regulate the creep resistance of
NC materials through the segregation of solute atoms at GBs? Some hints can be obtained
from existing studies. For example, the simulation studies performed by Schafer et al.
showed that the segregation of some certain types of solute atoms at GBs can improve the
creep resistance of Cu materials significantly, and different sizes of the second-phase atoms
have different influences [37]. The experiments based on Mg alloys also indicated that the
segregation of solute atoms can improve the creep resistance of materials [38]. However, at
present, there is still a lack of systematic research on the effect of segregation on the creep
properties and mechanisms of NC materials. More importantly, understanding the creep
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mechanisms of ultrafine grained metal materials and their alloys at atomic scale is essential
for the design of materials with stable mechanical and thermodynamic properties under
various working conditions.

To study the creep properties of NC Ni with different grain sizes and concentrations
of second-phase atoms at GBs under different external conditions systematically, a series of
large-scale molecular dynamics simulations are carried out in this paper. The corresponding
creep mechanisms are also revealed.

2. Simulation Methods and Parameters

All the three-dimensional polycrystalline models used in this paper are constructed
by the ATOMSK software (ATOMSK-Beta 0.10.6, Pierre Hirel, Villeneuve d’Ascq, France)
based on the Voronoi method [39]. Three types of models are constructed: the first one is
the NC Ni sample without impurity atoms, the second type is the NC Ni sample with a
certain proportion of Mo atoms randomly distributed in grains, and the third type is the NC
Ni sample with a certain proportion of Mo atoms segregated at GBs, examining the effect of
segregation on the creep behaviors of NC materials. The detailed simulation parameters are
shown in Table 1. The dimensions of all the models are 35 nm × 35 nm × 35nm, containing
about 4 million atoms. The average grain sizes range from 7.9 nm to 19.8 nm. Figure 1
gives the atomic configuration of the 3D polycrystalline Ni sample with the grain size of
7.9 nm, in which green and white atoms represent Ni atoms located in the grain interior
and GBs, respectively, and black atoms represent the Mo atoms segregated at GBs. The
influences of the addition and segregation of Mo atoms on the creep behaviors of NC Ni
are studied through the cross-comparison of three types of models. The effects of applied
stress, temperature, and grain size on the creep deformation are further investigated using
the NC Ni sample with Mo atoms segregated at GBs.

Table 1. Parameters in the creep simulation of NC Ni-Mo alloy.

Group σ (GPa) d (nm) T (K) Mo (at.%)

1

0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9,
1.0, 1.1, 1.2, 1.3,
1.4, 1.6, 1.8, 2.0

10.9 1100 0.0, 3.0

2 0.6, 0.8, 1.0, 2.0 7.9, 10.9,
13.7, 19.8 1100 3.0

3 1.0 10.9 700, 800, 900,
1000, 1100 3.0

4 0.6, 1.0, 1.6, 2.0 10.9 1100 0.0, 1.0, 2.0, 3.0,
4.0, 5.0, 6.0

All simulations in this work are performed using the LAMMPS package (LAMMPS-22
August 2018, Sandia National Laboratories, Albuquerque, NM, USA) [40]. The velocity-
Verlet integration algorithm is used with the time step being set to 2 fs. The interaction
between Ni and Mo atoms is described by the embedded atom potential parameterized
by Zhou et al. [41], which can accurately predict some basic properties of materials, such
as the lattice parameter, elastic constants, bulk modulus, vacancy formation energy, and
so on. Besides, the GB energy of Ni calculated using this potential is in the range of
the mean value of GB energy for the NC metals. Periodic boundary conditions are used
in all three directions during the simulation. In order to accelerate the process of creep
deformation with practical simulation time, a high temperature of 1100 K is adopted in all
the simulations except for those used to study the effect of temperature.

During the simulation, each sample is first relaxed by the conjugated gradient method
to get the equilibrium configuration at 0 K. Then, by using the Nosé-Hoover method [42],
the sample is relaxed under an isothermal-isobaric ensemble for 200 ps to obtain the
equilibrium configuration at the given temperature. Starting from the equilibrium, a
constant stress is applied in the y direction for 200 ps to simulate creep load. The pressures
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in x and z directions are kept zero during the simulation. The microstructures are identified
by the common neighbor analysis method [43], the face-centered-cubic, hexagonal-close-
packed and non-structured atoms are colored green, red, and white, respectively.
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Figure 1. Atomic configuration of segregated polycrystalline Ni-Mo model with d = 7.9 nm.

