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Abstract: The nanostructured β′′ precipitates are critical for the strength of Al-Mg-Si-(Cu) aluminum
alloys. However, there are still controversial reports about the composition of Cu-containing β′′

phases. In this work, first-principles calculations based on density functional theory were used to in-
vestigate the composition, mechanical properties, and electronic structure of Cu-containing β′′ phases.
The results predict that the Cu-containing β′′ precipitates with a stoichiometry of Mg4+xAl2−xCuSi4
(x = 0, 1) are energetically favorable. As the concentration of Cu atoms increases, Cu-containing β′′

phases with different compositions will appear, such as Mg4AlCu2Si4 and Mg4Cu3Si4. The replace-
ment order of Cu atoms in β′′ phases can be summarized as one Si3/Al site → two Si3/Al sites
→ two Si3/Al sites and one Mg1 site. The calculated elastic constants of the considered β′′ phases
suggest that they are all mechanically stable, and all β′′ phases are ductile. When Cu atoms replace Al
atoms at Si3/Al sites in β′′ phases, the values of bulk modulus (B), shear modulus (G), and Young’s
modulus (E) all increase. The calculation of the phonon spectrum shows that Mg4+xAl2−xCuSi4 (x = 0,
1) are also dynamically stable. The electronic structure analysis shows that the bond between the Si
atom and the Cu atom has a covalent like property. The incorporation of the Cu atom enhances the
electron interaction between the Mg2 and the Si3 atom so that the Mg2 atom also joins the Si network,
which may be one of the reasons why Cu atoms increase the structure stability of the β′′ phases.

Keywords: Al-Mg-Si-Cu alloys; Cu-containing β′′; atomic configuration; mechanical properties;
electronic structure

1. Introduction

Heat treatable Al-Mg-Si(-Cu) alloys in the 6xxx series are a common category of
structural materials used in the construction and transportation industries. These alloys
can be customized to have a desirable combination of properties, such as good formability,
high specific strength, and corrosion resistance [1–3]. After proper aging treatment, the
strength of the alloy can be greatly improved. This is mainly due to the precipitates that can
contribute to the strengthening mechanisms by hindering the dislocation movement [4,5],
particle strengthening σp [6], and coherency of the particles [7]. The mechanical properties
of these alloys can be greatly influenced by the composition, morphology, scale, and
distribution of these solute atom nanostructures [8]. The precipitation sequence for Al-Mg-
Si alloys is generally considered to be [9,10]:

SSSS→ solute clusters → GP− zones→ β′′ → β′, U1, U2, B′ → β, Si

The supersaturated solid solution is denoted by the abbreviation SSSS. The Guinier-
Preston zones (GP-zones) were first discovered in the Al-Cu system by Guinier [11] and
Preston [12]. The GP-zones mainly refer to the nanoprecipitate phases formed in the
early stage of aging, which is characterized by a certain ordered structure and completely
coherent with the matrix.
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Among the precipitates [4,13–15] formed in the aged Al-Mg-Si alloys, needle-like β′′

precipitate is the most effective strengthening phase [14] responsible for the peak-hardening
effect [16]. The β′′ phase is a metastable precipitate phase, which is semi-coherent with
the Al matrix in the needle cross-section, the space group is C2/m, a = 15.16 Å, b = 4.05 Å,
c = 6.74 Å, and β = 105.3◦ [17,18]. The monoclinic β′′ phase was originally proposed to have
the composition of Mg5Si6 [17]. However, according to recent experimental and theoretical
studies, the composition of β′′ would fluctuate around Mg5Al2Si4 [19–22]. Furthermore,
the most recent density functional theory (DFT) calculations inferred very minor formation
enthalpy differences for β′′-Mg5+xAl2−xSi4 (−1 < x < 1) [21]. These results indicate that the
composition of β′′ phase in Al matrix may change under certain conditions. For example,
the dispersed nano-precipitates can be affected by the addition of Mg and/or Si, as well
as other elements like Cu [5,23–27]. The addition of Cu is demonstrated to increase the
age-hardening response, and it promotes the generation of higher number density and
smaller size precipitates [14,28–32]. Therefore, a certain amount of Cu is usually added
into Al-Mg-Si alloys. The addition of Cu increases the complexity of the precipitation
sequence [32,33]. The precipitation sequence of Al-Mg-Si-Cu alloys is reported as [34]:

SSSS→ solute clusters → GP− zones→ β′′ , L/S/C, QP, QC→ β′, Q′ → Q, Si

Previous work used various experimental and theoretical methods to study the incor-
poration of Cu in β′′, and analyzed the Cu atoms as foreign solute atoms in the phases [20].
Cu addition could further enhance the positive effect of pre-aging on bake hardening for
Al-Mg-Si alloys [35]. It has been demonstrated by high-angle annular dark-field scanning
transmission electron microscopy (HAADF-STEM) that Cu is mainly confined to the Si3/Al
sites (Si or Al atoms completely occupy) of the β′′ structure [26,35–37], which as mentioned
was also supported from DFT-based calculations [38]. The β′′ precipitates in Al-Mg-Si-Cu
alloy were detected with an average composition of 28.6Al-38.7Mg-26.5Si-5.17Cu (at. %)
using atom probe tomography (APT) and high-resolution energy-dispersive X-ray (EDX)
mapping [36]. Furthermore, the addition of Cu has no effect on the type of β′′ precipitate,
Cu atoms incorporate in β′′ and some of Mg, Si and Al in β′′ unit cell are substituted by
Cu atoms [39].

As mentioned above, the β′′ precipitation behavior in Al-Mg-Si-Cu alloys has been
investigated using various characterization methods. However, the detailed structures and
stabilities are still unclear of Cu-containing β′′ phases in these alloys, and these structural
refinements could be supported by first-principles results [40]. In addition, we predict
energy-lowering site occupations and stoichiometries of the β′′ phases, where experimental
information is incomplete. Understanding the structure of Cu-containing β′′ precipitates is
essential to elucidate the precipitation sequence in heat-treatable Al-Mg-Si (-Cu) alloys.

In the present work, first-principles calculations based on density functional theory
(DFT) [41] were used to study the Cu-containing β′′ phases. Based on the structural
information obtained by experimental methods, first-principles atomistic calculations
can provide structural, chemical, and energetic information [40]. A large number of Cu-
containing β′′ structures were constructed searching for possible stable configurations and
structural stability, kinetic stability, and mechanical stability were also considered. Finally,
the characteristics of Cu atoms occupying sites were analyzed through the electronic
structure.

2. Materials and Methods
2.1. Atomic Model

For the β′′ phases, the formation enthalpies and lattice parameters of Mg4Al3Si4,
Mg5Al2Si4, Mg6AlSi4, and Mg5Si6 were computed for each of the models of the crystal
structures available in the literature [17,18,21], allowing a critical assessment of the validity
of the models. Figure 1 shows four atomic models of the β′′ without Cu. The Wyckoff site
information of the energetically most favorable β′′-Mg5Al2Si4 is shown in Table 1 [18,19].
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Figure 1. Four atomic models of the β′′ available in the literature [17,21]. (a) Mg5Si6 from Zandbergen [17]; (b) Mg4Al3Si4
and (c) the Mg5Al2Si4 from Hasting [19]; (d) Mg6AlSi4 from Ehlers [21]. The relative location of each site is marked in (c).

Table 1. Wyckoff site information (x, y, z) in the β′′-Mg5Al2Si4 phase [18,19]; atomic configuration is
shown schematically in Figure 1c.

Site Occupation x y z

Mg1 2a 0 0 0
Mg2 4i 0.3419 0 0.099
Mg3 4i 0.4225 0 0.659
Si1 4i 0.0501 0 0.678
Si2 4i 0.1876 0 0.225

Si3/Al 4i 0.2213 0 0.618

2.2. Computational Details

The first-principles calculations were performed utilize the plane wave pseudopoten-
tial method, as implemented in the highly efficient Vienna ab initio simulation package
(VASP) [42,43], The electron-ion interactions were described through projector augmented
wave (PAW) [44,45]. The exchange-correlation function were constructed by the general-
ized gradient approximation (GGA) of Perdew-Burke-Ernzerhof (PBE) [46]. All structures
were fully relaxed with respect to atomic positions as well as all lattice parameters in order
to find the lowest-energy structure. The electron wave function was expanded in plane
waves up to a cutoff energy of 450 eV. The β′ ′phase was represented by a conventional cell
with 22 atoms according to the experimental results, and 3 × 12 × 8 Γ-centered k-point
meshes were employed in the Brilluion zone sampling and generated automatically by
following the Monkhorst-Pack sampling scheme [47], while the 3 × 3 × 8 Γ-centered
k-point meshes and 1 × 4 × 1 supercells were employed for calculation of “replacement
energy” (the detailed definition is explained below). Atoms were relaxed until their resid-
ual forces converged to 0.01 eV/Å. The phonon spectra were obtained using the Phonopy
package [48].

