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Abstract: Direct metal laser deposition (DMLD) is an additive manufacturing technique suitable for
coating and repair, which has been gaining a growing interest in 3D manufacturing applications in
recent years. However, its diffusion in the manufacturing industry is still limited due to technical
challenges to be solved—both the sub-optimal quality of the final parts and the low repeatability
of the process make the DMLD inadequate for high-value applications requiring high-performance
standards. Thus, real-time monitoring and process control are indispensable requirements for
improving the DMLD process. The aim of this study was the optimization of deposition strategies
for the fabrication of thin walls in AISI 316L stainless steel. For this purpose, a coaxial monitoring
system and image processing algorithms were employed to study the melt pool geometry. The
comparison tests carried out highlighted how the region-based active contour algorithm used for
image processing is more efficient and stable than others covered in the literature. The results
allowed the identification of the best deposition strategy. Therefore, it is shown how this monitoring
methodology proved to be suitable for designing and implementing the right building strategy for
DMLD manufactured 3D components. A fast and stable image processing method was achieved,
which can be considered for future closed-loop monitoring in real-time applications.

Keywords: direct metal laser deposition; melt pool; process monitoring; image processing

1. Introduction

The direct metal Laser deposition (DMLD) is an additive manufacturing process based
on laser cladding, which mainly focuses on 3D manufacturing and repair applications.
DMLD has a high potential for component production through 3D deposition strategies
for the creation of clads with quite good microstructures less prone to cracks and also to
build non-homogenous structures [1].

DMLD uses a laser beam to create a melt pool on a metal substrate in which a metal
powder or a metal wire is added. The generation of an appropriate melt pool during
the process is essential to achieve a strong bond between the cladding material and the
substrate. The physical mechanisms behind the DMLD process are the creation of a high-
temperature spot during the process inducing the melting of the substrate and the fed
material, both contributing to the biphasic (liquid + solid regions) melt pool growth [2–4];
when the laser beam moves away, the heat dissipation into the substrate causes rapid
cooling of the trailing molten material (leaving a semi-circular trace of solidified material)
and the advancement of the leading solidification front [5].

However, from an economic point of view, the spreading of the process in the indus-
trial sector is slowed down by technical challenges still to be solved. The main issues are
the sub-optimal quality (in terms of dimensional accuracy and surface regularity) of the
final parts and the low repeatability, which make this process inadequate for high-value
applications requiring high-performance standards.
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In order to overcome these problems and improve the product quality and the process
repeatability, several research groups investigated in-situ process monitoring, characteriza-
tion, and real-time process control. Process monitoring involves observation, information
gathering, understanding of physical phenomena occurring in laser–material interactions,
and finally, the development of automated process control systems. This is also an es-
sential method to reduce costs and the amount of material waste. A first classification
distinguishes between near-IR thermal monitoring (using thermal imaging cameras, py-
rometers, and bolometers) and optical monitoring by image analysis (using camera with
active-pixel sensors, such as CMOS or CCD sensors, or photodiode sensors) of the melt
pool. Monitoring methods can be also classified, by regarding the topological setup, as
on-axis (coaxial) and off-axis with respect to the laser beam. Equipment with different
technical characteristics can detect different aspects of the process, and by combining
different systems, more sophisticated analyses can be carried out [6].

Although several papers in the literature focus on monitoring the melt pool, few of
them adopt the algorithm proposed in this study (named active contour) to retrieve the
melt pool size in the DMLD process. This algorithm consists of iterative modifications
of an initial contour until reaching the minimization of an energy functional. The active
contours logic was widely explored and applied in numerous applications, such as image
segmentation, visual tracking, etc. It generally leads to better results than classical image
segmentation methods [7]. Nevertheless, a challenge for this methodology regards the
sensitivity of the geometrical results to the contour initialization [8]. A methodology
evolution, employable to improve the algorithm performances, is the region-based active
contours, which models different zones in terms of intensity and sets the region boundaries
as the transition between different zones. The algorithm aims to identify each region of
interest applying a region descriptor leading the evolution of the active contour.