3. Results and Discussion
3.1. Effect of Segregation on Creep Behavior

To investigate the effect of the segregation of Mo atoms on creep behaviors of NC Ni,
creep simulations of the pure Ni samples and the Ni samples with Mo atoms segregated
at GBs (referred as segregated Ni-Mo sample thereinafter) are carried out. Figure 2a,b
exhibits the evolution of creep strain with respect to time in the 10.9 nm grained Ni and
segregated Ni-Mo (3 at.%) samples under different constant stresses at 1100 K. According
to the variation of the strain rate on each curve, a typical creep curve under a low stress
can be divided into two stages: the initial creep stage and the steady creep stage. During
the initial creep stage, the creep strain increases rapidly, the creep strain rate is very large,
but gradually decreases with the increase of time. The creep strain rate in the initial
stage reflects the instantaneous change of creep strain with time. During the steady creep
stage, the strain increases almost linearly with time, implying that the creep rate is almost
constant. Under high stresses, the third stage, namely the accelerated creep stage, could be
observed, as shown in the curves corresponding to the stress over 1.4 GPa in Figure 2a and
over 1.6 GPa in Figure 2b. In this stage, the creep strain rate increases gradually with time
until the material breaks. It can also be found that in a certain time range, the critical stress
for the third creep stage of the segregated sample is higher than that of the pure Ni sample,
which indicates that the segregation of the second-phase atoms at GBs can improve the
ability of NC materials to resist creep deformation.

By fitting the slope of creep curves in the steady state stage, the creep rates under
different stresses are obtained. Then, the creep rates versus different applied stresses of
pure Ni samples and segregated Ni-Mo samples are plotted in Figure 2c,d, respectively.
Figure 2c,d shows that the creep rates of both the pure Ni samples and segregated Ni-
Mo samples increase significantly with the increase of applied stress. According to the
Bird-Dorn-Mukherjee equation, i.e., Equation (1), the stress exponent n can be obtained by
fitting the slope of the dual logarithmic graph of creep rate and stress, which essentially
reflects the strain rate sensitivity of the materials. Here, it can be seen from Figure 2c,d that
in the low stress range, the values of n for both the pure Ni sample and segregated Ni-Mo
sample are greater than 1 and less than 2, indicating that atoms diffusion dominates the
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creep deformation process within this stress range, but there is also a GB slip phenomenon
during the deformation. In practical terms, GB diffusion and GB slip are generally coupled
because the diffusion of the atoms at GBs will lead to the change of grain morphology,
so the deformation compatibility at the GBs should be maintained by sliding between
grains [19]. In the medium stress state, the values of n for pure Ni and segregated Ni-Mo
samples are about 2, which implies that the GB slip is the main deformation mechanism
within this stress range. In the high stress state, for pure Ni samples, the stress exponent
approaches 4, suggesting that both the GB sliding and dislocation activities exist in the
creep deformation process, but the dominated mechanism is the dislocation activities; for
segregated Ni-Mo samples, the stress exponent is greater than 4, implying that the creep is
governed by dislocation activities.
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Figure 2. (a,b) Creep curves of the NC Ni and the segregated Ni-Mo (3 at.%) samples with d = 10.9 nm
at 1100 K under various applied stresses, respectively; (c,d) Dual logarithmic plots of the creep strain
rate versus stress of NC Ni sample and segregated Ni-Mo (3 at.%) samples with d = 10.9 nm at
1100 K, respectively.

By comparing Figure 2c,d, it can be seen that although the stress exponent values of
the segregated Ni-Mo sample are larger than those of pure Ni sample, the former is lower
than the latter for a given stress. To further see the difference of creep rate between the
two NC Ni samples more clearly, we put the creep rate of the two samples under different
stress into the same figure, as shown in Figure 3. It can be found that the creep rate of
polycrystalline Ni decreases significantly when there are Mo atoms segregated at the GBs,
and the strengthening effect becomes more obvious with the increase of stress within a
certain stress range.

