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Abstract: The mechanical properties and strength formation mechanism of cement–fly-ash-stabilized
slag–coal gangue mixture were examined using an unconfined compressive strength test, splitting
strength test, triaxial test, and scanning electron microscopy to solve the limitations of land occupation
and environmental pollution that is caused by fly ash from the Xixia District thermal power plant in
Yinchuan, slag from the Ningdong slag yard, and washed coal gangue. Its performance as a pavement
base mixture on the road was investigated. The results demonstrated that as the slag replacement rate
increased, the maximum water content increased while the maximum dry density decreased. The
addition of slag reduced the unconfined compressive strength and splitting strength of the specimens;
furthermore, the higher the slag substitution rate, the lower the unconfined compressive strength
and splitting strength of the specimens. As the cement content increased, the specimen’s unconfined
compressive strength increased. Based on the principle of considering the mechanical properties and
economic concerns, the slag replacement rate in the actual construction should be ~50% and should
not exceed 75%. Based on the relationship between the compressive strength and splitting strength
of ordinary concrete, the relationship model between the unconfined compressive strength and
splitting strength of cement–fly-ash-stabilized slag–coal gangue was established. The failure mode,
stress–strain curve, peak stress, and failure criterion of these specimens were analyzed based on the
triaxial test results, and the relationship formulas between the slag substitution rate, cement content,
peak stress, and confining pressure were fitted. As per the SEM results, the mixture’s hydration
products primarily included amorphous colloidal C-S-H, needle rod ettringite AFt, unhydrated
cement clinker particles, and fly ash particles. The analysis of the mixture’s strength formation
mechanism showed that the mixture’s strength was the comprehensive embodiment of all factors,
such as the microaggregate effect, secondary hydration reaction, and material characteristics.

Keywords: no lateral limit compressive strength; split test; triaxial test; peripheral pressure

1. Introduction

Coal gangue is a rock type with lower carbon content and higher hardness compared
with coal. Coal gangue comprises multiple rocks and forms one of the primary wastes
in coal production. Although >300 million tons of coal gangue are discarded each year,
China’s utilization rate of coal gangue has reduced [1–4]. At the moment, China has
accumulated >8 billion tons of coal gangue, which covers an area of ~70 km2 and causes
multiple environmental issues. Consequently, using coal gangue as a road base filling
material can not only prevent pollution but also reduce natural resource exploitation, thus
paving the approach for high-value and large-scale resource utilization [5–8].
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The preparation of a coal-gangue-reinforced base mixture has been extensively in-
vestigated. Zhu et al. [9] examined the influence of polypropylene fibers on the fluidity,
strength, cracking, and dry shrinkage performance of gangue mortar and reported that
polypropylene fibers reduced the fluidity of gangue mortar but improved its compressive
and flexural strengths. Furthermore, they reported that polypropylene fibers effectively
reduced the risk of gangue mortar’s dry shrinkage and cracking. Guangyu et al. [10]
prepared coal gangue through a selective crushing and separation process and examined
the effects of the mixture ratio and stability type on the crushing resistance and mechanical
properties of coalgangue-based materials. The results demonstrated that selective crushing
obviously reduced the crushing value and calorific value of coal gangue; however, after
adding 10% fly ash, it played a buffer role in the base mixture, and the unconfined com-
pressive strength increased by 30.9% to 3.52 MPa in 7 days. Zhang et al. [11] prepared a
mixture of calcareous coal gangue, fly ash, lime powder, and a small amount of cement
in the Hanxing area and examined the influence. When the amount of lime powder was
extremely high, the lime negatively impacted the cleavage strength of a calcareous coal
gangue mixture. The beneficial effect of cement on the cracking strength of a coal gangue–
cement mixture gradually decreased. Jian [12] activated fly ash and coal gangue furnace
slag with chemical components and analyzed them using X-ray diffraction (XRD) and
SEM. The results demonstrated that the crystal structure of the mixture changed upon
calcination. Less cement hydration products were created, the structure was compact, and
the early strength was high. Zhiguo et al. [13] examined the technical feasibility of applying
lime–fly-ash-stabilized coal gangue to a pavement base and examined the unconfined
compressive strength of the mixture under the action of water saturation. The results
demonstrated that when the mass fraction of lime, fly ash, and coal gangue was 5, 15, and
80%, respectively, and the cement content was 3%, the unconfined compressive strength
of the mixture met the design requirements. Navid Chalangaran et al. [14] measured the
7-, 14-, and 28-day compressive strengths of concrete by controlling the sample size and
rubber replacement rate to examine the procedures and materials to improve the sound
transmission loss of concrete and reduce the influence of sound transmission to residential
buildings due to the mechanical properties of the materials. The results demonstrated that
the sound transmission loss of samples containing 15% fine rubber powder was as high
as 190%, whereas that of samples containing 15% coarse rubber powder was as high as
228%. Ji et al. [15] established a freeze–thaw damage model of coal gangue concrete using
the PBS parallel-bar mechanical model; furthermore, the calculated results agreed well
with the test data. Navid Chalangaran and colleagues [16] addressed the issue of excessive
waste rubber tire production in transportation, where this ductile material was added to
concrete to improve the toughness of the mixture; however, this rubber material reduced
the strength of the concrete. Therefore, the rubber that was crushed with sizes from 1 to
3 and 3 to 6 mm was replaced by 5, 10, and 15% sand. The study reported that concrete
aggregates could be proportionally replaced with crumb rubber and large amounts of dis-
carded rubber. Compared with traditional concrete, the crumb-rubber-containing concrete
had better integration; therefore, it had appropriate fluidity and durability. However, to
date, existing studies on the durability and shrinkage performance of coal gangue mostly
concerned contractile properties or a single mechanical property of coal gangue; therefore,
a comprehensive investigation of the mechanical properties of coal gangue as a road base
filling material has practical implications.

Based on the abovementioned problems, this study used cement, fly ash, slag, and
coal gangue to prepare a road base mixture; performed unconfined compressive strength
tests, splitting strength tests, triaxial tests, and scanning electron microscopy tests of
eight types of mixtures with different proportions; and examined the variation law of
mechanical properties and the strength formation mechanism of mixtures with different
admixtures. Note that five types of mixtures with different slag substitution rates were
tested to obtain the optimal slag substitution rate. The mechanical properties of the
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cement–fly-ash-stabilized slag–coal gangue mixture were comprehensively evaluated,
which provided a theoretical basis for practical engineering.

2. Materials and Methods
2.1. Materials

Fly ash and furnace slag were obtained from the Xixia Thermal Power Plant in
Yinchuan, Ningxia. The cement was Jockey Grade 42.5 ordinary Portland cement. Coal
gangue was obtained from the local Helan Mountain in Yinchuan.

2.2. Methods

XRD and XRF were used to examine the mineralogical and chemical compositions
of the slag, fly ash, and coal gangue. Figure 1 shows the XRD test results and Table 1
shows the XRF test results. The crushing value, apparent density, bulk density, and water
absorption of the coal gangue with 0–4.75 mm furnace slag and four particle size grades
were examined. Table 2 shows the test results.