The aim of this study was the optimization of deposition strategies for the fabrication
of thin walls in AISI 316L stainless steel. For this purpose, a coaxial monitoring system
and image processing algorithms were employed to study the melt pool geometry. The
comparison tests carried out highlighted how the region-based active contour algorithm,
used for image processing, is more efficient and stable than others covered in the literature.
The algorithm was also compared with three different image segmentation techniques
analyzed in the literature—threshold segmentation, Canny edge, and edge-based active
contour. It was shown how the region-based active contour outperforms the other in
terms of processing speed, resolution, and edge detection accuracy. This algorithm was
previously employed by Lei et al. [9] to investigate the melt pool geometry in high-power
diode laser deposition with a rectangular laser spot, using an off-axis vision system. A
similar methodology was employed in the present study but, despite previous studies,
a coaxial CCD camera system integrated into the deposition head was used. It was
shown how coaxial monitoring avoids the pre-setting phase for perspective correction of
the captured images. However, this methodology is particularly suitable for the DMLD
process monitoring as it is less affected by the field of view occlusions. The results allowed
the identification of the best deposition strategy.

Moreover, a short review of the thermal and optical techniques used for in-situ moni-
toring of the melt pool during the DMLD process is presented, in order to highlight recent
researches on existing sensing systems and on analysis of product quality.

2. Review of Main In-Situ Monitoring Systems
2.1. In-Situ Thermal Monitoring

Through thermal analysis, it is possible to identify defects such as porosity, lack of
fusion, or surface irregularities, coming from non-optimal heat dissipation conditions. In
current practice concerning thermal monitoring, a series of studies have been carried out.
R.D. Murphy and E.C. Forrest [10] reviewed in-situ temperature measurement techniques
for additive manufacturing technologies. In their study, the critical points of thermal
monitoring were highlighted. Practically, the temperature field of a body is not easy
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to detect, due to the variable emissivity during laser interaction, with consequences on
measurement accuracy. Owing to the complexity of emissivity definition, monochromatic
pyrometers are not recommended for applications where accurate measurements are
required. However, some studies in the literature using monochromatic pyrometers are
reported. Emamian et al. [11] performed thermal monitoring of the microstructure and
carbide morphology of Fe–Ti–C metal matrix composites, establishing in their experiments
a constant emissivity without needing to know the correct temperature. The authors
employed the monochromatic pyrometer for a comparative study on cooling rates and
temperatures of the melt pool under different conditions, setting the emissivity to a known
value. An alternative way involves the pyrometer calibration through a black body, as in
the case of Smurov et al. [12]. A high-temperature black body calibration source (MIKRON
M390, Boudry, Switzerland), with an emissivity of 1 in the band between 0.65 µm to 1.8 µm
is used. Because the emissivity of the body was known, the measured temperature made it
possible to calibrate with respect to the pyrometer. Usually, for DMLD processes, “ratio
pyrometers” are used to measure the energy of the infrared radiation emitted by the body
at different wavelengths. Measurements made by such type of pyrometers are sensitive
to measurement noise. For this reason, it is recommended to use dual-color pyrometers,
which are the most widespread for industrial applications [13]. Song et al. [14] stated
that by selecting wavelengths of 1.3 µm and 1.64 µm, an accuracy of ±10 ◦C is achieved
at temperatures between 1000 ◦C and 3000 ◦C. Shuang Liu et al. [15] also conducted
monitoring of high-power diode laser cladding using a pyrometer and an infrared camera
in order to visualize the interaction of the laser beam with the powder flow and to record the
temperature of the melt pool. In this study, the influences of the main process parameters
on the thermal behavior of the melt pool were investigated. It turned out that the trail of
the melt pool temperature was increased by a rise in laser power or a decrease in carrier
gas flow rate.

