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Abstract: Stainless-steel elements are increasingly used in a wide range of load-bearing structures
due to their strength, minimal maintenance requirements, and aesthetic appearance. Their response
differs from standard steels; therefore, it is necessary to choose a different procedure when creating a
correct computational model. Seven groups of numerical models differing in the used formulation of
elements integration, mesh density localization, nonlinear material model, and initial geometric im-
perfection were calibrated. The results of these advanced simulations were validated with published
results obtained by an extensive experimental approach on circular hollow sections columns. With
regard to the different slenderness of the cross-sections, the influence of the initial imperfection in
the form of global and local loss of stability on the response was studied. Responses of all models
were validated by comparing the averaged normalized ultimate loads and the averaged normalized
deflections with experimentally obtained results.

Keywords: stainless steel; finite element numerical model; numerical model validation; Ramberg
and Osgood model; CHS column buckling

1. Introduction

In comparison with the most commonly used carbon steel material, stainless steel is
more recent in the field of structural engineering. For example, the UK’s first stainless-
steel road bridge over the River Eamont in the village named Pooley Bridge was officially
opened in October 2020. The first composite stainless-steel vehicular bridge in Europe
(most probably also worldwide) was built in Cala Galdana on the island of Menorca, Spain,
and was opened in June 2005 [1]. This duplex stainless-steel arch bridge over Algendar
Creek replaced the existing reinforced concrete bridge which suffered severe corrosion
issues due to the marine environment. Despite the higher cost of the stainless-steel material,
the usage of this material is most beneficial in cases of structures with heavy traffic volumes
or those exposed to such aggressive environment as was discussed for the case of the
steel ASTM A1010 in a recent cost-efficiency study by Daghas et al. [2]. Usage possibilities
of the stainless-steel material in combination with different materials have been recently
studied by Pauletta et al. [3], who investigated the bond-slip behavior between stainless-
steel reinforcement bars and concrete, or by Corradi et al. [4], who reviewed the use of
stainless-steel profiles to reinforce or repair historical wooden structures. Research is also
conducted also on the enhancement of the stainless-steel corrosion resistance by Dinu
et al. [5], who proposed a certain improvement of the grade AISI 304 stainless steel.

In addition to higher cost and strong corrosion resistance, another significant dif-
ference, compared to ordinary carbon steel, from the aspect of mechanical properties is
the nonlinear stress-strain behavior. The stress-strain curve of a stainless-steel material
possesses no pronounced yield plateau and exhibits an early declination from the linear
elastic behavior with significant strain hardening. Along with higher strength and higher
ductility, these are the most significant differences compared to carbon steel [6]. Various
analytical equations describing this material behavior are found in the literature, e.g., in
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the study by Hradil et al. [7]. A constitutive model of stainless steel in a high-strain range
was investigated by Peng et al. [8]. The stress-strain curves were also compared by Real
et al. [9]. These descriptions are based on the expressions originally proposed by Ramberg
and Osgood [10], subsequently modified by Hill [11]. The use of 0.2% proof stress, as the
equivalent of the yield stress, has become a standard industry practice [12]. The variability
of material parameter values is significantly high among different stainless-steel grades
and different groups (types according to metallurgical structure) [13]. The most commonly
used types of stainless steel are austenitic, ferritic, and duplex ones.

Material parameters can be feasibly determined through the process of parameter
identification, where either the analytical stress-strain curve or the stress-strain curve as the
result yielded from the finite element numerical analysis is fitted to be in the best possible
match with the experimentally measured data. Such material model calibration has been
conducted by Jindra et al. [14]. Values of the material parameters could also be obtained,
based on the informative Annex C of the European standard EN 1993-1-4 [15], from the
tables in AS/NZS 4673 [16] or SEI/ASCE-8 [17]. Recently, a statistical study of not only
stainless-steel material parameter values, based on the results consolidated over the last
decades, has been conducted by Arrayago et al. [18].

The design guidance to determine the flexural buckling capacity of stainless-steel
CHS (circular hollow section) members is provided in EN 1993-1-4 [15]. This approach is
consistent with the same task for carbon steel structural elements described in EN 1993-
1-1 [19]. Many existing data points (based on either physical experiments or properly
validated geometrically and materially nonlinear finite element analyses with imperfec-
tions -GMNIA) lie below the current EN 1993-1-4 [15] flexural buckling curve, as described
by Young et al. [20], Rasmussen et al. [21], Ashraf et al. [22], Theofanous et al. [23], or Shu
et al. [24]. Originally, due to the insufficient amount of stainless-steel CHS experimental
data at the EN standard creation time, the buckling curve was calibrated mainly by con-
sidering cold-formed rectangular hollow section (RHS) and square hollow section (SHS)
results of the column buckling tests [21]. The buckling curve based on cold-formed RHS
and SHS experimental results may not be appropriate for CHS due to increased material
strength in hardened corner areas of RHS and SHS cross-sections [25].