The four-parameter Birch–Murnaghan equation of state with its linear form [49] is
employed to estimate the equilibrium total energy (E0), volume (V0),

E(V) = a + bV−2/3 + cV−4/3 + dV−2 (1)

where a, b, c, and d are fitting parameters. More details can be found in our previous
work [50].
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Compared with the energy of solid solution containing a Cu atom, the energy gain
of the Cu atoms incorporated in β′′ is referred to as “replacement energy”. In order to
construct the Cu-containing β′′ phases, it is necessary to determine the possible occupation
sites of Cu in β′′ phases. Additionally, computing the replacement energy (see Ref. [51])
can be used as a criterion for the possible occupation sites of solute atoms. There have been
previous studies addressing the first-principles calculations for describing replacement
energies of different sides. Since the replacement energy of Cu atoms at Mg2 and Mg3
sites were not shown in Saito’s work [38], one Cu atom was introduced into a 1 × 4 × 1
supercell and the preference of Cu atoms for each non-equivalent site in β′′ was evaluated
using the method described by Saito et al. [51], but with higher calculation precision.

To solve the compositional uncertainty preliminarily, the reported C2/m symme-
tries [18] were deliberately reduced to the level where only pairs of atoms (e.g., the two Cu
atoms) were regarded as equivalent. This implies that space group P2/m was used through-
out and there are 11 different sites within the unit cell. Besides, no partial occupancies were
considered and vacancies were ignored. The replacement energy for Cu incorporation in
β′′ can be described as follows:

∆H
(
β
′′
0 : X→ Ξ

)
= H

(
β
′′
0 : 3× {Al→ Ξ}; 1× {X→ Ξ}

)
+H(fcc Al)− H

(
β
′′
0 : 4× {Al→ Ξ}

)
−H(fcc Al : 1× {X→ S})

(2)

where H are the calculated enthalpy of the system, β′′0 are the Cu-free structure, Ξ are the
sides in β

′′
0 , X are the solute atoms incorporated in the precipitates, and S are substitutional

sites in the Al matrix. A certain atom X incorporates on site Ξ is referred to as “{X →
Ξ}”. The formation enthalpy of solid solution (SS), ∆Hform

SS , was used to find out the most
energetically favorable configurations in the atomic models. Since there is no stable fcc
structure for Mg and Si, their formation energies in relation to SS were determined as
follows:

∆Hform
SS (MgaAlbCucSid) = E(MgaAlbCucSid)− aEsub(Mg)

−bE(Al)− cE(Cu)− dEsub(Si)
(3)

where Esub (Mg) and Esub (Si) are the enthalpies of substituting Al atoms by Mg and Si
atoms, respectively. Esub (Mg) and Esub (Si) were calculated in a 3 × 3 × 3 Al supercell
with one Mg/Si atom and 107 Al atoms with a k-point meshes of 5 × 5 × 5. The enthalpy
of substituting a Mg atom was defined as:

Esub(Mg) = E(Al107Mg)− 107/108E(Al) (4)

where E (Al) is the enthalpy of a 3 × 3 × 3 Al supercell. The definition of Esub (Mg) was
also feasible for Esub (Si).

Finally, in order to compare the structures with different Al content, the formation
enthalpy can also be expressed in kJ/mol of solute atoms, instead of kJ/mol [52]. This
transformation is achieved as follows: ∆HSS [kJ/mol solute] = ∆HSS [kJ/mol]/(xMg + xSi +
xCu), where xMg and xSi and xCu are the atomic fractions of Mg and Si and Cu in the β′′

phases MgaAlbCucSid (a = xMg, b = xAl, c = xCu, d = xSi). This is a common definition of
formation enthalpy in the literature [9,21,52].

The elastic constant can be represented by a 6 × 6 matrix. Based on the symmetry
of the crystal structure, the independent elastic constants of the monoclinic crystal are
reduced to 13, as shown in Formula (5):

Cij =



C11 C12 C13 0 C15 0
C22 C23 0 C25 0

C33 0 C35 0
C44 0 C46

C55 0
C66

 (5)
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The stress-strain method based on the generalized Hooke’s theorem is used to calculate
the elastic constants of each crystal [53]. For more detailed stress-strain method description,
please refer to [54]. The relationship between elastic constant Cijkl, stress tensor δkl, and
strain tensor δkl can be expressed as:

σij = Cijklδkl (6)

The Hill model [55] is used to further obtain the bulk modulus (B), shear modulus (G),
and Youngs modulus (E) of the crystal through the elastic constant. The Hill model takes
into account that the calculation results of the Voigt model and the Reuss model will be
high and low, respectively, and take the arithmetic mean of the values of the Voigt model
and the Reuss model. For monoclinic crystal structure, the formula for calculating the bulk
modulus (B) and shear modulus (G) of monoclinic crystals using Voigt model and Reuss
model are [56]:

BV =
1
9
[C11 + C22 + C33 + 2(C12 + C13 + C23)] (7)