Figure 1. XRD patterns of furnace slag and fly ash: (a) furnace slag, (b) fly ash, and (c) coal gangue.

Table 1. Chemical composition (mass fraction (%)) of furnace slag and fly ash.

Raw Materials SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O TiO2 SO3 Loss on Ignition

Furnace slag 47.47 22.69 8.77 8.57 1.84 2.23 1.09 1.56 1.21 4.52
Fly ash 45.16 32.91 7.47 4.95 1.20 2.12 0.78 1.77 0.80 2.63

Coal gangue 54.65 28.28 4.81 5.06 1.03 3.02 0.32 1.52 0.64 1.51

Table 2. Basic properties of the furnace slag and coal gangue.

Sample Particle Size
(mm) Crush Value (%) Apparent Density

(g·cm−3)
Packing Density

(g·cm−3)
Water Absorption

(%)

Furnace slag aggregate 0–2.36 / 2.353 0.786
11.12.36–4.75 38.4 2.414 0.758

Grade coal gangue

19.0–37.5 / 2.568 1.396

3.0
9.5–19 29.5 2.574 1.461

4.75–9.5 / 2.562 1.432
0–4.75 / 2.543 1.468

As per Figure 1, the crystallized substances of the fly ash and furnace slag were
primarily quartz, mullite, and a small amount of gypsum. Quartz is one of the primary
rock-forming minerals and its primary component is SiO2. Mullite, also known as monalite,
is a series of minerals that are composed of aluminosilicate, and its primary component
is 3Al2O3·2SiO2. Gypsum primarily comprises sulfate minerals and its main component
is CaSO4·nH2O. The primary components of the fly ash and furnace slag, as shown in
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Table 1, are SiO2, Al2O3, Fe2O3, and trace amounts of CaO and K2O. The SiO2 and Al2O3
mass fractions in the fly ash were large, accounting for ~78% of the total mass, and the
burning loss was <10%, thus meeting the performance control standard of a highway
coalgangue-filled sub-grade [17]. The mass fractions of SiO2 and Al2O3 in the furnace slag
accounted for ~70% of the total mass; however, the proportion of basic oxides accounted
for ~14% of the total mass. Consequently, the furnace slag was highly active and weakly
alkaline. The phase composition of furnace slag is primarily a glass matrix that is made of
nCaO·SiO2 in which basic oxides react with SiO2, Al2O3, and Fe2O3 after the hydration
reaction, thus showing the hard cementing property of the effluent [18–22]. Based on the
chemical reaction mechanism of the material and strength formation mechanism of the
specimen, it is feasible to use furnace slag as an admixture of the pavement base.

The natural particle size distribution of the slag was uneven and very different, which
needed to be broken and screened. Table 3 lists the screening results for the slag.

Table 3. Screening results of natural slag.

Screening Size
(mm)

Screening Quality
(g)

Grade Screening
(%)

Accumulated Screening
(%)

By Percentage
(%)

>19 14.1 4.7 4.7 95.3
16 16.8 1.9 6.6 93.4

13.2 32.5 3.7 10.3 89.7
9.5 38.9 4.4 14.7 85.3

4.75 82.2 9.3 24.0 76.0
2.36 67.9 7.6 31.6 68.4
1.18 44.6 5.0 36.6 63.4
0.6 59.9 6.7 43.3 56.7

0.075 99.4 11.2 97.4 2.6
<0.075 23.2 2.6 100 0

Table 3 shows that the slag with a particle size of <4.75 mm accounted for 76% of the
total mass. On the one hand, the slag should be used in engineering as little as possible with-
out complex technical treatment to save money and improve its engineering application
value. On the other hand, the influence of the slag particle size difference on the specimen
strength should be minimized as much as possible. Based on the foregoing, the slag should
be passed via a 4.75 mm square hole sieve to improve the slag uniformity [23,24].

This study followed the following three principles when determining the range of the
slag content. The first aim was to ensure that the gradation of the mixture after adding
the slag met the requirements of cement–fly-ash-stabilized materials in the specification
such that the gradation of the mixture was relatively excellent. The second aim was to
keep the unconfined compressive strength of the mixture from being affected by too much
fine material after adding slag. The third aim was to maximize the utilization rate of slag
solid waste. Based on the foregoing considerations and the characteristics of slag and coal
gangue, the 0–4.75 mm content in the slag was higher; however, the 0–4.75 mm content
in the coal gangue was lower. The crushing treatment of the slag and coal gangue was
minimized to the greatest extent possible. Finally, it was decided that the 0–4.75 mm coal
gangue should be replaced with 0–4.75 mm slag.

As shown in Figure 2a, the natural particle size of the furnace slag was unevenly
distributed and greatly varied. Mixing it directly with other materials would cause large
deviations in the test results. To reduce the consumption of graded coal gangue and avoid
test deviations, the furnace slag was sieved via a screen with 4.75 mm2 holes and replaced
with 0–4.75 mm coal gangue. Figure 2b shows furnace slag after the screening. The relevant
requirements of CJJ1-2008 (Code for Construction and Quality Acceptance of Urban Road
Engineering [25]) divide coal gangue grading into four grades: 0–4.75, 4.75–9.5, 9.5–16,
and 16–26.5 mm. Note that the fly ash was grade III ash and the fineness percentage was
17.9%. Moreover, the basic properties of the graded coal gangue and 0–4.75 mm furnace
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slag were evaluated; the results are shown in Table 2. Based on the existing studies [26,27],
five mixtures with various furnace slag substitution rates were selected and the optimal
furnace slag substitution rate was obtained; then, by considering the cement as a variable,
the economic dosage of cement was found. Table 4 shows the results of the mixing ratio
design.The slag before and after the screening is shown in Figure 2.

Figure 2. Slag before and after screening: (a) without screening treatment. These slag parti-
cles are poorly graded and can not be directly used in construction. Therefore, through screen-
ing test, the undisturbed slag is screened into 0–4.75 mm and the particle size range in (b) is
experimentally studied.

Table 4. Mixing ratio.

Mixture Number

Mass Fraction of the Material (%)

Coal Gangue Grading (mm) Furnace Slag (mm)
Fly Ash Cement

16–26.5 9.5–16 4.75–9.5 0–4.75 0–4.75

5-LZ-0 18 19 15 28 0

15

5
5-LZ-25 18 19 15 21 7 5
5-LZ-50 18 19 15 14 14 5
5-LZ-75 18 19 15 7 21 5
5-LZ-100 18 19 15 0 28 5
3-LZ-y 18 19 16 28-x x 3
4-LZ-y 18 19 17 28-x x 4
6-LZ-y 18 19 18 28-x x 6

Note: Take 5-LZ-50 as an example to illustrate the numbering method of the mixture. The 5 means the mass
fraction of cement was 5% and LZ-50 means the mass fraction of the 0–4.75 mm furnace slag replacing the
0–4.75 mm coal gangue was 50%. The value of x was determined by the unconfined compressive strength test
from 5-LZ-0 to 5-LZ-100, and y = 100x/28.

