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Abstract: Although cooling at ambient temperature is widely used and is said to be safe and
convenient, faster cooling may have an influence not only on the time of the manufacturing process
but also on the mechanical response, especially the residual stress. The study aimed to investigate the
influence of the cooling rate after curing on the mechanical response of filament-wound thick-walled
carbon fiber reinforced polymer (CFRP) rings. Three cooling rates were taking into consideration:
cooling with the oven, at room temperature, and in the water at 20 ◦C. The splitting method was
used to examine the residual strains. In the radial compression test, the mechanical response was
investigated between the rings with different cooling regimes. The FEM analysis of the compression
test in elastic range was also performed. Both the splitting method and the radial compression test
showed no significant difference in the mechanical response of the CFRP rings. The presented results
showed that the fast-cooling rate slightly decreases the mechanical performance of the filament-
wound rings.

Keywords: composites; residual stresses; cooling rate; filament winding

1. Introduction

The manufacturing of composite structures is inherently linked to the mechanism
of residual stress (RS) forming. These stresses affect the mechanical properties of the
manufactured composite structures, essentially, as evidenced in works [1–6]. In particular,
this problem is strongly observed in the manufacturing of composite materials and their
cylindrical structures commonly used in the oil and gas industry [7,8], the automotive
sector including pressure vessels [9–11] as well as in the aerospace industry [12,13]. In
recent decades a significant interest in the matter can be observed. In the study [14] it was
found that the generation of residual stresses strongly fluctuates within the cooling rate. A
higher cooling rate increases the initial residual stresses. Therefore, it was recommended
to first reduce the cooling rate during the curing process to avoid possible cracks in the
matrix when the ambient temperature is reached. In another work [15] the residual stresses
were calculated for different cooling conditions at temperatures 0 ◦C and 25 ◦C. It has
been shown that the significant differences in temperature between the curing and cooling
conditions resulted in direct thermal shock, and a considerable amount of residual stress
was created. It resulted in the formation of significant amounts of residual stress, which
may accelerate the destruction of the structure. Samples cooled at 25 ◦C showed less
residual stress than samples cooled at 0 ◦C.

The obtained results suggest the necessity of further work related to the assessment of
the influence of carbon fiber reinforced polymer (CFRP) cooling conditions of structures
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on their mechanical properties. Based on these considerations, the key role is played by
residual stresses, which can be estimated using experimental-numerical analysis.

In recent years, the subject of the study experienced a regression—especially since
the available measurement and numerical technique [16,17] allows for efficient estima-
tion of stress levels. One of the most widespread experimental methods is the slitting
method [6,18–20] which is used as a primary investigation method in the presented paper.
In the light of the works [14,15], the nature of the process optimization possibilities arises,
not so much from a change in the isothermal conditions of the cooling, but from a process
medium that allows receiving heat at different speeds, thus clearly influencing the overall
cooling conditions. Recently, in the paper [20] a comparative analysis was performed, but
only for flat components. However, the main aim of the study was to investigate the effect
on fracture resistance expressed in the GIC test. A positive impact of slow cooling has been
demonstrated in increasing resistance against fracture.

Although there is a lack of such analyses in the literature for complex elements
which are an elementary case of a cylindrical structure, this article attempts to bridge a
literature gap in the field of the possible impact of cooling rate on cylindrical compressive
strength of CFRP cylindrical structures. For this purpose, three types of cooling systems are
investigated; quickly in the water at 20 ◦C (fast cooling, FC), in the air at 23 ◦C (intermediate
cooling, IC), and slow cooling condition with an oven (slow cooling, SC).

2. Materials and Methods

Carbon fiber reinforced plastic composite cylinders were manufactured to investigate
the mechanical response after different cooling regimes. The general information about the
fiber and matrix is presented in Table 1 [21,22].

Table 1. Fiber and matrix characteristics.

