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Abstract: This paper presents the testing methodology of specimens made of layers of titanium
alloy Ti6Al4V in dynamic impact loading conditions. Tests were carried out using a drop-weight
impact tower. The test methodology allowed us to record parameters as displacement or force.
Based on recorded data, force and absorbed energy curves during plastic deformation and sheet
perforation were created. The characteristics of the fractures were also analyzed. The impact test
simulation was carried out in the ABAQUS/Explicit environment. Results for one, two, and three
layers of titanium alloy were compared. The increase in force required to initialize the damage and
the absorbed energy during plastic deformation can be observed with an increase in the number
of layers. The increase in absorbed energy is close to linear. In the simulation process, parameters
such as Huber–Mises–Hencky stress value, equivalent plastic strain, temperature increase, and stress
triaxiality were analyzed.

Keywords: fracture toughness; dynamic impact test; finite element analysis

1. Introduction

Titanium and its alloys are common materials that have been used since the 1960s.
Their desirable properties, which include low density, high mechanical strength, heat resis-
tance, low-temperature fracture toughness, low thermal expansion, resistance to in-service
corrosion processes, and biocompatibility, allow for wide applications in biomedical, auto-
motive, aviation, and military engineering. An example is the modern method of joining
parts using the electromagnetic riveting process (EMR), a high-speed impact connection
technology with the advantages of fast loading speed, large impact force, and stable rivet
deformation [1]. However, a high friction coefficient, poor resistance to abrasive wear, and a
low hardness limit the possible areas of application of titanium alloys. Therefore, the proper
use of these materials requires knowledge of their characteristics and properties [2–4].

There are many publications on the behavior of titanium alloys under static load-
ing [5,6]. However, dynamic loading has not been sufficiently defined. Some papers
concerning the high strain rate properties of titanium alloys are available [7–10], but much
work must still be undertaken, especially in the areas of experimental techniques, mi-
crostructural analysis, and modeling, to fully define the constitutive properties of these
materials. Invoking a variable load over a short time period can cause a change in the
behavior of titanium alloys [11]. In some areas, such as aviation and the military, the level
of dissipation or absorption of impact energy in a material is also important. However,
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detailed information on this, such as the energy absorption level related to mass, is often
absent [12].

The aim of this study was to determine the energy-absorbing properties of layered
structures of titanium Ti6Al4V alloy under dynamic impact conditions using a drop-weight
impact tester, as well as to determine the basic material properties for high strain rate
deformation for numerical simulation. The analysis allowed us to estimate the energy
required to break a single sheet and the layered structure sheets to determine the puncture
characteristics and the influence of layered structures on the amount of energy required.

A visual assessment of the mechanism of developing damage and absorbed energy
value during experimentation depending on the number of layers was performed. In
addition, a force value analysis of failure initiation was performed. For this purpose, appro-
priate sheet metal specimens of 1 mm thickness were prepared to perform dynamic impact
tests on a drop-weight tester. The mechanical and physical properties of titanium alloy
Ti6Al4V have been broadly described in the literature. These alloys can be widely applied
in many fields, such as 3D printing of ultralight sandwich structures with corrugated cores
in aerospace [13] and medical [14] applications.

The innovative approach in this paper is based on a multi-layer analysis of energy
absorption by layered structures of titanium alloy during dynamic impact loading tests.
This paper presents experimental data together with the numerical solution of a given
impact load. The multi-layer structures are more effective in terms of strength and energy
absorption compared to monolithic layers.

Using a drop-weight impact method allowed us to determine the energy-absorbing
properties of a Ti6Al4V titanium alloy sheet. Further research could be used to analyze the
behavior of polymer-titanium and polymer-glass-titanium composites.

2. Materials and Methods
2.1. Properties and Structure of the Titanium Alloy Ti6Al4V

Titanium Ti6Al4V is a dual-phase alloy composed of α and β phases. Stabilization
of the phases corresponds to the principal alloying elements, aluminum stabilizing alpha,
and vanadium beta phase [15–17]. Chemical compositions of the Ti6Al4V were used
according to ISO 5832/3 [18]. The selected titanium alloy exhibits very good mechanical
properties [19], which is why Ti6Al4V is commonly used in technology, especially in
the aerospace industry. Depending on the manufacturing process, titanium alloys are
characterized by anisotropy, low density, a Young’s modulus of 115 GPa (comparable to
steel: 205–210 GPa), high strength with good ductility, and a high melting point. The
main mechanical properties are presented in Table 1 and Figure 1. Another characteristic
advantage of titanium alloys is corrosion resistance at ambient temperatures, e.g., in the air
or an industrial atmosphere. Compared to pure titanium, Ti6Al4V alloy has greater strength
with the same stiffness and thermal properties [20]. However, Ti6Al4V also has the notable
disadvantage of easily reacting with other materials at higher temperatures. This entails a
number of obstacles, such as the need for using unconventional methods in the melting
and casting processes, which leads to an increase in production and processing costs.