BR = Ω[a(C11 + C22 − 2C12) + b(2C12 − 2C11 − C23)+ c(C15 − 2C25)+

d(2C12 + 2C23 − C13 − 2C22) + 2e(C25 − C15) + f ]−1 (8)

GV = (1/15)[C11 + C22 + C33 + 3(C44 + C55 + C66)− (C12 + C13 + C23)] (9)

GR = 15{4[a(C11 + C22 + C12) + b(C11 − C12 − C23)+
c(C15 + C25) + d(C22 − C12 − C23 − C13) + e(C15 − C25) + f ]/Ω+
3
[
g/Ω + (C44 + C66)/

(
C44C66 − C2

46
)]}−1

(10)

wherein:
a = C33C55 − C2

35 (11)

b = C23C55 − C25C35 (12)

c = C13C35 − C15C33 (13)

d = C13C55 − C15C35 (14)

e = C13C25 − C15C23 (15)

f = C11
(
C22C55 − C2

25
)
− C12(C12C55 − C15C25)+

C15(C12C25 − C15C22) + C25(C23C35 − C25C33)
(16)

g = C11C22C33 − C11C2
23 − C22C2

13 − C33C2
12 + 2C12C13C23 (17)

Ω = 2[C15C25(C33C12 − C13C23)+C15C35(C22C13 − C12C23)+
C25C35(C11C23 − C12C13)]−

[
C2

15
(
C22C33 − C2

23
)
+ C2

25
(
C11C33 − C2

13
)
+

C2
35
(
C11C22 − C2

12
)]

+ gC55

(18)

The formula for calculating the bulk modulus (B), shear modulus (G), and elastic
modulus (E) of monoclinic crystal by Hill model [55] is:

BH =
1
2
(BV + BR) (19)

GH =
1
2
(GV + GR) (20)

E = 9BG/(3B + G) (21)

3. Results and Discussion
3.1. Structure Stability

The replacement energy is shown in Figure 2 and alternative solute atoms Mg/Si
were incorporated for comparison with Cu at different sites. In order to more intuitively
express the competitive occupation sites of Cu atoms, the variable ∆ is introduced and the
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∆ values of Cu atoms at different sites in different β′′ configurations are shown in Figure 3.
The ∆ represents the “competitiveness” between Cu atoms and other solute atoms at each
site, it is the difference between the lowest replacement energy of Mg/Si solute atoms and
the replacement energy of Cu atoms. The larger the value of ∆, the more likely the Cu
atom will occupy the site. Consequently, due to the low Cu occupancy in β′′, only three
designated Cu sites (Si1, Si3, Mg1, see Figure 1c) were allowed to host Cu atoms according
to the relative value of replacement energy (refer to Figure 2). This conclusion is consistent
with previous research [38].
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Figure 2. Calculated replacement energies for Cu and alternative solute atoms Mg/Si on the different
sites of three different β′′ configurations. 1: Mg4Al3Si4, 2: Mg5Al2Si4, and 3: Mg6AlSi4. The position
of each column represents a different position in a different configuration. Cu, Mg, and Si replacement
energies are labelled with black, shaded, and white bars, respectively.
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Figure 3. The competitiveness (∆ values) of Cu atoms at different sites in different β′′ configurations.
The black square, red circle, and blue triangle represent Cu atoms in the Mg4Al3Si4, Mg5Al2Si4, and
Mg6AlSi4 configurations, respectively.

For checking the reliability of the calculations, Table 2 displays the structural pa-
rameters for selected β′′ configuration without Cu atom, along with the results of earlier
theoretical and experimental studies of β′′. Available calculation results of formation
enthalpies are shown in Table 3. The formation enthalpies of the 33 possible unit cells
have been plotted in Figure 4, including the configuration without Cu atom. Since the
given formation enthalpy of per solute atom (eV/solute atom) essentially presents the
solute chemical potentials, the zero-temperature convex hull can be constructed to de-
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duce the precipitation order of the system [57]. It can be seen that Cu occupying one
column of each Si3 column pair is found to be the energetically most favorable option for
the set of Mg4Al2CuSi4 compositions. While the formation enthalpy of Mg4Al2CuSi4 is
−0.337 eV/solute atom, the formation enthalpy of Mg5AlCuSi4 is −0.335 eV/solute atom,
which is similar to that of Mg4Al2CuSi4. This is consistent with the observed in previous
experiments that Cu atoms mainly occupy Si3 sites [36]. The energy gained when replacing
Mg/Si/Al with at the Wyckoff sites is clearly varying with x. When Cu atoms occupy two
sites (that is, x = 2), Mg4AlCu2Si4 is the energetically most favorable phase, and Cu atoms
occupy two Si3 columns. When Cu atoms occupy three sites, Mg4Cu3Si4 is the most stable
structure, in which Cu atoms occupy one Mg1 site and two Si3 sites, which is consistent
with experimental observations [36]. The results show that stoichiometry of Cu-containing
β′′ phase is suggested as Mg4Al3−xCuxSi4 (1 ≤ x ≤ 3). Since the formation enthalpy of
Mg5AlCuSi4 is very close to that of Mg4Al2CuSi4, it can also be taken into account. This
result emphasizes the possibility of fluctuations between various compositions as a func-
tion of the local alloying element concentration for the physical system during precipitated
phases growth. Then the structural parameters of low energy configurations from Figure 4
also have been displayed in Table 2. As discussed above, sole minimization of the β′′ phase
formation enthalpy supports the well-defined Mg4+xAl2−xCuSi4 (x = 0, 1) unit cell shown
in Figure 5.
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Table 2. First-principles (VASP-GGA) and experimental lattice parameters of β′′ phases of Al-Mg-Si-
(Cu) system. For the Cu-containing β′′ phases, only the most stable crystal structures under different
Cu concentrations are listed.