2.3. Test Schemes
2.3.1. Compaction Testing

The compaction test is a method of overcoming the friction resistance between parti-
cles, reducing the gap between particles, and improving the compactness of the mixture.
To some extent, the compaction test can show the actual construction’s compaction process,
and the maximum dry density and best water content of the mixture can be obtained
via the compaction test, laying the groundwork for the specimen formed using the static
pressure method.

2.3.2. Mechanical Property Testing

The unconfined compressive strength tests and splitting tests were performed fol-
lowing JTGE51-2009 (Test Specification for Stabilized Materials of Highway Engineering
Inorganic Bonds [28]). The tests were performed at 7, 28, 56, and 90 days using the Shanghai
Xinsansi universal testing machine. The maximum pressure of the press was 1000 kN and
the loading rate was controlled at 1 mm/min.
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2.3.3. Triaxial Test

To show the failure mechanism of the cement–fly-ash-stabilized furnace slag and coal
gangue mixtures under triaxial compression, triaxial shear strength tests were performed.
A YY-RBSZ-1000 rock triaxial (creep) tester developed by Rugao Yuanye Survey Machinery
Factory was adopted [29].

The unit features a triaxial pressure unit, two hydraulic pumps, displacement sensors,
and pressure sensors, with one hydraulic pump to provide vertical load and one hydraulic
pump to provide a stable confining pressure. The maximum axial pressure is 1000 kN, the
maximum confining pressure is 30 MPa, the static accuracy of axial and confining pressure
loading is 0.5%, and the temperature stability of the axial and confining pressure loading
is 0.5%/◦C.

2.3.4. SEM Test

Scanning electron microscopy was undertaken using an EVO 18 tungsten filament
scanning electron microscope produced by ZEISS (Oberkochen, Germany) which has a
resolution of 3 nm and acceleration voltage of 0.2–30 kV. Regarding the working principle,
when the sample surface is bombarded by the high energy electrons, >99% of the interaction
between the incident electron energy will be converted into thermal energy, while the
remaining 1% of the incoming electron energy will stimulate a secondary electron, the
backscattering electron, and a characteristic X-ray.

3. Results and Discussion
3.1. Analysis of Compaction Test Law

As per the test procedures, 5-LZ-0 to 5-LZ-100 in Table 3 were successively subjected
to compaction tests to obtain the maximum dry density and optimal water content of the
mixture. The test results are shown in Table 5.

Table 5. Specimen optimal moisture content and maximum dry density.

Mix Number Optimal Moisture Content (%) Maximum Dry Density (g·cm−3)

5-LZ-0 8.7 2.018
5-LZ-25 9.7 1.966
5-LZ-50 10.9 1.910
5-LZ-75 12.2 1.853

5-LZ-100 13.6 1.804

Table 5 shows that with the increase in the furnace slag substitution rate, the optimal
water content of the mixture increased and the maximum dry density decreased. When the
furnace slag substitution rate increased by 25%, the optimal water content of the mixture
increased by ~1.3% on average; however, the maximum dry density decreased by ~2.6%.
On the one hand, the surface of the furnace slag was rough, uneven, and porous, and it
could absorb more water than coal gangue. The furnace slag, on the other hand, had a
lower density than coal gangue. Therefore, when the 0–4.75 mm coal gangue was replaced
by the 0–4.75 mm furnace slag, the optimal water content of the mixture increased and the
maximum dry density decreased.

3.2. Analysis of the Unconfined Compressive Strength

The unconfined compressive strength was calculated using Equation (1):

Rc =
P
A

; A =
πD2

4
(1)

where Rc is the unconfined compressive strength (MPa) of the specimen, P is the maximum
pressure of the specimen under failure (N), A is the cross-sectional area (mm2) of the
specimen, and D is the diameter of the specimen (mm).
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The unconfined compressive strengths of mixtures listed in Table 3 at 7, 28, 56, and
90 days were measured and the results are shown in Figure 3.

Figure 3. Results of the unconfined compressive strength tests at different furnace slag
substitution rates.

As can be seen from Figure 3, the unconfined compressive strength of the specimen
increased with treatment time. At different treatment periods, the unconfined compressive
strength of 5-LZ-0 was higher than that of the specimen that was mixed with furnace slag,
indicating that the furnace slag reduced the strength of the specimen. The furnace slag
incorporation clearly deteriorated the early strength of the specimen. At a curing period
of 7 days, the compressive strength of 5-LZ-0 was 8.2, 12.4, 16.8, and 18.5% higher than
that of 5-LZ-25, 5-LZ-50, 5-LZ-75, and 5-LZ-100, respectively. The unconfined compressive
strength of the specimen decreased as the substitution rate of the furnace slag increased
because, on the one hand, the density of the furnace slag was less than that of the coal
gangue. The density of the specimen gradually decreased as the substitution rate of the
furnace slag increased. When the furnace slag substitution rate was set to 100%, the density
of the specimen decreased by 10.6% compared to 5-LZ-0. When the cement mass fraction
was constant, the actual mass of cement in each test piece was relatively reduced, and
the early strength of the test piece was primarily derived from gel substances that were
generated by the hydration reaction of cement, such as calcium silicate hydrate and calcium
aluminate hydrate. After screening, however, the crushing value (the ability of a material
to resist crushing) of furnace slag was lower than that of coal gangue, and the majority of
the furnace slag particles had rough and irregular surface shapes, similar to the appearance
of medium sand (i.e., sand with fine moduli of 3.0–2.3 and an average grain size of 0.5 mm).
Compared with the 0–4.75 mm coal gangue, the cohesion and mechanical occlusions of
the furnace slag and the cement–fly ash slurry were lower than those of the coal gangue.
Therefore, with an increase in the furnace slag substitution rate, the compressive strength
of the specimen gradually decreased. After a curing period of 28 days, the unconfined
compressive strengths of the specimens significantly improved compared with those that
were cured for seven days [30]. The growth rates of the compressive strengths of specimens
with different mixing ratios were >60%, and the strength of 5-LZ-100 had the largest
growth rate, reaching 79.5%. The primary reason for this was that with the extension of
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the treatment period, a large number of active substances, such as SiO2 and Al2O3, in the
fly ash and furnace slag gradually underwent a secondary hydration reaction under the
excitation of the cement hydration product, namely, Ca(OH)2, generating a large number
of crystal substances, such as C-S-H and C-A-H. The chemical reaction formula is shown
in Equation (2):

Ca(OH)2 + SiO2 + H2O→ CaO·SiO2·2H2O
Ca(OH)2 + Al2O3 + H2O→ CaO·Al2O3·2H2O

(2)