Table 1. Mechanical properties of Ti6Al4V [21].

Mechanical Properties of Titanium Alloy Ti6Al4V

Tensile strength, Rm (MPa) 950
Yield stress, Re (MPa) 880

Elongation, A (%) 14
Hardness (HB) 334

Shear modulus (GPa) 44
Young’s modulus (GPa) 115

Poisson’s ratio 0.342
Tensile strength, Rm (MPa) 950
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Non-standard impact tests were used. There is no possibility to measure the direct 
impact strength on a sheet of 1 mm thickness, but it is possible to determine the energy 
absorbed by the puncture process. In this case, the state of the stress test changed to two-
dimensional. 

Figure 1. Stress–strain quasi-static characteristic for Ti6Al4V [22].

The chemical and physical properties that might occur during a given process type
in Ti6Al4V titanium alloy processing must be considered due to chemical reactivity, low
modulus of elasticity, and high strength. Ti6Al4V can be submitted to processes including
casting, welding, cutting, and plastic processing. The variety of manufacturing meth-
ods and process parameters significantly affects the anisotropy of the material and its
mechanical properties, which should always be considered in the design process.

2.2. Specimens

Specimens were made from a cold-rolled metal sheet of Ti6Al4V of 1 mm thickness.
For the experiments, 18 plates of 80 mm × 80 mm were cut from the sheet. Each specimen
was described and marked with an arrow showing the rolling direction, according to the
anisotropic material properties. A specimen is shown in Figure 2.
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Non-standard impact tests were used. There is no possibility to measure the direct
impact strength on a sheet of 1 mm thickness, but it is possible to determine the energy
absorbed by the puncture process. In this case, the state of the stress test changed to
two-dimensional.

2.3. Drop-Weight Impact Tester

Dynamic impact tests were carried out on a drop-weight impact tester INSTRON
with Dynatup 9250 HV (Instron, Norwood, MA, USA) column equipped with an Impulse
control and data processing system (Figure 3). The INSTRON machine offers 20 m/s speed
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(forced drive), simulation of discharge height of 20.4 m, and impact energy from 4.5 to
1600 J. The use of this post enabled the impact test to record parameters such as impact
velocity, energy change, load, yield strength, deformation, and time.
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Figure 3. Post view: (a) side; (b) front.

The striker is made of NC3 tool steel with a hardness of 48 HRC (Figure 4). It has
a diameter of 10 mm, a cone-shaped blade with a tip angle of 30◦ ± 1◦, and a radius of
curvature of 2 mm. The striker is shown in Figure 4. It is easily seen that, apart from the
cylindrical shape of the striker, the geometric dimensions fit Charpy’s standards.
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Figure 4. Striker used in impact tests.

The recorded results of impact tests were graphs of absorbed energy (impact work) (J)
and load (kN) as a function of the recorded displacement (mm) of the specimen material
and in the form of the numerical values, which were recorded automatically. The arrays
for individual trials collected the values of the most important parameters measured and
recorded during the tests by the Impulse control and the data processing system used.
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2.4. Calibration of Johnson–Cook Model for FE Simulation

The Johnson–Cook (JC) model was calibrated for the simulation because a reliable
material model was required for numerical simulation at high deformation rates.

FEM analysis was performed using the ABAQUS/Explicit environment (ABAQUS
Inc. Providence, MA, USA). The Johnson–Cook model [23,24] was used for the simulation.
The JC is a constitutive model describing the plastic behavior of the material at high strain,
strain rate, and temperature. The JC Equation (1) describes the empirical stress relationship
of the Huber–Mises–Hencky (HMH) equation.

σ = (A + Bεn) ∗
[

1 + C ∗ ln
( .

ε
.

ε0

)]
∗ [1 − Qm] (1)

where Q = T−T0
Tmelt−T0

.