Configurations a (Å) b (Å) c (Å) β (◦) Ref.

Mg5Si6 15.12 4.04 6.99 110.6
Mg5Si6 (exp.) 15.16 ± 0.02 4.05 6.74 ± 0.02 105.3 ± 0.5 [17]
Mg5Si6 (GGA) 15.11 4.080 6.932 110.4 [21]
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Table 2. Cont.

Configurations a (Å) b (Å) c (Å) β (◦) Ref.

Mg5Si6 (GGA) 15.13 4.05 6.96 110 [58]
Mg5Si6 (GGA) 15.12 4.084 6.928 110.5 [59]
Mg5Si6 (GGA) 15.14 4.05 6.94 110 [60]

Mg4Al3Si4 15.05 4.16 6.59 106.6
Mg4Al3Si4 (GGA) 15.11 4.131 6.615 106.6 [21]

Mg5Al2Si4 15.36 4.05 6.79 105.7
Mg5Al2Si4 (GGA) 15.32 4.075 6.778 105.9 [21]
Mg5Al2Si4 (GGA) 15.50 4.05 6.74 106 [19]

Mg6AlSi4 15.63 4.06 6.82 105.9
Mg6AlSi4 (GGA) 15.59 4.069 6.830 106.1 [21]

Mg4Al2CuSi4 14.78 4.02 6.69 107.3
Mg5AlCuSi4 15.08 3.95 6.86 106.2
Mg4AlCu2Si4 14.46 4.03 6.68 109.2

Mg4Cu3Si4 14.17 4.11 6.37 107.5

Table 3. Formation enthalpies of β′′ phases with different configurations in this work. The Cu occupied sites and its number
are also listed in detail.

Configurations Cu Occupied Sites xMg/(xMg + xSi) xCu ∆Eβ” (eV/Solute Atom)

Mg5Si6 - 0.45 0.00 −0.2650
Mg5Si6 [21] - 0.45 0.00 −0.2665
Mg4Al3Si4 - 0.50 0.00 −0.3264
Mg5Al2Si4 - 0.56 0.00 −0.3348

Mg5Al2Si4 [21] - 0.56 0.00 −0.3456
Mg6AlSi4 - 0.60 0.00 −0.3286

Mg6AlSi4 [21] - 0.60 0.00 −0.3380
Mg4Al3CuSi3 1 Si1 0.57 0.09 −0.2896
Mg4Al2CuSi4 1 Si3/Al 0.50 0.09 −0.3370
Mg4Al2CuSi4 1 Mg1 0.50 0.09 −0.3196
Mg4Al3Cu2Si2 2 Si1 0.67 0.18 −0.2525
Mg4AlCu2Si4 2 Si3/Al 0.50 0.18 −0.3232
Mg4Al2Cu2Si3 1 Si1 and 1 Si3 0.57 0.18 −0.2567
Mg4Al2Cu2Si3 1 Si1 and 1 Mg1 0.57 0.18 −0.2583
Mg4AlCu2Si4 1 Si3/Al and 1 Mg1 0.50 0.18 −0.3043
Mg4Al2Cu3Si2 2 Si1 and 1 Si3/Al 0.67 0.27 −0.2205
Mg4AlCu3Si3 1 Si1 and 2 Si3/Al 0.57 0.27 −0.2737
Mg4Al2Cu3Si2 2 Si1/Al and 1 Mg1 0.67 0.27 −0.2215