The formation of these crystals made the interface between the furnace slag, coal
gangue, and cement mortar closer and considerably improved the internal compactness
and bonding strength, and, in turn, the overall strength of the specimen. At 56 and 90 days,
the strength growth rate of the specimen significantly decreased, and its average value
was 10.5. Moreover, with the increase in the furnace slag substitution rate, the strength
growth of the specimen became more obvious. Because the amount of Ca(OH)2 and other
active substances involved in the reaction gradually decreased as the degree of the number
of secondary hydration reactions increased, the rate of the secondary hydration reaction
decreased. Furthermore, the specimen’s water glue was relatively low, and the water
required for the late hydration reaction was insufficient, resulting in the specimen’s strength
growing slowly in the later stages. Because of the high concentrations of SiO2, Al2O3, and
basic oxides in the furnace slag, the chemical activity of the furnace slag was higher than
that of the coal gangue, and the slow secondary hydration reaction continued, even after an
extended curing period [31,32]. With the increase in the furnace slag substitution rate, as
active substances in the specimen increased, more water was required to reach the optimal
water content, delaying the secondary hydration reaction to a later stage of the curing.
Therefore, in the later stage of maintaining treatment, the adverse effect of the furnace
slag addition on the specimen strength gradually decreased. At 90 days, the compressive
strength of 5-LZ-0 was 7.9, 6.9, 7.8, and 11.0% higher than that of 5-LZ-25, 5-LZ-50, 5-LZ-
75, and 5-LZ-100, respectively. In conclusion, the strength growth rate of the specimen
significantly decreased as the curing period lengthened, and the strength growth rate of
the specimen increased as the furnace slag replacement rate increased. Consequently, to
ensure that the mixture’s 7-day unconfined compressive strength index met the appropriate
specification, the utilization rate of furnace slag should be increased as much as possible. In
practical engineering applications, the replacement rate of furnace slag should be between
50 and 75%.

MATLAB was used to fit the unconfined compressive strengths of the specimens with
different furnace slag substitution rates at curing periods of 7, 28, 56, and 90 days, as shown
in Figure 4.

As can be seen from Figure 4, the errors between the calculated values and experimen-
tal values of the fitting formulas were <5%, indicating a good degree of agreement. Thus,
the fitting formulas can be used in engineering applications. The optimal furnace slag
replacement ratio should be determined first before studying the strength development
law of the specimen with different cement ratios. Three principles were followed in this
study when determining the optimal furnace slag replacement rate. First, when the furnace
slag was added, the specimen’s 7-day unconfined compressive strength loss rate was kept
within 15%. Second, the specimen’s unconfined compressive strength decreased by <10% of
its initial strength after 90 days. The third aim was to improve the furnace slag substitution
rate as much as possible. As shown in Figure 3, when the furnace slag replacement rate was
25 or 50%, the specimen’s 7-day unconfined compressive strength loss rate was <15% [33].
At 90 days of curing, the unconfined compressive strength of 5-LZ-50 was slightly better
than those with different furnace slag substitution rates, and the strength loss was <10%.
Therefore, the optimal furnace slag replacement rate was selected as 50%, i.e., the value
of x in Table 3 was 14 and the value of y was 50. As per the selected optimal furnace
slag substitution rate of 50%, the unconfined compressive strengths of the specimens from
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3-LZ-50 to 6-LZ-50 in Table 3 at 7, 28, 56, and 90 days were examined. The test results are
shown in Figure 5.

Figure 4. Fitting formulas of the unconfined compressive strength for different furnace slag substitution rates and curing
periods: (a) 7 days, (b) 28 days, (c) 56 days, and (d) 90 days.

Figure 5 shows that, with the increase in cement ratio, the strength growth of the
specimens over different curing periods varied. When the cement ratio increased by 1%
at 7 days, the unconfined compressive strength of the specimen increased by 0.9, 0.5, and
0.4 MPa. When the cement ratio increased from 3 to 4%, the unconfined compressive
strength of the specimen obviously increased because, with the increase in cement ratio, the
proportion of cement clinker minerals in the specimen increased. Furthermore, the content
of Ca(OH)2 increased, which accelerated the hydration rate of the specimen in the early
stage. When the cement ratio increased to 6%, the 7-day unconfined compressive strength
growth of the specimen decreased to 0.4 MPa. This was because, as the cement ratio
increased, the content of Ca(OH)2 in the specimen increased; however, the content of active
substances such as SiO2 and Al2O3, which can participate in the secondary hydration
reaction early in curing, decreased, and the secondary hydration reaction rate did not
significantly increase, indicating that the specimen’s strength growth range slowed down.
The specimen’s unconfined compressive strength significantly improved after 28 days
compared to the age of 7 days. The average growth rate of the specimen’s compressive
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strengths at various cement ratios was 68.7%, which was primarily determined by the
secondary hydration reaction and the microaggregate effect. The specimen’s strength
growth rate noticeably decreased between 56 and 90 days, with an average value of 10.8%.
The strength growth of the specimen became more visible as the cement ratio increased.
This was because as the degree of secondary hydration reaction increased, the amount
of Ca(OH)2 and other active substances that were involved in the reaction gradually
decreased, lowering the rate of the reaction. However, with the increase in the cement ratio,
the Ca(OH)2 content in specimens increased, and a relatively large amount of Ca(OH)2
in the specimens still had secondary hydration reactions with the fly ash, furnace slag,
and coal gangue at a later curing period. Consequently, even after increasing the cement
ratio, the specimens maintained a relatively high strength growth rate in the later stages of
curing. The results of the tests demonstrated that the appropriate dosage of cement had
a clear effect on the specimen’s early strength. When the cement dosage was >5%, the
effect of increasing the cement dosage on the early strength improvement of the specimen
was not obvious; however, it showed a relatively obvious strength growth at the later
stage of curing. Consequently, when the early strength requirements of the cement and fly
ash materials are high, measures such as improving raw material technical indexes and
optimizing grading design should be implemented. Only increasing the cement ratio could
improve the early unconfined compressive strength of the specimens. MATLAB was used
to fit the unconfined compressive strength of the specimens with different cement ratios at
7, 28, 56, and 90 days, as shown in Figure 6.

Figure 5. Unconfined compressive strength test results of specimens with different cement ratios.
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Figure 6. The fitting formulas of the unconfined compressive strengths for different cement content with different curing
ages: (a) 7 days, (b) 28 days, (c) 56 days, and (d) 90 days.

As can be seen from Figure 6, the errors between the calculated values and experimen-
tal values of the fitting formulas were <5%, indicating a good degree of agreement. The
strength fitting formula at each age can be a good relationship between the replacement
rate of response furnace slag and the compressive strength. This formula can be used as a
theoretical basis for practical engineering applications.

3.3. Analysis of the Splitting Test Law

Equation (3) shows the calculation method for the splitting strength of the specimen
with a diameter of 150 mm:

Ri = 0.004178
p
h

(3)

where Ri is the splitting strength (MPa) of the specimen, p is the maximum pressure of
specimen failure (N), and h is the height (mm) of the specimen after immersion.

The splitting test was performed for the eight mixing ratios listed in Table 3, and the
test results are shown in Figure 7.
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Figure 7. Results of the splitting test for different ages.

As can be seen from Figure 7, with the increase in cement ratio, the splitting strength of
the specimen showed an increasing trend. The fracture strength of the specimen increased
with treatment age and followed the same growth pattern as the unconfined compressive
strength. The splitting strength of 5-LZ-0 was greater than that of the specimens that were
mixed with cement and furnace slag, indicating that the incorporation of furnace slag
reduced the splitting strength of the specimens.