There are different methods of calibrating the JC model. The method used in this
study was calibrated according to the commonly used scheme: determination of constants
(A, B, and n) based on isothermal tensile (or torsion) tests; determination of C constant
under quasi-static or dynamic conditions at different deformation rates; and m coefficient
in dynamic conditions for different temperature values (in this case, due to no possibility
of testing under different temperature conditions, the m coefficient was selected from the
literature [25]).

Due to the obtained mechanical characteristics of the titanium alloy, it was possible to
calibrate the Johnson–Cook model as presented in Equation (2).

Calibration was made for two cases: for specimens with a gauge length (L) of 18 mm,
and for specimens with a gauge length of 30 mm (Figure 5). In the first step to determine
the coefficients A, B, and n for the strain rate 0.0001/s, the stress–strain characteristic curve
was approximated by the power function. The results are shown in Figure 6. The results
shown in Figure 6 for strain value ε = 0.02 were recorded for three different strain velocities.
Figure 7 shows the results for two specimens (18 and 30 mm), where the normalized yield
strength is shown on the vertical axis. The value of the coefficient m was chosen based on
the literature [25]. The values of the Johnson–Cook coefficients are set forth in Table 2. The
real stress–strain characteristics were derived from the engineering values obtained in the
tensile tests using the logarithmic function in Equations (2) and (3).

εT = ln(1 + ε) (2)

σT = σ(1 + ε) (3)
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Figure 7. Normalized yield strength characteristic at strain value ε = 0.02 for specimen gauge length: 18 mm (a) and
30 mm (b).

Table 2. Johnson Cook constitutive model coefficients.

Gauge Length A (MPa) B (MPa) N (-) C (-) m (-) ε0 (s−1) Tr (K) Tm (K)

18 mm 938.67 714.68 0.69 0.00916 0.77 10−4 296 1923
30 mm 953.81 841.36 0.78 0.00872 0.77 10−4 296 1923

av 946.24 778.02 0.735 0.00894 0.77 10−4 296 1923

Based on the obtained results, stress–strain characteristics for 18 mm and 30 mm gauge
lengths were developed for three different strain rates. Using Johnson–Cook coefficients,
similar value characteristics for this model were obtained. The comparative characteristics
are presented in Figure 8. It is easy to observe that as the strain rate increases, the difference
between real and computational values rises. However, received values are within the
limits of acceptability.

The remaining material data used in the simulation were: density 4510 kg/m3;
Young’s modulus 115 GPa; Poisson ratio 0.31; Taylor–Quinney coefficient 0.9; specific
heat 523 J/(kg·K).
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To verify the correctness of our methodology for determining the energy-absorbing
properties of titanium alloy, numerical simulations of the sheet metal impact test were
made using the above material models.

The model of sheet metal and mesh is shown in Figure 9. The sheet metal model was
divided into 14,995 finite elements (element type: C3D8R) for the analysis. The mesh was
compacted at the puncture area due to high displacement values and to precisely visualize
the material deformation. The striker was modeled as a rigid body for simulation purposes.
The plate was fixed at its edges and the striker was given a starting value of 12.3 m/s,
which corresponds to the value measured during the experiment. A friction interaction of
0.1 was introduced between the surface of the striker and the mesh of the plate. The value
of the friction coefficient was determined based on the successive simulations to achieve
results most closely related to the experimental values.
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3. Results and Discussion

During experiments, nine dynamic impact tests were carried out at room temperature
(296.15 K). A total of three attempts were made for the individual case to obtain statistical
data. Specimens were punctured separately (specimens 1, 2, and 3); specimens from 4–9
were layered in pairs (4–5, 6–7, and 8–9); specimens from 10–18 were layered in threes
(10–11–12, 13–14–15, and 16–17–18).

As a result of the study, graphs of force during puncture in the displacement function,
as well as energy during puncture, were obtained. The results for individual cases shown
in Figure 10 and averaged in Figure 11 are also a comparison of results for each case, as
can be observed. It clearly shows an increase in strength during puncture relative to the
number of layers. The energy needed to puncture double-plate (205 J) is greater than twice
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the energy required to puncture a single plate (84 J × 2 = 168 J). Similarly, three-layer
structure energy (325 J) is greater than three times the energy required for a single plate
(3 × 84 J = 252 J). That might be due to the fact that the striker energy is dispersed not only
by the deformation of the material and the energy required to destroy it but also by friction
between each layer. The coefficient of friction between each layer is correlated with the
roughness of the samples, as shown in Figure 12. A comparison of the value obtained from
the experiment and the energy value calculated based on a single-sheet puncture is shown
in Figure 13. It is easy to see that this relationship shows characteristics similar to a linear
one. The study of sheet metal multi-layer structures, consisting of sheet metal packaging,
can be an introduction to the analysis of polymer-titanium and polymer-glass-titanium
composites’ behavior.
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Figure 13. The dependence of energy during puncture on the number of layers of the sheet for the
value measured during the experiment and the calculation value.