Mg4Cu3Si4 2 Si3/Al and 1 Mg1 0.50 0.27 −0.2988
Mg4AlCu3Si3 1 Si1 and 1 Si3/Al and 1 Mg1 0.57 0.27 −0.2482
Mg5Al2CuSi3 1 Si1 0.63 0.09 −0.2831
Mg5AlCuSi4 1 Si3/Al 0.56 0.09 −0.3352

Mg5Al2Cu2Si2 2 Si1 0.71 0.18 −0.2298
Mg5Cu2Si4 2 Si3/Al 0.56 0.18 −0.2955

Mg5AlCu2Si3 1 Si1 and 1 Si3 0.63 0.18 −0.2542
Mg5AlCu3Si2 2 Si1 and 1 Si3 0.71 0.27 −0.2033

Mg5Cu3Si3 1 Si1 and 2 Si3 0.63 0.27 −0.2471
Mg6AlCuSi3 1 Si1 0.67 0.09 −0.2444

Mg6CuSi4 1 Si3/Al 0.60 0.09 −0.2876
Mg6AlCu2Si2 2 Si1 0.75 0.18 −0.1967

Mg6Cu2Si3 1 Si1 and 1 Si3 0.67 0.18 −0.2311
Mg5AlCu2Si3 1 Si1 and 1 Mg1 0.63 0.18 −0.2472

Mg5Cu2Si4 1 Si3/Al and 1 Mg1 0.56 0.18 −0.2744
Mg5AlCu3Si2 2 Si1 and 1 Mg1 0.71 0.27 −0.1981

Mg6Cu3Si2 2 Si1 and 1 Si3 0.75 0.27 −0.1696
Mg5Cu3Si3 1 Si1 and 1 Si3 and 1 Mg1 0.63 0.27 −0.2361
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3.2. Elastic Properties

Here, we compare the mechanical properties of β′′ with or without Cu atoms. The
elastic constants of key β′′ phases that are most likely to precipitate during aging were
calculated by using fully relaxed crystal structures, and the results are listed in Table 4.
According to the Born stability criterion [61], the elastic constants of Mg4Al2CuSi4 and
Mg5AlCuSi4 all meet the stability criteria of monoclinic crystals. This further supports
the stability of Mg4+xAl2−xCuSi4 (x = 0, 1) obtained from the formation enthalpy. The
elastic constants C11, C22, and C33 are much greater than the other elastic constants in all
calculated β′′ phases, resulting in an obvious elastic anisotropy. In order to understand the
anisotropic characteristics of these precipitation phases, the Young’s modulus anisotropies
are evaluated by three-dimensional map as shown in Figure 6. Comparing Figure 6a
and c, it can be seen that after Cu atoms substituted Al atoms on the Si3/Al sites, the
Young’s modulus (E) anisotropy increases significantly; similar results are also shown
in Figure 6b,d. This phenomenon indicates that the growth rate of the Cu-containing β′′

phases may be faster than that of the β′′ without Cu. It is consistent with the previous
study that Cu can accelerates the age-hardening response [14,28,30].
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Table 4. Calculated single crystal elastic stiffness constants (Cij
′s) of the reported β′′ phases and energy favorable Cu-

containing β′′ phases.

Configuration C11 C12 C13 C15 C22 C23 C25 C33 C35 C44 C46 C55 C66

Mg5Si6 110 42 42 −3 103 49 4 94 11 19 5 17 25
Mg5Si6 [62] 106 49 50 −11 90 46 6 88 9 17 1 33 30
Mg5Si6 [63] 98 50 48 8 84 46 6 88 5.4 22 −10 29 51
Mg4Al3Si4 119 52 35 −3 99 47 3 122 10 19 −1 29 20

Mg4Al3Si4 [62] 114 46 48 −4 104 49 6 104 7 21 0 34 23
Mg4Al3Si4 [63] 107 47 48 9 97 48 6 97 9 26 6 36 46

Mg5Al2Si4 111 38 44 −4 102 46 3 106 7 25 4 31 25
Mg5Al2Si4 [62] 108 42 48 −3 95 46 5 100 3 23 4 33 27
Mg5Al2Si4 [63] 107 40 46 −13 95 43 4 99 12 27 5 36 49

Mg6AlSi4 121 28 40 −5 125 28 2 117 6 28 4 35 21
Mg4Al2CuSi4 136 44 48 −13 133 43 9 130 14 25 3 35 23
Mg5AlCuSi4 127 41 46 −9 128 32 5 131 6 31 4 38 22
Mg4AlCu2Si4 128 44 70 −3 136 53 6 103 10 28 7 32 22