Parameter Value

Fiber characteristics

Name Torayca T720SC
Type Carbon fiber

Filament 36k
Tensile strength 5880 MPa
Tensile modulus 265 GPa

Density 1.8 g/cm3

Matrix characteristics

Resin name Araldite LY 1564
Hardener name Aradur 3474

Resin type thermoset
Formulation 100:26

Pot life at 40 ◦C 60–70 min
Tensile strength 80 MPa
Tensile modulus 2900 MPa

Density 1.1 g/cm3

2.1. Temperature Gradient Evaluation

The first step was to check the temperature gradient across the cylinder wall cross-
section during cooling. For this purpose, three cylinders with an inside diameter of
104 mm, a length of 400 mm, and a wall thickness of 19.2 mm were made, corresponding
to 42 layers. During the winding, 6 thermocouples were placed at different wall depths.
The arrangement of the sensors is shown in Figure 1.

Only the circumferential layers were wound up. The objects were made of Araldite
LY 1564 epoxy resin with Aradur 3474 hardener reinforced with Torayca T720SC carbon
fiber (material properties are presented in Table 2). All cylinders were cured in accordance
with the manufacturer’s instructions for 5 h at a temperature of 80 ◦C. After this time, one
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of the cylinders was cooled quickly in water for 1 h at 20 ◦C (fast cooling, FC), the other
was cooled for 5 h in air at 23 ◦C (intermediate cooling, IC), and the third was cooled as
the oven cooled down for 12 h (slow cooling, SC). To simulate the conditions of cooling
present in filament wound tanks (cooling from the outside layer in) specimens were cooled
with a polyamide mandrel with a low thermal conductivity. The final product after the
manufacturing process is shown in Figure 2.
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Table 2. Material data used for FEM analysis.

E1 (MPa) E2 (MPa) E3 (MPa) ν12 ν13 ν23 G12 (MPa) G13 (MPa) G23 (MPa) ρ (g/cm3)

114,000 4988 4988 0.33 0.33 0.4 2152 2152 1076 1.5
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2.2. Slitting Method—Experimental Analysis of Residual Strains

The slitting method was used to reveal the residual strains. The technique is easy to
implement and involves cutting out a slice of the specimen to free the forces present in the
composite after the manufacturing and cooling process [23–25]. In the method, the strains
on the inner and outer surfaces of the specimen are measured. The specimen is mounted
strictly and by use of a machining tool, such as a hacksaw, a piece of the ring is removed. In
this investigation, strain gauges were mounted on the specimen in four locations. Two of
them were on the inner circumference, and another two were on the outside circumference
as can be seen in Figure 3.
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To cut the ring a steel hacksaw was used. When the bending moment was large
enough to close the ring, another cut next to the first one was performed to easily remove a
slice of the specimen so that the slitting section was free. Photos of the ring before and after
the experiment are shown in Figure 4.
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2.3. Radial Compression Test

Five samples from fast and intermediate cooling and six from slow cooling were
used in the radial compression tests. All samples were new and had no previous load
history. The tests were carried out with the MTS 810 (load cell 100 kN) testing machine,
at a compression rate of 3 mm/min. Figure 5 shows a diagram (a) of the test, as well as a
view of the specimen mounted on a machine (b). The reaction force was measured.
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Figure 5. Radial compression of composite rings: (a) scheme of the experimental boundary conditions
and (b) view of the sample mounted on the machine.

2.4. Finite Element Method Analysis

The numerical analysis was performed in Abaqus/CAE environment using the linear
elastic material model. The finite element method (FEM) analysis aimed to investigate
whether the residual stresses may influence the material behavior in the elastic range. The
material properties presented in Table 2 were obtained using the product datasheets [21,22]
and the rule of mixture. They were set in a cylindrical coordinate system to reflect the hoop
winding technology. Moreover, the calculated residual stresses were applied to the ring
before the compression simulation was performed. The stresses were calculated using the
linear dependence between measured strain signals and appeared stress level in the elastic
range, namely, Equations (1) and (2) described in Section 3.4 were implemented.

The assembly in the simulation consisted of the ring and two plates: the lower one
fixed and the upper with the vertical displacement. The plates were modeled as a rigid
body as can be seen in Figure 6.
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The ring was modeled as a 3D object consisting of 19,400 linear hexahedral elements
of type C3D8R. The discrete model can be seen in Figure 7.
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3. Results and Discussion
3.1. Temperature Gradient during Cooling

The diagrams of temperature in the cross-section of the cylinder wall during heat-
ing (Figure 8) and cooling in air (Figure 9) and in water (Figure 10) are presented below.
Thermocouple 3 was damaged during the test and the data were discarded.