At the age of 7 days, with the increase in the cement ratio and decrease in the furnace
slag substitution rate, the splitting strength of the specimen demonstrated an increasing
trend. The primary causes were the same as in the unconfined compressive strength test.
When compared to 7 days, the splitting strength of the specimen at 28 days had significantly
improved, where the average growth rate of the splitting strength of the specimen was
81.0%. On the one hand, the average particle size of the fly ash particles was considerably
smaller than that of the coal gangue and furnace slag, allowing for a more evenly filled
accumulation system among the aggregates and a more sufficient secondary hydration
reaction. On the other hand, with the extension of the curing age, active substances in
the fly ash and furnace slag gradually underwent secondary hydration reactions, which
consumed Ca(OH)2 in the specimen, restrained the growth of Ca(OH)2 grains, and reduced
the thickness of the interface transition zone. With the continuous consumption of Ca(OH)2,
the amount of gel material generated increases, further improving the splitting strength of
the specimen. At 56 and 90 days, the splitting strengths of the specimen with a furnace slag
replacement rate of 50% were slightly better than those of the specimens with furnace slag
replacement rates of 25, 75, and 100%. The strength growth law from 5-LZ-25 to 5-LZ-100
showed that, with the increase in furnace slag substitution rate, the splitting strength
of the specimen first increased and then decreased, and the change in this trend was
determined by the failure mode of the splitting test specimen. The fracture and compressive
strength variations and the strength formation mechanism of the specimens were similar;
however, their failure modes were different. When the furnace slag substitution rate
increased from 25 to 50%, the interface transition zone of the microscopic pore structure
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increased, the continuous deflection of microcracks consumed more fracture energy, and
the splitting tensile strength improved. However, as the substitution rate of the furnace
slag increased, the amount of 0–4.75 mm coal gangue decreased, and the pores of furnace
slag could not be filled with cement, fly ash, and coal gangue fine particles, resulting in
specimen compaction. Furthermore, as the substitution rate of the furnace slag increased,
the density of the specimen decreased and the proportion of cement clinker in the specimen
decreased, reducing the number of secondary hydration reactions. Furthermore, the
proportion of unreacted furnace slag and fly ash increased, reducing the splitting strength
of the specimen.

Thus, the splitting strength of coal gangue that was stabilized by cement, fly ash, and
furnace slag was a comprehensive reflection of the coal gangue strength, hydration reaction
degree of the cementing material, and the internal cohesion of the mixture. Because the
strength of the furnace slag aggregate was lower than that of the coal gangue, the splitting
strengths of the specimens mixed with furnace slag were generally lower than those of
5-LZ-0. Furthermore, the porosity of furnace slag promoted the infiltration of the cement–
fly ash slurry into the aggregate and improved the specimen’s compactness and stability.
Moreover, the active substances in the furnace slag and fly ash underwent a secondary
hydration reaction in the middle and late stages of curing, thus producing many C-A-H and
C-S-H cementing products that improved the internal structure of the interface area of each
aggregate and increased the specimen’s strength. When the cement ratio was 4% and the
furnace slag replacement rate was 50%, the 90-day splitting strength of the specimen was
>0.4 MPa, which met the technical indexes of highway pavement base materials in China.

3.4. Analysis of Unconfined Compressive Strength and Splitting Strength

From the abovementioned test results, the unconfined compressive strength of the
test specimen was positively correlated with the splitting strength, which is important
since the relationship between them is a hot topic for researchers. However, few studies
exist on the relationship between the unconfined compressive strength of the pavement
base material and its splitting strength. Therefore, using Equation (4), the relationship
between the unconfined compressive strength and the splitting strength of the pavement
base material was obtained:

ft = k( fc)
n (4)

where f t is the concrete splitting tensile strength (MPa), f c is the compressive strength
of the concrete cylinder (MPa), and the values of k and n were obtained using nonlinear
regression analysis.

The regression was analyzed in the form of the power function. Figure 8 shows the
relationship between the unconfined compressive strength and the splitting strength.

The regression equation showing the relationship between the unconfined compres-
sive strength and splitting strength was given by

ft = 0.056( fc)
1.107

R2 = 0.992
(5)

As can be seen from Figure 8, Equation (5) shows good agreement with these test
results; however, the power function had a better correlation with the test results. Therefore,
to guide practical engineering applications, it is recommended to use the power function
to predict the splitting strength of specimens for different curing periods.
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Figure 8. Relationship between the unconfined compressive strength and the splitting strength.

3.5. Analysis of Triaxial Test Law
3.5.1. Failure Analysis

Figure 9 shows the typical failure patterns of a specimen under three-direction stress.
Observing the failure mode of the specimen revealed that it was unaffected by the substitu-
tion rate of furnace slag and the cement ratio and was primarily related to the confining
pressure. Vertical cracks appeared in the middle of the specimens, almost in the loading
direction, when the confining pressure value was 0. With the increase in load, the cracks
expanded and developed into one or more penetrating cracks, causing the specimens
to fail.

The following are shown in Figure 9: (1) When the confining pressure was 0.5 MPa,
the crack direction of the specimen was no longer in the direction of the principal stress
but was at an angle of ~15◦ with the principal crack. Shear failure dominated the failure
surface. (2) When the confining pressure value was 1 MPa, the angle between the direction
of the main crack and the direction of the main stress was ~30◦, the main crack ran through
each of the entire specimens, and the concrete on both sides of the crack was relatively
staggered because of shear stress action. (3) When the confining pressure was 1.5 MPa,
the included angle of the specimens between the main crack direction and the main stress
direction expanded to ~45◦, and part of the gangue aggregate on the shear surface was cut
off, accompanied by falling specimen pieces.

3.5.2. Stress–Strain Curve Analysis

After the load–displacement curve was collected by the tester and calculated using
Equations (4) and (5), it was converted into stress and strain values, and the σ–ε curve was
obtained, as shown in Figure 10:

σ =
F

A1
ε = ∆l

h A1 =
A

1− ε
(6)
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where σ is the axial stress (MPa), F is the axial load (N), A1 is the effective cross-sectional
area of the specimen (mm2), ε is the axial strain, ∆l is the axial displacement (mm), h is
the initial height of the specimen (mm), and A is the initial cross-sectional area of the
specimen (mm2).

Figure 9. Failure modes of a specimen under different confining pressures: (a) σ2 = σ3 = 0,
(b) σ2 = σ3 = 0.5 MPa, (c) σ2 = σ3 = 1 MPa, and (d) σ2 = σ3 = 1.5 MPa.
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Figure 10. Stress–strain curves of the specimens: (a) σ2 = σ3 = 0, (b) σ2 = σ3 = 0.5 MPa, (c) σ2 = σ3 = 1 MPa, and
(d) σ2 = σ3 = 1.5 MPa.