To eliminate the influence of the addition of Mo atoms on the creep resistance of NC
Ni, and further prove that the increase of creep resistance of NC Ni is due to the segregation
effect at the GBs, we conduct a creep simulation of a group of the NC Ni samples with Mo
atoms randomly distributed in the grains. The results show that the creep rate of the NC
Ni sample with Mo atoms distributed in the grains is slightly higher than that of the pure
Ni sample. Through linearly fitting the relationship between the creep rate and reciprocal
temperature of these three sets of NC Ni models, the activation energies during the creep
are obtained, and the results are shown in Figure 4. The results reveal that the activation
energy of the segregated Ni-Mo sample is about 0.65 eV, which is significantly higher than
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that of the NC Ni sample without Mo atoms. However, the activation energy of the Ni
sample with the Mo atoms distributed in the grains is about 0.34 eV, which is slightly lower
than that of pure Ni sample. It should be noted that all the activation energies derived from
molecular dynamics simulations are in the same order of magnitude as those observed
in experiments [9]. The results show that the addition of Mo atoms randomly distributed
in the grains reduces the activation energy of NC Ni, making creep easier to occur. This
may be due to the lattice distortion caused by Mo atoms distributed in the grains, which
increases the free energy of the material, and thereby reduces the external activation energy
required for creep. The results also reveal that the segregation of Mo atoms at the GBs can
visibly improve the activation energy of the material, which makes the creep difficult to
occur. This also proves that the remarkable improvement of the creep resistance of NC Ni
is due to the segregation effect of Mo atoms at the GBs.
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Based on the analysis above, it can be seen that the NC Ni materials have better creep
resistance when there are Mo atoms segregated at the GBs, which is consistent with some
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previous simulation and experimental results [37,38]. In the next section, the potential
creep mechanism of NC materials under different applied stresses and the strengthening
mechanism of segregation are discussed in detail.

3.2. Creep Mechanism Analysis

To better understand the inherent mechanisms of the effect of segregation at GBs
on creep behaviors of NC materials, the microstructure evolution of NC pure Ni and
segregated Ni-Mo samples under different stresses are investigated. Figure 5a exhibits
the initial atomic configuration of the 10.9 nm grained pure Ni sample, and the deformed
configurations of this sample after creep for 200 ps at the stress of 0.6 GPa, 1.0 GPa, and
1.6 GPa are shown in Figure 5b–d, respectively. In Figure 5b, the grain morphology changes
obviously after creep at the stress of 0.6 GPa, compared with the initial atomic configuration
before creep in Figure 5a. The grains with obvious morphological changes are marked
by numbers in Figure 5a,b: the sizes of grains 2 and 3 increase obviously, while the size
of grain 1 between them decreases; grain 4 gobbles up grain 5 gradually; grains 6 and
7 grow while grains 8 and 9 decrease in size and merge into one grain. These phenomena
indicate that GB diffusion and GB slip occurred during the creep deformation. Besides,
there is no dislocation found in the atomic configuration, implying that the dominant
creep mechanisms under low stress states are the GB diffusion and GB slip, and this is
consistent with the prediction of Figure 2c based on Equation (1). When the applied stress
is 1.0 GPa, in addition to the obvious change of grain morphology, a small amount of
dislocations are also observed in the atomic configuration, as indicated by the white arrows
in Figure 5c, which illustrates that the prevalent mechanisms of the creep deformation
are still GB behaviors, accompanied with a few dislocation activities. Figure 5d is the
configuration after creep under the stress of 1.6 GPa, it is obvious to find that extensive
partial dislocations nucleate at the GBs, and then pass through the grain interior, leaving
behind stacking faults, as indicated by the white arrows. This indicates that the dislocation
activities play a more important role during the creep deformation under high stress, which
is also in line with the prediction of Figure 2c based on Equation (1).

Figure 6a–d shows the atomic configurations of segregated Ni-Mo (3 at.%) samples
before creep and after creep for 200 ps under various applied stresses, respectively. Com-
paring Figure 6b,c with the initial atomic configuration in Figure 6a, it is found that the
grain morphologies do not change obviously and there are almost no dislocation activities.
Combined with the creep mechanisms predicted above according to Figure 2d, this implies
that in the low and medium stress area, the creep deformation of segregated Ni-Mo sample
is very small. Therefore, it can be found that the segregation of Mo atoms at GBs can
effectively inhibit the creep process mediated by GB behaviors, thus improving the creep
resistance of NC materials. When the stress is 1.6 GPa, a large number of stacking faults are
observed in the grain interior, as indicated by the white arrows in Figure 6d. This means
that the creep deformation is governed by dislocation activities when the applied stress is
in the high stress regime, which is consistent with previous analysis [9,10].
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3.3. Influences of Grain Size and Temperature