The maximum temperature difference between the outer and inner layers during
heating was 20 ◦C, during cooling in air it was approximately 11 ◦C, and during cooling in
water 42 ◦C.

The set temperature in the oven was obtained after 15 min whereas the temperature
of the composite ring rose significantly slower and obtained the set 80 ◦C after about 3 h.
Thermocouples 1 and 4 had the lowest temperature gain. The highest temperature gain
was on the outer circumference of the composite element which indicates thermocouple 6.

In the case of air cooling, the highest temperature difference was about 11 ◦C. The
highest temperature loss was obtained by thermocouple 6. The temperature in thermo-
couples 2 and 5, which were placed in the middle of the cross-section of the composite
thickness, did not stand out significantly from the temperature on the inner surface of
the cylinder.
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For fast cooling in water, the highest temperature difference occurred, at the level of
about 42 ◦C. A great temperature gradient was obtained. The outer surface of the cylinder
cooled down significantly faster than the middle of the cross-section and the inner surface.
Nevertheless, the difference between the temperature in the middle of the cross-section
and the inner surface was also noticeable.

Unfortunately, the data recorded during the cooling in the furnace was corrupted. The
time needed to reach room temperature, in this case, was about 12 h.
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3.2. Radial Compression Test

As mention in the previous chapter, a radial compression test of the composite rings
was performed. Figures 11–13 show force-displacement diagrams obtained during radial
compression of composite rings. All the figures show peaks and valleys characteristic of
composite elements resulting from the destruction of individual layers of the material.

In the elastic part of the material behavior, there is great consistency between the
samples. The mean value of the maximum force was 19.44 kN ± 1.08 kN. After the first
falls, the composite ring could withstand a significant portion of energy since the curve did
not fall dramatically. Generally, after the first drop, there is no rise in the force. However,
in the case of specimen 6, the force rose even though small cracks occurred. This behavior



Materials 2021, 14, 1041 8 of 14

is common in composite materials where single cracks may not affect the global strength of
the component.

For the intermediately cooled (IC) rings there is a small, but noticeable difference in the
elastic part of the experiment. The mean value of the maximum force was 20.11 kN ± 0.87 kN.

In the case of fast cooled (FC) rings the mean value of the maximum force was
17.84 kN ± 0.75 kN, which is significantly lower than in the previous two groups (8% in
the case of slow cooling and 11% in the case of intermediate cooling).
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Figure 13. Load-displacement curves for fast cooled (FC) rings.

Table 3 summarizes the maximum forces obtained for each of the samples as well
as their mean values. Coefficient of variation was calculated to assess the dispersion of
results. To compare the behavior of differently cooled rings in the elastic region, the radial
stiffness was calculated. This procedure was performed based on regression analysis and
calculation of the slope coefficient (in the range of 25–75% of the linear part). The average
difference between FC and IC is about 5% and between FC and SC, it is 7%. However,
taking into account the data deviation, there is no statistical difference between the specific
cooling regimes in terms of the elastic region.

Table 3. Max loads for radial compression of rings.

Specimen
Max

Compressive
Load (kN)

Mean
Compressive

Load (kN)
CoV (%) Radial Stiffness

(N/mm) CoV (%)

IC1 18.80

20.11 ± 0.87 4.32 11,377.5 ± 916.4 8.05
IC2 20.93
IC3 20.88
IC4 19.87
IC5 20.08

SC1 20.92

19.44 ± 1.07 5.50 11,560.5 ± 288.7 2.50

SC2 19.41
SC3 18.68
SC4 18.9
SC5 20.52
SC6 18.97

FC1 16.55

17.84 ± 0.75 4.20 10,764.4 ± 1298.7 12.06
FC2 17.89
FC3 18.49
FC4 18.11
FC5 18.18

The damage behavior of the composite ring may be described mainly as delamination
between the filament-wound layer. It can be observed in Figure 14. On the inner circum-
ference, local buckling areas with fiber breaking also occurred. These processes generally
took place after the maximum force.
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3.3. FEM Analysis

In the FEM simulation, the force-displacement curve was obtained. Since no damage
model was applied, only the elastic part can be discussed, where the agreement between
the experiment and the simulation is satisfactory. The comparison is presented in Figure 15.
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Figure 15. Comparison between experimental results of radial compression of rings and FEM analysis for the fast
cooled rings.