Figure 10 shows that the σ–ε curves of the specimens under the triaxial stress state
significantly changed with the increase in confining pressure. The σ–ε curves of the speci-
mens could be roughly divided into three stages: (1) The elastic stage—At the beginning
of loading, with the increase in load, the σ–ε curves of the specimens were almost lin-
ear, showing obvious elastomer properties. (2) Elastic–plastic stage—With the increase
in load, the strain increase rates of the specimens were significantly higher than that of
the elastic stage, and the slopes of the σ–ε curves of the specimens gradually decreased.
(3) The stage of destruction—The curves of the specimens began to decrease after reaching
the peak stress as the load was increased further; however, there was no obvious peak,
demonstrating the ductility of the semi-rigid base failure. The peak stress of the specimens
was lower with furnace slag than without, but the corresponding peak strain was higher
with furnace slag. The incorporation of furnace slag reduced the strength of the specimens
while increasing their ductility to a certain extent. When the confining pressure was 0, the
specimens’ peak stress was less than when the confining pressure was present, and the
slope of the failure stage curve was steeper. When the confining pressure was 0.5 MPa,
both the peak stress and peak strain of the specimens tended to increase; furthermore,
the descending slope of the failure stage curve slightly decreased. When the confining
pressure was 1 MPa, the peak stress and peak strain of the specimens increased further,
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and the descending slope of the curve in the failure stage became more gentle. When the
confining pressure was 1.5 MPa, the downward trend of the specimens in the failure stage
was gentler than that when the confining pressure was 0, showing better ductility.

3.5.3. Stress Peak Law Analysis

As per the full σ–ε curve of the specimens in Figure 10, the peak stress of the specimens
under different confining pressures could be obtained, as shown in Figure 11.

Figure 11. Peak stress of specimens under different confining pressures.

Figure 11 shows that, with the increase in confining pressure, the peak stress of all
specimens demonstrated an increasing trend and was significantly higher than that under
the uniaxial stress state. This was because the confining pressure reduced the transverse
deformation of the specimen while restricting the expansion of the internal microcracks,
resulting in a significant increase in the specimen’s peak stress. As per the general trend, as
the substitution rate of furnace slag increased, the peak stress of the specimens decreased.
The peak stress of the specimens increased with the increase in cement ratio. Its causes
and rules of change were similar to those of the unconfined compressive strength. As
per the reference, the dimensionless treatment was performed on the test results, and the
relationship between the peak stress and confining pressure of the specimen was obtained
through analysis, as shown in Figure 12.
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Figure 12. Relationship between the peak stress and confining pressure: (a) 5-LZ-0, (b) 5-LZ-25,
(c) 5-LZ-50, (d) 5-LZ-75l, (e) 5-LZ-100, (f) 3-LZ-50, (g) 4-LZ-50, and (h) 6-LZ-50.
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By fitting the relationship between the peak stress and confining pressure of the
specimen, the unified strength calculation formula of the specimen was obtained [34]:

σ1

σ0
= 1 + A

σ2

σ0
(7)

where σ1 is the peak stress of the specimen under three-direction stress (MPa), σ0 is the
peak stress of the specimen under uniaxial stress (MPa), σ2 is the confining pressure (MPa),
and A is a coefficient that is related to the furnace slag substitution rate α and cement
ratio β.

Figure 13 shows the relationships between coefficient A and the furnace slag substitu-
tion rate α and cement ratio β.

Figure 13. Fitting results of the furnace slag substitution rate α, cement ratio β, and coefficient A:
(a) relation between the substitution rate α and coefficient A of the furnace slag and (b) relationship
between the cement ratio β and coefficient A.

From Figure 13a, Equation (8) was obtained:

A= 1.845 + 0.008x− 3.929× 10−4x2 + 2.733× 10−6x3 (8)

Substituting Equation (8) into Equation (7) to obtain the relationship between the peak
stress and confining pressure of specimens at different furnace slag substitution rates gave

σ1

σ0
= 1 + (1 .845 + 0.008x− 3.929× 10−4x2 + 2.733× 10−6x3)

σ2

σ0
(9)

From Figure 13b, Equation (11) was obtained:

A = 0.220 + 0.293x (10)

By substituting Equation (10) into Equation (7), we obtained the relationship between
the peak stress and confining pressure of specimens with different cement ratios:

σ1

σ0
= 1 + (0.220 + 0.293x)

σ2

σ0
(11)

Figure 13 shows that the fitting curve was in good agreement with the test results;
therefore, Equations (10) and (12) can reflect the relationship between the furnace slag
substitution rate, cement ratio, peak stress, and confining pressure.

3.6. Strength Formation Mechanism

The strength formation mechanism of the cement–fly-ash-stabilized furnace slag–coal
gangue mixture was similar to that of concrete mixed with fly ash. Under the action of water,
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complex chemical reactions occur within the mixture to generate various substances, such
as C-S-H, C-A-H, and ettringite (AFt), which improves the compactness and strength of the
mixture. We selected 5-LZ-50 as a representative sample and dried it. Then, the samples
at 7, 28, and 90 days of age were tested using XRD and scanning electron microscopy
(SEM), where the changes of hydration products at different ages were analyzed and their
micromorphologies were observed, as shown in Figures 14 and 15, respectively.

Figure 14. XRD detection at different ages.

From Figure 14, the 5-LZ-50 sample showed different XRD composition results at
different ages of 7, 28, and 90 days. It can be seen from the figure that at 7 days, the contents
of AFt, C-S-H, and Ca(OH)2 in the mixture were low, but the contents of C2S and C3S
were high. With the increase in age, the amount of Ca(OH)2 in the mixture increased. Due
to the secondary hydration of fly ash, the contents of AFt, C-S-H, and Ca(OH)2 in the
mixture continued to increase, the strength of the mixture was further increased in the
later stage due to the mutual interleaving, and part of C2S and C3S in the mixture was
consumed under the secondary hydration in the later stage. Therefore, it can be seen from
Figure 14 that the contents of AFt, C-S-H, and Ca(OH)2 in the later stages of the mixture
were increasing, and the contents of C2S and C3S were decreasing.
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Figure 15. Cont.
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Figure 15. Microstructure of the mixture: (a–c) curing time of 7 days, (d–f) curing time of 28 days,
and (g–j) curing time of 90 days.

From the microscopic point of view, the strength formation mechanism of the coal
gangue mixture that was stabilized by cement and fly ash could be explained as the physical
filling of each admixture and the development of hydration products from an amorphous
gel to highly crystalline material. As shown in Figure 15, the colloidal cement and fly ash
mortar objects in the mixture primarily comprised amorphous coliform C-S-H, needle-stick
structure ettringite (AFt), unhydrated cement clinker particles, furnace slag particles, and
fly ash particles. The primary components were C-S-H, AFt, and fly ash particles, which
account for ~80% of the total volume [35,36]. The C-S-H was amorphous, granular, and
fibrous, with networks and dense sheets forming. Generally, the appearance of C-S-H is
related to its growth space and environment. In addition to the various forms mentioned
above, C-S-H can take the form of a sheet, needle, rod, or petal, as shown in Figure 15f.
Ettringite crystals, in general, are hexagonal prismatic crystals whose morphology is related
to the growth space and ion supply, as shown in Figure 15c. However, with an increase
in the treatment period, the reticulated C-S-H gel material and the needle-like AFt crystal
intersected and grew and gradually connected as a whole, as shown in Figure 15i,j.