Generally speaking, as surface defects, the GBs in NC materials are in thermodynami-
cally non-equilibrium state, and the creep is essentially a thermal activation process, so the
GB and temperature both have important influence on the creep properties of materials.
Therefore, this section focuses on the effects of grain size and temperature on the creep
behaviors of segregated Ni-Mo samples. According to Equation (1), we can know that the
creep strain rate will decrease with the increase of grain size for a fixed temperature and
applied stress. The effect of the grain size on creep behaviors of the material is mainly
characterized by the grain size exponent p. Figure 7 gives the relationship between the
creep strain rate and the reciprocal of grain size of segregated Ni-Mo (3 at.%) sample under
different applied stresses at 1100k. The double logarithmic plot in Figure 7 implies that
the creep rate always increases with the decrease of grain size for all stress levels, and in a
power-law relationship. From the figure, we can also see that the grain size exponents are
about 1.92–2.36 for the applied stress within the low and medium stress range in Figure 2d.
When the stress is in the range of 0.6–0.8 GPa, the values of stress exponent p are close
to 2, which just corresponds to the Nabarro-Herring creep. When the stress continues to
increase to 1.0 GPa, the stress exponent p is greater than 2 and less than 3, but closer to
2, which indicates that both the Nabarro-Herring and Coble diffusion or GB slip exist in
the creep deformation process, but the dominant creep deformation mechanism is still
the Nabarro-Herring diffusion. It can be seen that the mechanisms of lattice diffusion, GB
diffusion and GB slip coexist under the low and medium stress state, but the segregation
of Mo atoms at the GBs dramatically impedes the creep process mediated by GB behaviors.
In addition, it should be noted that when the stress is 2.0 Gpa, within the high stress range
in Figure 2d, the grain size exponent is 1.32, which means that the dislocation activities
dominate the creep process.
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Figure 8 exhibits the creep curves of segregated Ni-Mo (3 at.%) sample with grain
size of 10.9 nm under an external stress of 1.0 GPa at different temperatures. It can be
seen that for the segregated NC material, the creep rate increases with the increase of
temperature, which is similar to that of pure NC materials [19,20,44]. This is because all
creep mechanisms are essentially thermal activation processes.
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Figure 8. Creep curves of the segregated Ni-Mo (3 at.%) sample with d = 10.9 nm at different
temperatures under an applied stress of 1.0 GPa.

3.4. Effect of Segregated Atoms Concentration at GBs

According to our previous quantitative research on the influence of segregation on GB
energy of Ni [26], it can be known that, within a certain range, the GB energy decreases
linearly with the increase of the concentration of Mo atoms at GBs, and the concentration
has a significant effect on the plastic deformation process dominated by GB behaviors
of NC Ni. The GB behaviors are also the important creep mechanisms of NC materials,
so the concentration of Mo atoms segregated at the GBs also has an important influence
on the creep behavior of NC Ni. To understand this influence more clearly, this section
mainly investigates the creep behavior of polycrystalline Ni with different concentrations
of Mo atoms segregated at GBs. Figure 9 shows the variation of creep strain rate with the
concentration of Mo atoms segregated at GBs for the sample with an average grain size of
10.9 nm under different stresses. It can be seen that whether in the low stress regime or
the medium and high stress regimes, as the Mo atoms concentration increases from 0 to
6 at.%, the creep strain rate of the material gradually decreases. This demonstrates that the
creep resistance of NC materials can be optimized by adjusting the concentration of the
second-phase atoms segregated at GBs. This may be useful for the design and fabrication
of NC materials with excellent creep resistance.
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In addition, it can also be found from Figure 9 that when the stress is between 1.0 GPa
and 2.0 GPa, the influence of the concentration of Mo atoms on the creep strain rate is
stronger than that when the applied stress is 0.6 GPa, which is due to the different creep
mechanisms of materials under different stress states. From our previous work, we can
know that the segregation of solute atoms at GBs can significantly improve the stability and
reduce the mobility of GBs [26], which implies that the segregation of second-phase atoms
at GBs has a greater influence on the creep process dominated by GB behaviors, such as
when the stress is 1.0 GPa. From the analysis of grain size exponent above, it can be known
that when the stress is 0.6 GPa, the deformation corresponds to the Nabarro-Herring creep,
that is, the creep process is dominated by the lattice diffusion. Therefore, the segregation of
Mo atoms at GBs has little effect on the creep rate, and with the increase of the concentration
of Mo atoms, the creep rate quickly reaches a steady state and almost no longer decreases.
Moreover, it is worth noting that the results in Figure 9 show that in the high stress region,
i.e., 1.6 GPa and 2.0 GPa, the segregation of Mo atoms at GBs also has a significant effect
on the creep process, while the analyses of stress and grain size exponents both indicate
that the dominant mechanism of creep deformation is dislocation activities within this
stress regime. This means that the segregation also has striking effect on creep deformation
dominated by dislocation activities.