Mg4Cu3Si4 128 47 75 7 153 43 3 115 −6 20 3 51 26

Based on the elastic constants in Table 4, the bulk modulus (B), shear modulus (G), and
Young’s modulus (E) of polycrystalline are calculated by the Hill model [55], and the results
are listed in Table 5. Comparing the values of E, G, and B of Mg4Al3Si4 and Mg4Al2CuSi4,
it can be seen that the values of E, G, and B of β′′ with Cu atoms are higher than that of β′′

without Cu atoms. This relationship is also shown between Mg5Al2Si4 and Mg5AlCuSi4.
In general, the Young’s modulus (E) can be used to measure the stiffness of the material.
The stiffness of the material is greater with the increasing of Young’s modulus (E) [64].
It is obvious that the stiffness is enhanced after Cu incorporate into Si3 sites. Pugh [65]
proposes using the ratio of the bulk and shear modulus, B/G, to predict brittle or ductile
behavior of materials. According to the Pugh criterion, if B/G is more than 1.75, ductile
behavior is expected; otherwise, the material would be brittle. From Table 4, the B/G
values of calculated β′′ phases are all larger than 1.75, therefore, all the compounds of β′′

phase are ductile with or without Cu atoms and the ductility decreases after Cu atoms
incorporate into β′′. In addition, Poisson’s ratio v has been used to measure the shear
stability of the lattice, which usually ranges from −1 to 0.5. The smaller the value, the
stronger the ability of the crystal to maintain stability during shear deformation [66]. The
value of Poisson’s ratio v > 0.26 means the ductility of the materials, and the Poisson’s ratio
of metals is usually 0.25< v < 0.35 [67]. As one can see, all β′′ configurations show ductility
with minor differences. It is consistent with the conclusion based on Pugh criterion.

Table 5. Calculated mechanic properties of the reported β′′ phases and energy favorable Cu-
containing β′′ phases.

Configurations B (GPa) G (GPa) E (GPa) B/G ν

Mg5Si6 62 22 60 2.77 0.34
Mg5Si6 [63] 62 - - - -
Mg4Al3Si4 67 26 69 2.57 0.33

Mg4Al3Si4 [63] 64 - - - -
Mg5Al2Si4 63 28 74 2.23 0.30

Mg5Al2Si4 [63] 61 - - - -
Mg6AlSi4 62 33 84 1.87 0.27

Mg4Al2CuSi4 72 32 84 2.26 0.31
Mg5AlCuSi4 69 34 88 2.01 0.29
Mg4AlCu2Si4 76 28 74 2.73 0.34

Mg4Cu3Si4 81 32 84 2.54 0.33
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3.3. Phonon Spectra

In addition, the dynamic stability is also taken into account. The phonon spectra of
Mg4Al2CuSi4 and Mg5AlCuSi4 are shown in Figure 7. From Figure 7, one can see that there
is no virtual frequency of configuration Mg4Al2CuSi4 and Mg5AlCuSi4, which is generally
considered to be dynamically stable.
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3.4. Electronic Structure

The total and partial electronic density of states (TDOSs and PDOSs) for four types
of β′′ configurations are calculated to explore the influence mechanism of electronic inter-
action on structural stability and mechanical properties, as shown in Figure 8, with the
Fermi level set to zero. It is evident that incorporating Cu does not change the metallic
characteristic of the β′′ phase due to the finite DOS at the Fermi level. At the Fermi level,
the TDOS for four types of β′′ configurations at the Fermi level varies. The greatest n
(Ef) is 7.41 states/eV/cell in Mg5Al2Si4, followed by 6.40 states/eV/cell in Mg4Al3Si4,
5.27 states/eV/cell in Mg4Al2CuSi4, and 4.18 states/eV/cell in Mg5AlCuSi4. This in-
dicates that the Cu-containing β′′ phases have a smaller n (Ef). In general, a smaller
pseudo gap value n (Ef) corresponds to a more stable structure [68]. This indicates that
Mg4+xAl2−xCuSi4 (x = 0, 1) are more stable than the β′′ phases without Cu. The Si-s (range
from around 11 eV to 7 eV) and Si-p states (from around 7 eV to the Fermi level) dominate
the TDOS of Mg4Al3Si4 and Mg5Al2Si4 below the Fermi level. In between (ranging from
about −7 eV up to −4 eV) regimes, a mixture of s and p character exists, indicating strong
hybridization. Especially from −7 eV to −5 eV, the shapes of Si-s and Si-p are very similar,
indicating that there is a strong interaction between Si atoms. This may be the origin for the
formation of the Si-network; the Si-network acts as a stable skeleton of these phases [32,69].
One can see that Mg-s/Al-s and Si-p in the range from −7 to −4 eV, originating mainly
from the s-p hybridization of Si atoms and Mg/Al atoms. The s-states and p-states of Al,
Mg, and Si are strongly hybridized above the Fermi level. From Figure 8, it should be noted
that, below the Fermi level, the Cu-d state is formed. The s/p orbitals of Mg, Si, and Al
all interact with the Cu-d state, and there is obvious electron transfer. The Si-p orbital and
the Cu-d orbital are hybridized to form a covalent like bonding, and more electrons are
transferred to the new orbital formed by the p-d hybridization.
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In order to gain a better understanding of the electronic structure of the studied system,
the charge density distributions were used as an additional method. The charge-density
difference between the (DFT) converged charge density and the isolated atomic charge
densities were employed. Figure 9 shows the charge density difference contour plot for
the (010) plane to analyze the interaction between Al, Mg, Si, and Cu atoms for the β′′