Figure 15 shows that, with an increase in the treatment age, the amount and form of
hydration products significantly changed. After the treatment for seven days, as shown
in Figure 15a–c, the products of the specimens were primarily needle-like particles and a
reticulated flocculent gel. It had more pores and lower compactness when cured for 28 days,
as shown in Figure 15d–f. When the treatment lasted 90 days, the specimen’s compaction
increased even more, and the needle- and rod-like gels developed through each other, thus
forming a C-S-H gel network. These gels tightly wrapped the fly ash particles, thus forming
a relatively dense overall structure, as shown in Figure 15g–j. The reason for this was that as
the treatment time was extended, the active substances of fly ash and furnace slag gradually
reacted with the Ca(OH)2 generated by cement hydration to generate many C-S-H and
C-A-H gels, which gradually grew and developed into the micropore space inside the
specimen and gradually increased the specimen’s compactness and internal cohesion [37],
indirectly improving the mixture’s strength. Generally, the hydration reaction inside the
specimen leads to higher compactness and strength [38]. Therefore, the hydration degree
of the test piece is guaranteed under appropriate curing conditions.

According to the test and microscopic detection results, the strength formation mech-
anism of the specimen mainly included the following three aspects. The first one was
that when the furnace slag, cement, fly ash, and coal gangue were fully mixed, the phase
composition in the pore of furnace slag involved the solid phase (cement, fly ash, and
fine particle furnace slag and coal gangue), liquid phase (water molecules), and the gas
phase (the unfilled area in the furnace slag pores). With the increase in the treatment time,
cement and fly ash in the furnace slag hole gradually formed the C-S-H gel, which filled
the furnace slag pores and improved the bearing capacity of the furnace slag. Second,
cement, fly ash, and coal gangue with fine particles could fill in between the furnace slag
particles and coal gangue, forming a microfilling effect and improving the compactness
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and stability of the cement–slurry interface. The third aspect was the low strength of the
slag aggregate itself, but under the comprehensive filling effect of cement, fly ash, and coal
gangue powder and its own certain activity, the slag substitution rate had a positive impact
on the compressive strength of the test part in the later period of the curing.

4. Conclusions

(1) With the increase in the furnace slag substitution rate, the optimal water content of
the specimen increased and the maximum dry density decreased. The addition of the
furnace slag reduced the unconfined compressive strength of the specimen, where the
greater the substitution rate of the furnace slag, the lower the unconfined compressive
strength of the specimen. However, with an extended curing period, the effect of
the furnace slag on the unconfined compressive strength of the specimen gradually
weakened. With the increase in cement ratio, the unconfined compressive strength
of the specimen increased. Considering the principle of mechanical properties and
economic concerns, it is suggested that the replacement rate of furnace slag in actual
construction should be about 50% and should not exceed 75%.

(2) The results showed that the power function agreed well with the experimental results
and can be used in practical engineering applications.

(3) The triaxial test results were analyzed in terms of the failure mode, stress–strain
relationship curve, peak stress, and failure criterion of the specimens. The results
showed that (i) under the triaxial stress, the failure mode of the specimens was
greatly affected by confining pressure and they showed typical shear failure, and
(ii) according to the test results, the formulas for the relationship between the furnace
slag substitution rate, cement ratio, peak stress, and confining pressure were obtained.

(4) The SEM results showed that the hydration products of the mixture included colloidal
C-S-H, needle-like ettringite (AFt), unhydrated cement clinker particles, and fly
ash particles. The strength of the mixture was a comprehensive embodiment of
the microaggregate effect, secondary hydration reaction, and the characteristics of
the materials.

Author Contributions: Conceptualization, H.L. and H.Z.; methodology, H.L.; software, P.Y.; val-
idation, C.Y., Y.T., formal analysis, H.Z.; investigation, P.Y.; resources, H.Z.; data curation, H.L.;
writing—original draft preparation, H.Z.; writing—review and editing, H.Z.; visualization, H.L.;
supervision, H.L.; project administration, H.L.; funding acquisition, H.L. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the Ningxia Natural Science Foundation of China Project
(2021AAC03080), the General Project of Research and Development Plan in Ningxia Hui Autonomous
Region (2020BDE03005, 2021BDE92002), and the Funding Project of First-Class Discipline Con-
struction of University in Ningxia (Domestic First-Class Discipline Construction) under grant
NXYLXK2021A03.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All of the data are available.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hubiao, Z.; Fei, T.Y.; Changyu, Y.; Shudong, H.; Hongbo, L. Study on road performance of fly ash and gangue mixture. Ningxia

Eng. Technol. 2021, 20, 54–57.
2. Sun, H.; Xu, Q.; Yan, P.; Yin, J.; Lou, P. A Study on Axial Compression Performance of Concrete-Filled Steel-Tubular Shear Wall

with a Multi-Cavity T-Shaped Cross-Section. Energies 2020, 13, 4831. [CrossRef]
3. Ding, F.X.; Wang, W.J.; Lu, D.R.; Liu, X.M. Study on the behavior of concrete-filled square double-skin steel tubular stub columns

under axial loading. Structures 2020, 23, 665–676. [CrossRef]
4. Lu, D.R.; Wang, W.J.; Ding, F.X.; Liu, X.M.; Fang, C.J. The impact of stirrups on the composite action of concrete-filled steel tubular

stub columns under axial loading. Structures 2021, 30, 786–802. [CrossRef]

http://doi.org/10.3390/en13184831
http://doi.org/10.1016/j.istruc.2019.12.008
http://doi.org/10.1016/j.istruc.2021.01.053


Materials 2021, 14, 7103 24 of 25

5. Wang, X.; Yang, X.; Ren, J.; Han, N.; Xing, F. A novel treatment method for recycled aggregate and the mechanical prop-erties of
recycled aggregate concrete. J. Mater. Res. Technol. 2020, 10, 1389–1401. [CrossRef]

6. Reis, G.S.D.; Quattrone, M.; Ambrós, W.M.; Grigore Cazacliu, B.; Hoffmann Sampaio, C. Current Applications of Recycled
Aggregates from Construction and Demolition: A Review. Materials 2021, 14, 1700. [CrossRef] [PubMed]

7. Revilla-Cuesta, V.; Ortega-López, V.; Skaf, M.; Manso, J.M. Effect of fine recycled concrete aggregate on the mechanical behavior
of self-compacting concrete. Constr. Build. Mater. 2020, 263, 120671. [CrossRef]

8. Agrela, F.; Díaz-López, J.L.; Rosales, J.; Cuenca-Moyano, G.M.; Cano, H.; Cabrera, M. Environmental assessment, mechanical
behavior and new leaching impact proposal of mixed recycled aggregates to be used in road construction. J. Clean. Prod. 2021,
280, 124362. [CrossRef]

9. Zhu, K.; Ma, X.; Yao, L.; Zhao, L.; Luo, C. Effect of Polypropylene Fiber on the Strength and Dry Cracking of Mortar with Coal
Gangue Aggregate. Adv. Mater. Sci. Eng. 2021, 280, 124362. [CrossRef]

10. Guangyu, Y.; Mingkai, Z.; Xiao, C. Application of gangue aggregate pavement. J. Wuhan Univ. Technol. (Transp. Sci. Eng. Ed.)
2021, 45, 568–573.