2.2. In-Situ Optical Monitoring

As mentioned, another type of monitoring is carried out via optical techniques, which
are used mainly to detect the geometry of the melt pool. Analyzing the literature, it was
found that optical systems and methods are used more than thermal methods for many
advantages—the possibility of real-time and multi-functional acquisitions (i.e., temperature
and images of the melt pool), intuitiveness, and flexibility [16]. The melt pool can be
observed by digital cameras, especially CMOS, CCD, and IR, which allow a visual study
of the target. From the acquired images, the geometrical features of the melt pool can be
measured after a post-processing phase. During the process, an attempt to keep primary
dimensions as constant as possible is made in order to have a stable deposition. However,
as in the case of temperature measurements, one of the main challenges for these cameras
is the calibration of the sensors and threshold values in image processing. With infrared
cameras, images are captured in grayscale, based on brightness intensity. Each pixel has its
grey value, and to calculate the width and length of the melt pool, it is necessary to identify
the value corresponding to the edge of the melt pool. Lei et al. [9] proposed the analysis
and modeling of the melt pool for high-power diode laser cladding with a rectangular
beam spot. The effects of the process parameters on the final geometrical characteristics
were investigated. A camera with a frame rate of 31 frames/s was employed to monitor the
melt pool during the process. The region-based active contours method, which was able to
isolate regions characterized by nearly homogeneous intensities, was used to detect the melt
pool boundaries. Results showed that the melt pool size (i.e., width and depth) increases
with increasing laser power while increasing translation speed leads to a decreasing in
the melt pool size. Hassler et al. [17] used a thresholding technique based on the thermal
behavior of the melt pool. They calibrated an infrared camera using the emissivity trend
of a black body and extracted the edge of the melt pool by defining the temperature of
the solidus–liquidus boundary. Other methods reported in the literature are related to
“trial and error” image processing methods. Akbari et al. [18] set the grayscale threshold
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value by comparing the nominal width of deposited tracks with the width measured in
the images, reporting a value of 80. The authors observed some glares upon the melt pool
caused by hot incoming powder particles. Since these glares could generate measurement
errors, a low-pass filter is applied to the images using the fast Fourier transform (FFT)
technique. Regular intensity variations in the image corresponded to low frequencies,
while abrupt and rapid intensity variations, such as those induced by glaring or noisy
pixels at the edge of the melt pool, corresponded to high frequencies. A low-pass cut-off
frequency of 5% was used to remove the noise. Finally, the edge of the melt pool was
extracted, and all possible circumferences approximating the molten pool were detected
in order to measure the largest section. The width of the melt pool was estimated as
the largest of the calculated diameters. Ocylok et al. [19] also surveyed the correlation
between the geometry of the melt pool and the main process parameters of the laser metal
deposition process by coaxial process monitoring. A CMOS camera was used to record
back reflections of the melt pool, which was useful for further analyses. It was pointed
out that thresholding has a great influence on the result of image binarization, and when
using a low threshold value, an over-estimation of the melt pool size was obtained. The
same threshold value was applied for all the analyzed images and results found a constant
deviation of 150 µm between the width of the deposited track and the width measured in
the images. Furthermore, the widening of the track is caused by heat accumulation and
viscosity reduction of the melt pool and by the presence of sparks. The effects of glares on
width and length measurement of the melt pool were reported to be less than 0.5%. In this
study, the results also showed that the laser power has a positive correlation with the melt
pool size, while the correlation between translation speed and melt pool size was negative.
Increasing the powder mass flow increases the thickness of the single track almost linearly
and the penetration depth decreases, leading also to a small reduction in the melt pool
size. The effect of preheating of the substrate (up to 300 ◦C) was also evaluated, proving
that an increase of the melt pool size by more than 20% at all examined laser power values
was observed. Sampson et al. [20] implemented a new image processing algorithm for
improving the accuracy and performance of melt pool measurements. It was based not
on emissivity or material dependency but on a parametric study, comparing it to a study
based on emissivity. The new algorithm uses the phenomenon of directional emittance to
calculate the width of the melt pool. For monitoring it, a NIR CMOS vision camera with
a 135 nm UV/VIS cut-off imaging filter was installed coaxially to the laser beam on the
deposition head. The results highlighted that the melt pool edge often occurs at different
thresholds. For this reason, this new technique detected the edge of the melt pool without
problems, compared to conventional emissivity-based techniques. Vandone et al. [21] split
the process of image analysis into two parts. The images were first corrected because
the brightness was elevated due to rising vapors. These vapors trapped the radiation
from the substrate, generating a light halo that deceived the measurements. The pixel
intensity distribution was analyzed, and the skewness index was evaluated. Negative
indices indicated that the image was composed of bright pixels and revealed a deceptive
intensity. In order to solve the problem at this early stage of the process, a corrective
factor was applied to the images. In a second step, the images were analyzed to extract
the geometry of the melt pool. For each image, the threshold value was calculated using
the Otsu method. To extract spark data, the local thresholding approach was followed.
Sparks were excluded based on the fact that they were composed of pixels with extremely
variable intensity. The same authors, in another study [22], carried out coaxial monitoring
of the melt pool by using a FLIR Grasshopper 3 (Wilsonville, OR, USA) camera. They
performed V-track depositions tests to demonstrate that the image intensity signal was
strongly linked to the local increase in power density, which occurred when the deposition
head decelerated to change direction. This phenomenon generated an over deposition.
Therefore, an image processing algorithm and different setup solutions to optimize image
signals were studied to detect this phenomenon in real-time and generate a feedback signal
to adjust the process parameters. Results showed that a narrow band filter in addition to
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the image-processing algorithm and an optimal camera exposure time could improve the
detection of errors during the process. Ding et al. [23] conducted experiments using two
different cameras—CCD and IR. An IR filter (>650 nm) was applied to the CCD camera to
eliminate disturbances in the acquisitions due to the presence of powder above the melt
pool. They calibrated the CCD camera by comparing the acquisitions of the IR camera. Both
the CCD and infrared cameras were used to acquire a video from the molten pool in absence
of powder and under the same process conditions. Because the edge of the melt pool was
determined by the melting temperature of the material, the emissivity was constant along
the whole contour and the edge temperature was described by an isotherm. In order to
determine this isotherm, the images extracted from the videos of the two different cameras
were overlapped. A video was acquired by replacing the IR filter with a 532 nm bandpass
filter and illuminating the melt pool with a 5 W green laser. By overlapping the greyscale
images on the IR image, the greyscale threshold value for IR images was established to 97.
This value was verified by experiments carried out at different scanning speeds without
powder and the results corresponded to the size of the deposited tracks with a deviation
of ±0.1 mm. Moreover, in the research of Kledwig et al. [24], the intensity distribution
of the signal coming from the melt pool surface was considered for the monitoring of
the directed energy deposition process. The intensity distribution was monitored using a
coaxial CCD camera. The melt pool area was estimated taking into account the number of
pixels (NOP) having intensities larger than a predefined threshold. This study showed how
the minimum specific energy needed for a stable process can be determined. Outcomes
indicated that a NOP having an intensity larger than a threshold intensity was a sign of an
unstable cladding process. This result has been attributed to the variation of the working
distance and this could be used as a warning signal for the automatic stop of processing.