Figures 14–16 show the results of the impact tests with a comparison to the finite
element simulation. The form of material failure (bursting) has a petaling character. In
titanium structure sheet tests, the first layers are most crushed, grated by contact between
the plate and the striker. The last layers show the greatest deformation.
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3.1. Calculation of Specific Energy Absorption WEA

The energy-consuming structures used in the aerospace industry should be of the
lowest possible weight, but also of high strength and stiffness to specific mass ratio. One of
the parameters describing the energy consumption is the total impact energy absorption
EA (kJ), equivalent to the area under the load–displacement curve calculated up to points
P1, P2, and P3 of the sudden curve fall (Figure 11a).
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In order for energy-absorbing structures to best absorb the impact energy, the destruc-
tion of these structures must not be carried out in an abrupt manner, as in beam damage
during global buckling. Instead, the destruction should be carried out progressively, so
that each volume of the specimen is crushed (destroyed) into the smallest particles.

The process of progressive destruction depends mainly on the mechanical properties
of the material, its structure, shape, and the geometry of the specimens.

The specific energy absorption capability (4) WEA of a composite material is defined
as the energy absorbed per unit mass of material as

WEA =
EA
m

[
kJ
kg

]
(4)

where m is the mass of the composite material.
Examples of the values for the highest relative absorption energy WEA for several

types of materials are given in Figure 17.
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Materials 2021, 14, 7209 12 of 19

3.2. FE Simulation Results

Simulations were created to develop a material model of Ti6Al4V matched to high
strain rate tests, to compare the results with those of the experiments, and to define
properties that could not be tested by experiments such as temperature and stress state
during puncture. The Johnson–Cook coefficients in Table 2 were used in the simulation.
The Huber–Mises–Hencky stress characteristic (HMH) during the puncture process was
obtained in the simulation, as shown in Figure 18. As a result of the simulation, the
maximum stress was approximately 1300 MPa, which can be considered to be in line with
experimental data.
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Figure 18. HMH stress visualization of one titanium alloy plate during the impact test.

Material crumbling and the formation of characteristic flakes comparable to the exper-
iment can be observed during damage propagation. The highest value of reduced stress
(1.3 × 109 Pa) was recorded for a step of 0.6 µs. At this point, the material undergoes
progressive decohesion. At the next step (t = 0.8 µs), spring relief of the material can be
observed by comparing the stress areas. At the time of decohesion, reduced stress greater
than or equal to 2.8 × 108 Pa is present across the majority of the specimen area. However,
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in the next step (t = 0.8 µs), the reduced stress importantly decreases over a significant
area below the value of 1.4 × 108 Pa, only to increase again in the next simulation step
(t = 1.0 µs). This increase continues until the punch fully passes through the specimen.
Figure 19 shows the strain visualization of equivalent plastic strain (PEEQ) during sheet
metal puncturing. The maximum strain value was 0.532. This value is greater than that
available in the literature [27].
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Figure 19. PEEQ strain visualization during the puncture of a sheet made of titanium alloy.

In the ABAQUS simulation process, tests such as temperature increase, stress triax-
iality, and force at failure initiation were carried out. Figure 20 shows the sheet metal
temperature increase at the puncture area where the maximum increase from the initial
temperature was 287.3 K. Taking into account the initial conditions (initial temperature
296.15 K) the sheet was heated to 583.45 K. Figure 21 shows the stress during the puncture
of the specimen. Compressive stress occurred when there was tensile stress on the opposite
side of the sheet at the point where the striker contacted the sheet. When the sheet is bent by
puncturing, at the point of contact with the striker the compressive stress undergoes tensile
stress, and the stress changes into compression with the development of the deformation.
The maximum triaxiality stress value is 1.9, which is higher than that in the literature [27].
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Figure 21. Stress triaxiality visualization in section view during puncture.