11. Zhang, Y.; Meng, W.; Zhang, Z. Experimental study of indirect tensile strength of calcareous coal gangue mix-ture. World J. Eng.
2013, 10, 457–462. [CrossRef]

12. Liao, J.G.; Ma, Q.; Zhang, Y.S.; Song, Z.Y.; Liu, K.H.; Hu, Y.W. Research on Solid Wastes of Gangue, Slag, Fly Ash Used as Cement
Composite Mixing Materials. Adv. Mater. Res. 2012, 415, 1583. [CrossRef]

13. Zhou, M.; Li, Z.G.; Wu, Y.Q.; Zhang, X.F.; Ai, L. Study on lime-fly ash-cement stabilized gangue mixture. J. Build. Mater. 2010, 13,
213–217.

14. Chalangaran, N.; Farzampour, A.; Paslar, N.; Fatemi, H. Experimental investigation of sound transmission loss in concrete
containing recycled rubber crumbs. Adv. Concr. Constr. 2021, 11, 447–454.

15. Jisheng, Q.; Yunxian, Z.; Minhuang, W. Damage characteristics and constitutive relationship of coal gangue con-crete under
freeze-melting cycle. Int. J. Civ. Environ. Eng. 2020, 264, 1–10.

16. Chalangaran, N.; Farzampour, A.; Paslar, N. Nano Silica and Metakaolin Effects on the Behavior of Concrete Containing Rubber
Crumbs. CivilEng 2020, 1, 264–274. [CrossRef]

17. Wensheng, S. Performance Control for Highway Coal Gangue Filling Subgrade Road; People’s Transportation Press: Beijing, China,
2011; pp. 1–7.

18. Yan, Z.; Hassan, B.; Rong, Z. Evaluation for the Leaching of Cr from Coal Gangue Using Expansive Soils. Processes 2019, 7, 478.
19. Fan, X.H.; Xue, Z.H. Study on road performance of recycled aggregate from construction waste. Highway 2020, 65, 40–45.
20. Qiu, J.S.; Zhou, Y.S.; Wang, M.H.; Houbo, W. Damage characteristics and constitutive relationship of gangue concrete under

freeze-thaw cycles. J. Civ. Environ. Eng. 2020, 149–157.
21. Ozcan, T.; Gokhan, G.; Zaimoglu, A.S. Effect of Bentonite, Fly Ash and Silica Fume cement injections on uniaxial compressive

strength of granular bases. KSCE J. Civ. Eng. 2014, 18, 1650–1654.
22. Khatib, J.M.; Mangat, P.S.; Wright, L. Pore size distribution of cement pastes containing fly ashgypsum blends cured for 7 days.

KSCE J. Civ. Eng. 2014, 18, 1091–1096. [CrossRef]
23. Xiangdong, Z.; Kun, K. Study on base strength and thermal conductivity of cement stable cinder surface. Non-Met. Mine 2017, 40,

47–49.
24. Changxuan, H. Fatigue characteristics of cement-stabilized slag gravel mixture. Highw. Traffic Technol. 2020, 37, 32–38.
25. Ministry of Housing and Urban-Rural Development of the People’s Republic of China. CJJ1–2008.
26. Meng, S.; Liu, J.; Zhong, P.; Wang, G.; Wang, C. Study on granulation process of uranium containing Coal-fired Fly Ash. Uranium

Min. Metall. 2021, 40, 284–289.
27. Peng, G. Research and Application of Cement Stable Gasized Porous Slag Pavement; Wuhan University of Technology: Wuhan,

China, 2020.
28. Ministry of Communications of the People’s Republic of China. Test Regulations for Inorganic Bonded Stability Materials of JTG

E51–2009, Highway Engineering; People’s Transportation Publishing House: Beijing, China, 2009.
29. Jia, L.; von Deluan, A. A multiscale coupled finite element analysis method considering the microscopic motion of soil particles.

Rock Earth Mech. 2021, 42, 1186–1199.
30. Shabab, M.E.; Shahzada, K.; Gencturk, B.; Ashraf, M.; Fahad, M. Synergistic effect of fly ash and bentonite as partial replacement

of cement in mass concrete. KSCE J. Civ. Eng. 2016, 20, 1987–1995. [CrossRef]
31. Kheradmand, M.; Abdollahnejad, Z.; Pacheco-Torgal, F. Shrinkage Performance of Fly Ash Alkali-activated Cement Based Binder

Mortars. KSCE J. Civ. Eng. 2018, 22, 1854–1864. [CrossRef]
32. Nordine, L.; Van-Huong, N.; Pierre, M. The effect of the partial cement substitution with fly ash on Delayed Ettringite Formation

in heat-cured mortars. KSCE J. Civ. Eng. 2017, 21, 1359–1366.
33. Farzampour, A. Compressive Behavior of Concrete under Environmental Effects; IntechOpen: London, UK, 2019.
34. Avic, D.; Zhen, H. Numerical Implementation and Application of a Corcorner Model for generalized double-shear stress criterion.

J. Rock Mech. Eng. 2021, 40, 2320–2329.
35. Ding, S.; Niv, D.T.; Wang, J.B. Experimental Study on Micro-structure and Mechanical Properties of Shotcrete with Fly Ash. Bull.

Chin. Ceram. Soc. 2015, 34, 1187–1192.

http://doi.org/10.1016/j.jmrt.2020.12.095
http://doi.org/10.3390/ma14071700
http://www.ncbi.nlm.nih.gov/pubmed/33808328
http://doi.org/10.1016/j.conbuildmat.2020.120671
http://doi.org/10.1016/j.jclepro.2020.124362
http://doi.org/10.1155/2021/6667851
http://doi.org/10.1260/1708-5284.10.5.457
http://doi.org/10.4028/www.scientific.net/AMR.415-417.1486
http://doi.org/10.3390/civileng1030017
http://doi.org/10.1007/s12205-014-0136-8
http://doi.org/10.1007/s12205-015-0166-x
http://doi.org/10.1007/s12205-017-1714-3


Materials 2021, 14, 7103 25 of 25

36. Li, H.; Wang, J.B.; Guo, Q.J. Mechanical Properties of Recycled Aggregate Concrete with Mineral Admixture. Bull. Chin. Ceram.
Soc. 2020, 39, 2608–2614.

37. Ding, F.X.; Wang, W.; Liu, X.M.; Wang, L.; Sun, Y. Mechanical behavior of outer square inner circular concrete filled dual steel
tubular stub columns. Steel Compos. Struct. 2021, 38, 305–317. [CrossRef]

38. Farzampour, A. Temperature and humidity effects on behavior of grouts. Adv. Concr. Constr. 2017, 5, 659.

http://doi.org/10.12989/scs.2021.38.3.305

	Introduction 
	Materials and Methods 
	Materials 
	Methods 
	Test Schemes 
	Compaction Testing 
	Mechanical Property Testing 
	Triaxial Test 
	SEM Test 


	Results and Discussion 
	Analysis of Compaction Test Law 
	Analysis of the Unconfined Compressive Strength 
	Analysis of the Splitting Test Law 
	Analysis of Unconfined Compressive Strength and Splitting Strength 
	Analysis of Triaxial Test Law 
	Failure Analysis 
	Stress–Strain Curve Analysis 
	Stress Peak Law Analysis 

	Strength Formation Mechanism 

	Conclusions 
	References