As concerning off-axis monitoring systems, recently Garmendia et al. [25] proposed
a closed-loop control system that allowed the adjustment of the height of the deposited
layer and recalculate the deposition paths during repositioning. The monitoring was
performed using a structured light scanner. The used device was an HP SLS3 (Palo Alto,
CA, USA) (with an accuracy of 0.05 mm). The monitoring process implemented in this
work was designed on the interruption of printing, after a predetermined number of layers,
and on the consequent scanning of the previously made depositions. Once scanned, it
compared the images to the related CAD profiles. Then, if necessary, a new toolpath was
generated by updating the layer height to adapt the new deposition to the part growth. A
new coordinate system was updated for each scan. The results showed that the usage of
different coordinate systems for each scan improved the overall accuracy. This system has
generated parts with better dimensional features. Hsu et al. [26] proposed an inspection
system to measure the height of the clad based on three digital cameras. These were placed
at the same distance from each other and about 150 cm from the center of the platform
and inclined about 15 degrees from the vertical. In this system, a calibration bar was used
to rectify the field of view and perspective effects of the trinocular system. An image
processing technique was previously used to isolate the nozzle and the melt pool. Findings
showed how the clad height was estimated based on the distance between two reference
points located at the nozzle tip and on the centroid of the melt pool. The accuracy of the
system was compared with 3D scan models (GOM ATOS-Compact scan, Braunschweig,
Germany), giving an error of 4.2%.

3. Materials and Methods
3.1. Experimental Setup

In this study, thin-wall depositions with different depositions strategies were built.
The substrate was an AISI 304 stainless steel plate, whose chemical composition is shown
in Table 1, with a size of 100 mm in length, 80 mm in width, and 2 mm in thickness. The
filler metal was an AISI 316L stainless steel powder, whose composition is shown in Table 2,
presenting spherical particles produced by gas atomization by LPW South Europe (Widnes,
UK). The particle size distribution (PSD) of the powder, as certified by the manufacturer, is
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shown in Table 3. As shown in Table 3, the D value set at D10, D50, and D90 (10%, 50%,
and 90%) indicates the diameter of the particles, where 10%, 50%, or 90% of the population
lies below a certain size. The granulometry of the gas atomized powder is in the range of
15–45 µm. The experimental work was carried out by using a direct metal laser deposition
prototype machine, which includes a 4-kW fiber laser source (λ = 1.070 µm, Ytterbium
Laser System YLS by IPG Photonics, Oxford, MA, USA), a five-axis handling system, and
a powder supply system by GTV (Luckenbach, Germany). The laser head was equipped
with an optical collimator. The focal length of the collimation lens and the focusing lens
were respectively 100 mm and 200 mm. The beam and intensity distribution profiles are
shown in Figure 1. The laser beam was guided from the laser source to the deposition head
through an optical fiber with a diameter of 100 µm. A coaxial Argon flow with a flow rate
equal to 10 L/min was used to shield the working area. The powder was supplied by an
external powder feeder that used argon as a carrier gas and was injected through a coaxial
nozzle into the melt pool.