Physical experiments on stainless-steel CHS elements exposed to compressive loading
have been conducted by Rasmussen et al. [26], who investigated austenitic stainless-
steel stub columns. Authors of similar research include Burgan et al. [27], Talja [28],
Rasmussen [29], Young et al. [20], Uy et al. [30], Zhao et al. [31], Lam et al. [32], Gardner
et al. [33], Bardi et al. [34], and Paquette et al. [35]. A wide range of loading eccentricities in
the compression of CHS columns was investigated by Buchanan et al. [36]. It can be noted
that the present article studies the static resistance of the column as a supporting structural
member, and the heat and flow load cases [37] inside the tube are not considered.

The benchmark data presented in this study are obtained from a comprehensive exper-
imental program conducted at Imperial College London (ICL) and Universitat Politècnica
de Catalunya (UPC) and a previous research conducted by Buchanan et al. [38]. Tests
of the two austenitic (A) cross-sections, 104 × 2 CHS and 106 × 3 CHS, and the duplex
(D) cross-section 88.9 × 2.6 CHS were undertaken at ICL, and those of the two ferritic (F)
cross-sections, 101.6 × 1.5 CHS and 80 × 1.5 CHS, were carried out at UPC [38].

To conduct further geometrically and materially nonlinear analyses of CHS stainless-
steel columns in compression, the parametrical numerical finite element models created in
ANSYS Classic(v 19.0.) utilizing APDL (ANSYS parametric design language) [39] need to
be properly validated.

This contribution aims at the validation of the numerical FE models of CHS columns
buckling tests and comparison of the validation results with the research of Mr. Buchanan,
Mrs. Esther Real, and Mr. Leroy Gardner [38], where another FE software, Abaqus/CAE
2016 [40], was used, and a slightly different mesh size [38] was used. Moreover, this study
compares the results of various modeling approaches, where either different mesh sizes,
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different elements, or element formulations are considered. This approach comparison is
based on several selected model cases.

2. Experimental Testing Program

The flexural stability tests consisted of 47 concentrically loaded pin-ended specimens
with a wide range of local and global slenderness. Sample lengths were chosen to provide
a range of global slenderness values λ.

A detailed description of the comprehensive experimental program is well docu-
mented and described in the study of Mr. Buchanan et al. [38] pp. 298–303.

3. Numerical Finite Element Model

A parametrical numerical finite element model has been created in the ANSYS Classic
technology (v 19.0.) [39] using APDL macros. The variable input parameters were all the
material parameters (Tables 1 and 2), geometrical parameters (Tables 3–7), as well as the
initial global imperfection amplitude (ω0 + e0).

Two sets of material property values, referred to as SCP and TP, have been considered
in this study. Both sets are based on the averaged values from all of the relevant available
data: for the stub-column material properties (SCP, Table 1, based on the data from Table 4
in [38]) and for the tensile coupon material properties (TP, Table 2, based on the data from
the Table 2 in [38]), respectively. E0 is the material elastic Young’s modulus, σ0.2 is the
material 0.2% proof stress, and n is a strain-hardening exponent, σ1.0 is the 1% proof stress
of the material, n’0.2,1.0 is a strain-hardening exponent, and σu is the ultimate tensile stress.
Stress-strain relations defined by these parameters are elaborately described in Section 3.3.

Geometrical parameters, D (cross-section outer diameter), L (effective structural length,
with the inclusion of the additional knife edge lengths), t (wall thickness), and the imperfec-
tion amplitudes (ω0 + e0) have been considered in accordance with the measured values of
the respective specimens provided (Tables 3–7 below, based on the data from the Tables 5–9
in [38], respectively).

Table 1. Summary of the stub-column material properties (SCP).

Cross-Sectional
Set [38] E0 (GPa) σ0.2 (MPa) σ1.0 (MPa) n (-) n’0.2,1.0 (-) σu (MPa)

106 × 3 (SCP) 196.05 283.50 323.50 8.60 3.65 615.00

104 × 2 (SCP) 202.05 359.50 407.00 4.80 2.88 726.25

88.9 × 2.6 (SCP) 217.95 579.50 633.00 4.50 2.45 846.50

80 × 1.5 (SCP) 218.75 360.00 375.50 5.10 1.60 438.00

101.6 × 1.5 (SCP) 219.55 337.00 346.00 5.60 2.40 467.00

Table 2. Summary of the tensile coupon material properties (TP).