phases. Here we clearly see that there has indeed been a transfer of charge to all the
Si–Si bond regions, it is consistent with the analysis by Derlet et al. [69]. A dominant
feature of Figure 9a,b is the concentration of charge between the Si1-S3/Al-Si2-Mg1-Si1
nearest neighbors, and to a lesser extent, between the Si3 and Mg1 nearest neighbors,
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indicating that covalency plays a role in this system, which was also reported in previous
research [70]. Meanwhile, the charge distribution looks like a “charge loop”, which can
lead to the formation of an “Si network”. Strong covalent bonds network can significantly
increase the structural stability of β′′ phases. Such a charge transfer to the bonding regions
originates from the core regions of both atoms on the Mg and Si sites, in addition to the
homogeneous interstitial region between the Mg atoms. The depletion of charge from the
Mg3 sites indicates that for this system both metallicity and covalency are present in the
bonding. Moreover, the charge transfer density between the Si3 and Si2 sites is slightly
decreased, and the charge transfer density between the Mg2 and Si2 sites is increased,
indicating the bonds between atoms on Mg2 and Si2 sites are covalent. As shown in
Figure 9, the charge ionization of all Mg3 sites is strong, and when the Cu atom on the
Si3 site charge ionization becomes stronger, it means both Mg and Cu valence electron are
delocalized. The difference is that Mg uniformly provides charges to the surroundings to
form a metallic environment [69], while the charges of Cu atoms are delocalized toward Si
atoms in unit cells, forming a directional covalent like bond.
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Mg5AlCuSi4.

According to the analysis of the thermodynamic results of replacement energies and
formation enthalpies in Section 3.1 “Structure stability”, the stoichiometry of Cu-containing
β′′ phases in the precipitation sequence and the sequence of Cu atoms substituting sites in
the β′′ phases can be inferred. For the stable phases determined from the thermodynamics,
the elastic properties of β′′ phases with and without Cu were calculated in Section 3.2
“Elastic properties”, further supporting the proposed stoichiometry. Besides, the “Phonon
spectra” study in Section 3.3 shows that they are also dynamically stable. In summary, the
proposed compositions Mg4Al3−xCuxSi4 (1 ≤ x ≤ 3) are reasonable, which is consistent
with the results observed in the experiment [36]. In the Section 3.4 “Electronic structure”,
the origin for the stability of the Cu-containing β′′ phases is analyzed from the perspective
of electron interaction.

4. Conclusions

(1) The calculation of the formation enthalpies of 33 Cu-containing β′′ phases shows that
the replacement order of Cu atoms in β′′ phases can be summarized as one Si3/Al
site→ two Si3/Al sites→ two Si3/Al sites and one Mg1 site.

(2) The Cu atoms strongly favor occupying one of each pair of Si3/Al sites and the
most stable Cu-containing β′′ phases were expected to have a stoichiometry of
Mg4+xAl2−xCuSi4 (x = 0, 1). In addition, taking into account the change of Cu content
in β′′ phases, the stoichiometry of Mg4Al3−xCuxSi4 (1 ≤ x ≤ 3) may precipitate.
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(3) The calculated mechanical properties show that all calculated β′′ phases are mechani-
cally stable. The incorporation of Cu atoms improves the values of bulk modulus (B),
shear modulus (G), and Young’s modulus (E) of β′′, respectively, and all β′′ phases
calculated show ductile behavior. Furthermore, the calculation of the phonon spectra
shows that Mg4+xAl2−xCuSi4 (x = 0, 1) are dynamically stable.

(4) The electronic structure results shows that the Cu atom will join the Si network,
and the bond between the Si atom and the Cu atom has the covalent property. The
incorporation of Cu atom increases the electron interaction between the Mg2 and
the Si3 atom, which may be one of the reasons why the incorporation of Cu atom
increases the stability of the β′′ phase structure.
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