Table 1. Chemical composition of base metal (wt.%).

Material Cr Ni Mn Si C Fe

AISI 304 stainless steel 19.14 8.71 1.15 0.40 0.061 70.539

Table 2. Chemical composition of powder (wt.%).

Material Cr Ni Mn Si Mo C Fe

AISI 316L stainless steel 16.62 11.48 2.0 0.7 2.64 0.025 66.535

Table 3. Particle size distribution (PSD) of the powder.

PSD Particle Size (µm)

D10 19
D50 30
D90 46

Figure 1. Intensity distribution profiles for the laser beam, after passage through the fiber, as a
function of radial coordinates and cross-sectional plot.
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As mentioned above, thin-wall depositions were performed with the same process pa-
rameters that were obtained from prior studies and evaluated as appropriate for multilayer
depositions. The process parameters that were kept constant based on previous tests [27]
are listed in Table 4.

The thin walls, consisting of 15 layers, were built with the following three different
deposition strategies (see Figure 2):

S1: two-way without dwelling time;
S2: two-way with 10 s of dwelling time between two consequent paths;
S3: one-way with 12.5 s of dwelling time, including 2.5 s for the return to the beginning of
each path.

The dwelling time is the waiting time between two consequent paths in which the
laser is off. Two replications were performed for each deposition strategy.

Figure 2. Schematic representation of three different deposition strategies.

Table 4. Constant process parameters.

Parameters Unit Notation Value

Laser power W P 400
Translation speed mm min−1 v 1000
Powder feed rate g min−1 Q 10

Carrier gas flow rate L min−1 G 10
Laser spot diameter mm d 1.5

A coaxial CCD camera (IDS UI-6230RE-M-GL PoE Rev.3, Obersulm, Germany) inte-
grated into the deposition head, which allowed the laser beam path to be coaxially followed,
was employed to monitor the melt pool during the fabrication of thin walls.

The camera was characterized by a mono CCD sensor, an acquisition frequency of
40 frames per second, and an optimal resolution to control the process of 1024 × 768
pixels. From the videos acquired by the camera, several series of frames were extracted
and processed using algorithms implemented in the MATLAB software, for extracting the
geometrical dimensions of the melt pool.

In order to investigate the effects of the three proposed deposition strategies on the
final quality of the thin walls, a geometrical analysis on cross sections of the samples
was carried out. These were obtained by cutting the samples in a transverse direction
using the AbrasiMet 250 Buehler (Lake Bluff, IL, USA) metallographic cut-off machine. A
polishing process was carried out to make the cross-section surface highly reflective and
free of scratches and deformations. To characterize the samples in terms of microstructure,
geometry, and defectiveness, they were etched by Glyceregia reagent (5 mL HNO3, 10 mL
glycerol, and 15 mL HCl), which allowed the metallurgical structure to be observed. The
samples prepared in this way were examined by a Nikon Eclipse MA200 inverted optical
microscope (Nikon Corporation, Tokyo, Japan) for micrographic analysis.

3.2. Analysis and Characterization of the Melt Pool

For each deposition test, a video of the molten pool evolution was acquired using
the coaxial CCD camera with an acquisition rate of 40 frames per second. The coaxial
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configuration is particularly suitable for the DMLD process monitoring because it is less
affected by the field of view occlusions and perspective distortion [21]. Image sequences
were extracted from the acquired videos and subsequently processed and analyzed using
dedicated algorithms developed in a MATLAB environment to identify and isolate the
melt pool. For each deposited layer, frames were extracted and evaluated at three different
key points—in the beginning, in the middle, and at the end of the deposition path, 25%,
50%, and 75% of the total length of the single track, respectively. The melt pool shape
monitoring was performed by extracting its geometrical characteristics using advanced
image processing techniques.