As part of the ABAQUS simulation for two layers of sheet metal, analogous calcula-
tions and visualizations were performed as in the case of a single layer. Visualizations of
stress and strain are shown in Figures 22 and 23. The maximum values of the parameters
are the reduced HMH stress of 1233 MPa and PEEQ strain of 0.53. The visualization
of the temperature increase at the puncture point in Figure 24 indicates a temperature
increase of 385 K. This is 99 K more than for a single layer. Such a difference may be due to
the interaction between the surfaces. The nature of the stress triaxiality condition can be
considered analogous to the first simulation (Figure 25).
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Figure 25. Stress triaxiality visualization in section view during the puncture of two titanium
alloy sheets.

Analogous simulations were performed on three layers of Ti6Al4V titanium alloy
sheet. The results of this simulation are also presented in the form of visualization of HMH
stress, PEEQ strain, temperature increase, and stress triaxiality in individual layers. The
maximum values in this simulation were an HMH stress of 1263 MPa, a PEEQ of 0.5306,
and a sheet temperature increase of 393 K. All visualizations are shown in Figures 26–29. It
can be observed that the temperature change can affect some mechanical parameters of the
considered titanium alloy [28].
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Figure 26. HMH stress visualization for three layers of titanium alloy.

In the next step, the forces obtained from the INSTRON machine were compared with
the results of the FE simulation, which made it possible to compare the accuracy of the
applied material model. The results of the analysis were filtered using the Butterworth
filter (available in ABAQUS) at a 20,000 Hz cut-off frequency (COF). The Butterworth filter
is one of the most commonly used filters, with maximum flat amplitude in the passband
bandwidth. The Butterworth filter was used to eliminate numerical noise. The COF, set
at 20 kHz, was selected over the course of subsequent analyses using COF values from 5
to 30 kHz. The selected frequency had the least interference with the achieved maximum
values and with the waveform. The approximate maximum forces at the initiation of
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damage were obtained. For a single plate experiment, the force was 5.33 kN, while the
simulation obtained 5.41 kN; for two layers, the maximum force was 11.85 kN for the
experiment and 11.32 kN for the simulation. Force values for three layers were found as
21.2 kN for the experiment and 19.7 kN for the simulation. Force diagrams are shown in
Figure 30, which is a comparison of all obtained results related to force at damage initiation.
The difference in results might be due to a too simple friction model between the striker
and the sheet, incorrect selection of coefficient of friction, the approximate fracture locus,
or the imperfection of the constitutive model. Since the titanium alloy was supplied in
the form of a rolled sheet, it is characterized by an anisotropy that was not included in
the calculation.
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The use of high-impact velocities caused difficulties in modeling the observed phe-
nomenon, which exhibited a rapidly varying character. The obtained calculation results
have an oscillatory character, resulting from the specificity of the numerical model and
requiring filtering.

Due to the fact that the material used for experimental research was only in the form
of metal sheets, the standard impact strength for the Charpy standard U-notched specimen
was determined in the simulation using the JC model. The velocity of the striker was given
a value of 12.3 m/s, as in the simulation above. The impact strength was KC = 122 J/cm2.
The model of this simulation is shown in Figure 31.
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Figure 31. View of the impact strength simulation: (a) before impact; (b) after impact.

4. Conclusions

The application of a drop-weight tester equipped with a conical striker allowed
evaluation of the energy-absorbing properties of Ti6al4V titanium alloy sheets and allowed
us to analyze phenomena occurring during the initiation and development of material
damage. The study and analysis of the energy-absorbing properties of the titanium alloy
Ti6Al4V layer structure under dynamic impact loading using a drop-weight impact tester
revealed that:

• The character of the resulting damage takes the form of petaling; a similar mechanism
was achieved by simulation.

• The maximum values of absorbed energy are 84 J for a single plate, 205 J for two plates,
and 325 J for three plates.

• The absorbed energy increase during the puncture of two or three layers of titanium
sheets is not an exact multiple of the energy measured for a single sheet. It is probable
the cause of the discrepancy is the friction between the layers of material.

• The temperature values obtained from the puncture simulation of the titanium alloy
samples are 287.3 K for one layer, 385.7 K for two layers, and 393 K for three layers. A
slight difference in the maximum temperature between two and three layers can be
seen. Despite this, the value continues to rise.

• The maximum force values for damage initiation are 5.33 kN for a single plate,
11.85 kN for two plates, and 21.2 kN for three plates.
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The study of simple multi-layer structures of Ti6Al4V titanium alloy consisting of
sheet metal is an introduction to the behavior of polymer-titanium and polymeric-glass-
titanium composites. In further analyses, titanium alloy glue connection can be tested,
using reinforcement in the form of glass or carbon fiber.
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