To explore the intrinsic mechanism of the influence of segregation on creep deforma-
tion dominated by dislocation activities, the dislocation densities of the 10.9 nm grained
segregated Ni-Mo samples with different Mo concentrations after creep for 200 ps at 1100 K
are shown in Figure 10. The corresponding data points at 0 GPa represent the dislocation
density of equilibrium configuration before loading. It can be clearly seen from Figure 10
that when the stress is 0.6 GPa or 1.0 GPa, for all segregated Ni-Mo samples, the dislocation
densities after creep 200 ps are basically the same as that in the corresponding equilibrium
configurations. This also proves that there is almost no dislocation nucleation during the
creep under low and medium stress states, and the creep deformation is dominated by
the diffusion and GB sliding, in accordance with the previous analysis. When the applied
stress increases to 1.6 GPa or 2.0 GPa, it can be found that the dislocation densities of all
samples increase significantly compared with the equilibrium configurations. This trend
also proves that the main creep mechanism under a high stress state is the dislocation ac-
tivity. It should be noted that the dislocation densities of segregated samples with different
Mo concentrations are much lower than that of the pure Ni sample, and the higher the
proportion of Mo atoms, the lower the dislocation density in the segregated sample, which
indicates that the segregation of Mo atoms at GBs inhibits the nucleation and proliferation
of dislocation in NC Ni during the creep. When the proportion of Mo atoms is higher than
4 at.%, the dislocation density in the material under the applied stress of 1.6 GPa is even
reduced to the same level of equilibrium configuration.

To show more evidences about the proposed dislocation activity as the dominant
mechanism under high stress, we picked one grain among the 10.9 nm grained segregated
Ni-Mo (6 at.%) sample during the steady state creep at 1.6 GPa, as shown in Figure 11. It can
be obviously found that due to the limitation of grain size, the dominant creep mechanism
is the dislocation nucleation from GBs rather than the collective dislocation dynamics inside
grains, which has been confirmed by the previous studies on the deformation mechanism
of NC materials [45]. By comparing the dislocation density of all samples at equilibrium
state in Figure 10, it can be found that the dislocation density decreases with the increase
of the concentration of Mo atoms, which implies that the segregation of Mo atoms at GBs
destroys the dislocation structure at GBs. However, the dislocation structures at the GBs
are the sources of dislocation nucleation during the creep, so the segregation of Mo atoms
at GBs can also significantly reduce the creep rate of materials under high stress.
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Figure 11. Dislocation nucleation from GBs and the left stacking faults during creep deformation
under an applied stress of 1.6 GPa at 1100 K. The snapshot is from the segregated sample with 6 at.%
Mo atoms and d = 10.9 nm, in which the perfect fcc atoms are not shown for clarity.

4. Conclusions

A train of large-scale molecular dynamics simulations are carried out to investigate
the influence of the segregation of Mo atoms on the high-temperature creep behavior of
NC Ni. The effects of the applied stress, grain size, temperature, and concentration of
Mo atoms on the creep behaviors and mechanisms are systematically studied. The main
conclusions are summarized as follows:

(1) The segregated Ni-Mo sample corresponds to a higher activation energy than the
pure Ni sample, which makes the creep of the NC Ni more difficult to occur and thus
enhances the creep resistance of the material;

(2) For both the pure Ni sample and segregated Ni-Mo sample, the creep mechanisms
are the diffusion, GB slip, and dislocation activity in the low, medium, and high stress
regimes, respectively;
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(3) The segregation of Mo atoms at GBs has little effect on the creep processes dominated
by the lattice diffusion, but significantly slows down the creep processes dominated
by the GB behavior and dislocation activity.
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