In particular, the study focused on the identification of the melt pool area through
an algorithm based on the active contour method. This technique, previously used by
Lei et al. [9], consists of an iterative method starting with the definition of the zero-level
contour in the form of a closed curve known as a mask. Subsequently, the zero-level
contour iteratively evolves and adapts by applying shrinking/expanding operations called
“contour evolution” driven by the minimization of an energy function [28].

In this study, a region-based algorithm was implemented, which aims to identify
each region of interest using a region descriptor that guides the evolution of the active
contour. The algorithm works by segmenting the image in order to connect regions with
homogeneous properties. Among the various selectable shapes for the zero-level contour
(elliptical, circular, rectangular, freehand), the circular shape was chosen because it is
similar to the incident laser spot. Figure 3 shows an example of an active contour where
both the starting contour (blue) and the extracted melt pool contour (red) are represented.
The brightness gradient at the top of the molten pool is steep due to intense heat dissipation
through the substrate. The high brightness regions on both sides of the melt pool could be
a consequence of the high emissivity, proper of the non-molten particles, and oxides [9–16].
Similar considerations were made by Doubenskaia et al. [29], who considered the high
thermal emission in the peripheral area of the melt pool due to oxides and other non-
metallic inclusions that are usually concentrated in that region. The weak brightness
gradient detected in the trailing part of the melt pool is describing lower and quite uniform
temperatures owing to cooling and solidification of the material in that area.
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4. Results and Discussion
4.1. Comparison of Image Segmentation Techniques

In order to illustrate the advantages of the proposed image analysis algorithm, the
region-based active contour was compared with three image segmentation techniques
analyzed in the literature—the threshold segmentation, the Canny edge, and the edge-based
active contour. Figure 4 shows the results of the algorithms comparison and the different
melt pools identified. Four frames randomly extracted from the complete deposition
were analyzed (see Figure 4a). As shown in Figure 4b–d, the region-based active contour
algorithm, compared to threshold segmentation and Canny edge, demonstrated a superior
accuracy in terms of edge detection and resolution. These results stem from the following
advantages of the region-based active contour over other algorithms [7]:

• achievement of sub-pixel accuracy for detected object boundaries;
• incorporation of prior image knowledge, such as intensity distribution (useful for

robust image segmentation);
• realization of smooth and closed contours as segmentation results, which are cru-

cial and easily manageable for further applications such as shape analysis and fea-
ture recognition.

The threshold value was chosen to be 80, as mentioned in the study by Akbari and
Kovacevic [18]. However, the classical image segmentation methods (edge detection and
thresholding) present problems due to the incapability to approximate edges with a single
binary threshold, as mentioned in [7,20]. The latter operates by finding discontinuities in
the brightness intensity of the image. These algorithms detect intensity discontinuities
and identify the edge between two regions characterized by different properties (e.g., the
intensity of pixels) as the limit. Therefore, because these techniques are based on a locally
derived analysis, they are not very effective in presence of weak object boundaries or noisy
patterns, as the images examined in this study [7,30].

In fact, independently of the selected threshold value, a part of the surface of the sub-
strate is erroneously identified as a melt pool part and vice versa, as shown in Figure 4c,d.
The last drawback also appeared in the edge-based active contour algorithm (see Figure 4e),
which uses the local edge information to attract the active contour to the edge to be de-
tected; it is not very effective in the presence of objects with heterogeneous feature profiles
or images with non-homogeneous intensity, as in the images obtained in our study [7,9].
Hence, among the four techniques, the region-based active contour method gave a higher
performance in terms of resolution, edge detection accuracy, etc.

In addition, a comparison of processing performances in terms of image segmenta-
tion computing time was performed. The processing times of different algorithms were
evaluated (see Table 5). For each image, the processing time of the region-based active
contour method was the shortest one, as shown in Table 5. The edge-based method is not
supported for color or multi-channel images and therefore requires image pre-processing,
thus increasing the processing time. Finally, in order to evaluate the outcome accuracy of
proposed algorithms, four levels of image processing quality were defined in Table 5—very
good, quite good, acceptable, and bad.

Table 5. Comparison of the processing times and precision of the four selected image processing algorithms.