The curves for the three cooling regimes do not differ since residual stresses did
not influence the elastic behavior of the composite rings under radial compression. The
stress fields show the concentration of stress in the side areas of the ring, both tension and
compression (Figure 16). These reflect the real damage mechanism, where in the inner
circumference there were local buckling areas due to compressive loads.
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Figure 16. Stress fields in hoop direction (S11) for the fast cooled rings.

The different cooling rates reflected in the residual stresses did not influence the stress
distribution in the specimens. The only difference was the value of the stress at the set
displacement of the plates. However, the difference did not exceed 5%.

3.4. Residual Strains Obtained by Slitting Experiment

To reveal the residual stresses after the manufacturing process the slitting method was
used. Each ring was equipped with four strain gauges which were supposed to measure
the strains in the hoop direction. Graphs showing the strains of rings during cutting are
presented in Figure 17. It is noticeable that strains increased gradually, finally obtain-
ing the maximum values. The final strains of the inner circumference (gauges 1 and 3)
ended up being negative, whereas those on the outer circumference (gauges 2 and 4) had
positive values.

Although the process of cutting was continuous, there are some plateaus areas on the
graphs, as can be seen in Figure 17. It was by the fact that during the process of cutting the
deformation had an abrupt character.

Judging from the residual strains, the residual stresses can be estimated using the
following equations [16]:

σin
θ = Eθ∆εin

C (1)

σout
θ = Eθ∆εout

C (2)

where ∆εin
C and ∆εout

C are the hoop strains on the inside and outside surfaces during the
slitting method (radial-cut), respectively, and Eθ is the known elastic modulus. The results
of the calculations are presented in Table 4.

Table 4. Estimated residual stresses in fiber direction on the inside and outside surfaces of the rings.

Cooling Regime σin
θ (MPa) σout

θ (MPa)

Intermediate cooling −126 76
Slow cooling −150 86
Fast cooling −143 84
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Figure 17. The strain of the composite rings during the slitting experiment, recorded on the inside
and outside surfaces for: (a) slow cooled, (b) intermediately cooled, and (c) fast cooled rings.

4. Conclusions

The current study aimed to investigate the influence of the cooling rate on the me-
chanical response of the filament-wound composite cylinders. The following conclusions
can be drawn from the performed research work and numerical analyses:

The radial compressive strength does not show significant differences between SC
and IC cooling mode. In comparison with the obtained results, only FC exhibited the
smallest value of maximum force recorded in the test for each specimen. The difference in
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the maximum force during radial compression test is 8% in terms of FC to SC comparison
and 11% in terms of FC to IC comparison. This effect might be caused by microstructural
changes (microcracks) induced during the fast-cooling regime. This hypothesis demands
further investigation.

The lack of statistical difference between the different cooling regimes in terms of
elastic stiffness during radial compression suggests that fast cooled thick-wall composite
rings could perform equally in the elastic and safe range of the loading.

The analysis of the residual strain distribution and the residual stress values obtained
suggest the selection of slow cooling as a method that ensures equally effective radial
compressive strength as IC.

On the contrary, from the practical point of view, the fast-cooling regime does not
decrease the mechanical durability of the composite cylinders in a way that disqualifies the
method from further analyses. In industry, a slight drop of the strength may be acceptable
in light of the possibility of a significant reduction in manufacturing time.

Although static loads seem to indicate quick cooling as the least advantageous treat-
ment after the manufacturing process, it should be pointed out that this mechanism should
be much more strongly emphasized in the studies related to the influence of both time and
stress concentrators (fatigue and fracture). Furthermore, a comparison (despite similar
static results) of IC and SC in fatigue tests seems to be fully reasonable in further work of
the authors’ team.
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