Parameters Image Region-Based
Active Contour

Threshold
Segmentation

Edge Detection:
Canny Edge

Edge-Based
Active Contour

Processing time (s)

I 0.8344 0.8544 1.2114 3.9432
II 0.7746 0.8876 1.1152 3.7735
III 0.8355 1.0280 1.2799 4.2391
IV 0.8167 0.8570 1.1992 3.8467

Average processing time (s) I–IV 0.8153 0.9067 1.2014 3.9506
Accuracy Very good Bad Quite good Acceptable
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Figure 4. Comparison of the region-based active contour with other techniques: (a) four frames randomly extracted from
the whole deposition; (b) region-based active contour; (c) threshold segmentation; (d) Canny edge; and (e) edge-based
active contour.

In summary, the analysis indicates that the region-based active contour method
outperforms the other three techniques in terms of processing speed, resolution, and edge
detection accuracy.

4.2. Effects of Deposition Strategies on Melt Pool Geometry

The melt pool size is an important feature for the characterization of DMLD deposi-
tions. Figure 5 shows the effect of the two-way deposition strategy without dwelling time
(S1) on the final melt pool area. Each plotted value is the average of the measurements
taken on the two replications performed with the same deposition strategy.
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Figure 5. Melt pool size for each deposited layer with strategy S1.

In order to investigate the effects of the above-mentioned deposition strategy on the
melt pool size of the thin wall built, geometrical analysis of the melt pool was carried
out. In particular, three distinctive regions (beginning, middle, and end) were observed
along every single track, specifically at a distance of 25%, 50%, and 75% of the total length
of the single track. Results show an increasing trend in the size of the melt pool with
increasing deposited layers. As stated by Yang et al. [31], two-way laser scanning generates
an excessive heat accumulation in a specific area of the workpiece in the proximity of the
reversal point for scanning direction. This causes a rise in the substrate temperature and
therefore the size of the melt pool is rapidly increased. In addition, there is no dwelling
time in the deposition under examination, thus amplifying this effect. The analysis of the
three key points considered for each deposited layer revealed the variation in the molten
pool size along with the single deposition. In strategy S1, there is a substantial coherence
of the dimension in the first layers. On the other hand, the variation in size becomes
extremely marked, exceeding 10,000 px in the last tracks. This effect is due to the uneven
accumulation of heat inside the workpiece.

Figure 6 shows the trend of the extracted and measured melt pool areas in a two-way
deposition strategy with 10 s of dwelling time (S2). Results show that even for two-way
deposition with dwelling time there is an increasing trend in the melt pool area as the
deposited layers increase. However, in this case, the increasing trend is less marked than
the previous one, because when the laser is switched off, there is enough waiting time
between depositions for heat sinking. In this way, initial thermal conditions are nearly
restored and kept as constant and repeatable as possible throughout the process.

The robustness analysis of the DMLD process, performed by comparing the size of
the three key points of each track, reveals significantly more consistent values for the S2
strategy. In fact, there is a maximum deviation of the molten area of 5520 px in layer
13. Therefore, the strategy with waiting times is much more stable in the construction of
components consisting of several layers, because it aims at diminishing the detrimental
heat accumulation effects in thin walls.

Finally, Figure 7 shows the trend of the extracted and measured melt pool area, in the
one-way deposition strategy with 12.5 s of dwelling time (S3). In this case, the trend of the
melt pool size is approximately constant with the deposited layers. This tendency is due to
the combination of waiting times and constant deposition direction that are carried out
with this specific deposition strategy. The unidirectional strategy avoids the formation of
heat accumulation points at the extremes of the thin wall due to the reversal of direction,
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where the end of a track is the beginning of the subsequent. A consequent more uniform
heating of the part is obtained, practically consisting in a superposition of the same thermal
field over time. This, combined with the previously defined effects of the waiting time,
allows an effective diffusion of the accumulated heat.

Figure 6. Melt pool size for each deposited layer with strategy S2.

Figure 7. Melt pool size for each deposited layer with strategy S3.

As can be seen in Figure 7, the S3 strategy turns out to be extremely robust and
coherent than the previous ones. There is a maximum variation of the melt pool area within
the single layer in the order of 5090 px, and an average variation of the area along with all
15 layers of only 1725 px. This value is definitely lower than the previous ones (3542 px for
S1 and 2543 px for S2), which makes the unidirectional strategy with dwelling times the
most suitable and stable for the long processing.

Moreover, by overlapping the results obtained by the three analyzed strategies (see
Figure 8), it is clear that the dwelling time between consecutive layers is a key variable
in the deposition process. In the graph, the areas of the melt pool have been converted
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from pixels to square millimeters, with a surface conversion: 10 px × 10 px = 1 mm2. This
relationship was found through a calibration process, using a millimeter-sized sample. The
individual trends in Figure 8 were obtained with the average areas for each layer deposited.
The average areas for the three deposition strategies were compared and it was found
that the smallest melt pool area is always recorded at the first layer of each strategy, while
the largest area was found in the last layers of each treatment. The melt pool size seems
to stabilize as the number of layers increases and this fact is more evident if the adopted
strategy does not favor heat accumulation. More in detail, the strategy S1 increased the
average melt pool area from 0.917 mm2 to 2.698 mm2, with a variation of 1.781 mm2. For
the strategy S2, an increase in the average melt pool area was recorded, from 0.815 mm2 to
1.497 mm2, with a difference of 0.682 mm2. Finally, for the strategy S3, the melt pool area
varied from 0.97 mm2 to 1.208 mm2 from the first to the last layer, recording the smallest
increase of 0.238 mm2.

Figure 8. Comparison of melt pool sizes for each deposited layer for the three different strategies.

4.3. Analysis of Macrography Cross Sections

In order to validate the image segmentation outcomes, a comparison with the cross-
section macrographs of thin walls, which was realized using the above-mentioned strate-
gies, was carried out. Figure 9a shows the cross section of the thin wall obtained using the
deposition strategy S1. This macrography revealed that the width of the deposited thin
wall increased as the deposited layers increased, confirming the trend determined in the
melt pool assessment. On the other hand, Figure 9b shows the cross section of the thin
wall obtained using the deposition strategy S2. This macrography also revealed that the
width of the deposited thin wall increased as the deposited layers increased. However, the
increase in width is much less pronounced than the previous. Finally, Figure 9c shows the
cross section of the thin wall obtained with the strategy S3. This macrography once again
confirms the outcomes of the melt pool monitoring, since the width of the deposited thin
wall remains essentially constant along with the whole component.
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Figure 9. Macrographic cross section of the thin wall obtained using (a) strategy S1, (b) strategy S2, and (c) strategy S3.

5. Conclusions

In this work, coaxial monitoring of AISI 316L thin walls fabricated by direct metal
laser deposition using different deposition strategies was carried out. A DMLD prototype
machine with a coaxial CCD camera, integrated into the deposition head, was used for the
geometrical characterization of the melt pool. A region-based active contour algorithm
was implemented for image processing in order to analyze captured images and detect
the melt pool area. The effects of the deposition strategies variations on melt pool features
were analyzed. The following conclusions were drawn:

• The region-based active contour was compared with three image segmentation tech-
niques analyzed in the literature—threshold segmentation, Canny edge, and edge-
based active contour. Results show that the region-based active contour outperforms
other algorithms in terms of processing speed, resolution, and edge detection accuracy;

• For the two-way deposition strategy without dwelling time (S1), as the deposited
layers increased, a marked increase in the melt pool area was observed. The reason for
achieving these results is the effect of bi-directional laser scanning, which generates
excessive heat accumulation in the workpiece. In addition, there are no waiting times
in the deposition under examination, so this effect was amplified.

• Concerning the two-way deposition strategy with 10 s of dwelling time between
two consequent paths (S2), the same trend was achieved, but the increasing trend
was less steep because the heat accumulation was attenuated by the waiting time
between depositions;

• In the one-way deposition strategy with 12.5 s of dwelling time, including 2.5 s for
the return to the beginning of the single path (S3), the trend of the areas is approxi-
mately constant throughout the process. This is due to the combination of waiting
times and constant deposition direction, which allow an effective diffusion of the
accumulated heat;
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• By analyzing the key points of each track it can be noticed that, regarding the melt
pool size variation along with the single deposited layer, the S3 strategy is the most
stable, showing an average variation of 1725 px, while the S1 strategy proved to be
the most uneven with a maximum variation of more than 10,000 px;

• The average melt pool areas for the three deposition strategies were compared and
the following outcomes were recorded—an increase of 1.781 mm2 for strategy S1,
0.682 mm2 for strategy S2, and 0.238 mm2 for strategy S3. These results have corrobo-
rated the considerations given above.

This study might be useful for improving the accuracy and quality of depositions
performed with complex deposition strategies and geometries. Results showed that the
region-based active contour algorithm is a fast and stable image processing implementation
and a successful methodology for closed-loop monitoring in real-time applications.
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