Cross-Sectional
Set [38] E0 (GPa) σ0.2 (MPa) σ1.0 (MPa) n (-) n’0.2,1.0 (-) σu (MPa)

106 × 3 (TP) 210.10 261.00 297.50 11.50 3.65 615.00

104 × 2 (TP) 200.00 345.75 400.25 6.63 2.88 726.25

88.9 × 2.6 (TP) 197.20 624.50 681.00 8.85 2.45 846.50

80 × 1.5 (TP) 222.05 371.00 386.50 8.70 1.60 438.00

101.6 × 1.5 (TP) 224.30 358.00 375.50 14.40 2.40 467.00
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Table 3. Measured and calculated geometric properties of the cross-section set 106 × 3 CHS (circular hollow section)
pin-ended columns (austenitic steel).

Specimen [38] D (mm) t (mm) L (mm) L/(ω0 + e0) (-) ω0 + e0 (mm) D/t (-) A (mm2) I (mm4)

106 × 3-550-P 105.74 2.78 554.27 1218 0.455 38.04 899.2 1 192 413.2

106 × 3-750-P 105.81 2.88 754.21 1034 0.729 36.74 931.2 1 234 292.7

106 × 3-750-PR 105.77 2.72 754.21 880 0.857 38.89 880.5 1 169 702.0

106 × 3-950-P 105.78 2.79 954.00 957 0.997 37.91 902.7 1 197 754.6

106 × 3-1150-P 105.84 2.83 1154.00 1000 1.154 37.40 915.8 1 215 660.0

106 × 3-1650-P 105.63 2.74 1657.00 945 1.753 38.55 885.6 1 172 837.4

106 × 3-2150-P 105.88 2.71 2152.90 997 2.159 39.07 878.3 1 169 469.8

106 × 3-2650-P 105.64 2.73 2652.50 987 2.687 38.70 882.6 1 169 232.2

106 × 3-3080-P 105.67 2.70 3083.00 1044 2.953 39.14 873.4 1 158 388.6

Table 4. Measured and calculated geometric properties of the cross-section set 104 × 2 CHS pin-ended columns
(austenitic steel).

Specimen [38] D (mm) t (mm) L (mm) L/(ω0 + e0) (-) ω0 + e0 (mm) D/t (-) A (mm2) I (mm4)

104 × 2-550-P 103.97 1.89 553.77 1180 0.469 55.01 606.1 789 755.3

104 × 2-750-P 104.01 1.89 753.84 887 0.850 55.03 606.3 790 683.8

104 × 2-950-P 103.97 1.88 954.00 827 1.154 55.30 602.9 785 804.7

104 × 2-1150-P 104.14 1.86 1153.50 1115 1.035 55.99 597.6 781 787.3

104 × 2-1650-P 104.09 1.85 1656.60 963 1.720 56.26 594.2 776 669.6

104×2-2150-P 104.08 1.79 2153.60 999 2.156 58.15 575.2 752 567.4

104 × 2-2650-P 103.92 1.75 2653.50 1064 2.494 59.38 561.7 733 154.5

104 × 2-3080-P 104.10 1.79 3084.00 1036 2.977 58.16 575.3 753 008.9

Table 5. Measured and calculated geometric properties of the cross-section set 88.9 × 2.6 CHS pin-ended columns
(duplex steel).

Specimen [38] D (mm) t (mm) L (mm) L/(ω0 + e0) (-) ω0 + e0 (mm) D/t (-) A (mm2) I (mm4)

88.9 × 2.6-400-P 88.63 2.37 403.90 824 0.490 37.40 642.2 597 811.6

88.9 × 2.6-550-P 88.63 2.35 553.83 1309 0.423 37.71 636.9 593 171.4

88.9 × 2.6-750-P 88.78 2.41 753.93 944 0.799 36.84 653.9 610 244.2

88.9 × 2.6-950-P 88.77 2.37 954.00 1075 0.887 37.46 643.3 600 725.6

88.9 × 2.6-1150-P 88.77 2.37 1154.00 1142 1.011 37.46 643.3 600 725.6

88.9 × 2.6-1650-P 88.63 2.35 1656.60 1022 1.621 37.71 636.9 593 171.4

88.9 × 2.6-2150-P 88.77 2.30 2152.80 716 3.007 38.60 624.8 584 374.5

88.9 × 2.6-2650-P 88.72 2.33 2653.40 993 2.672 38.08 632.3 590 366.9

88.9 × 2.6-3080-P 88.67 2.32 3082.50 1027 3.001 38.22 629.3 587 013.8
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Table 6. Measured and calculated geometric properties of the cross-section set 80 × 1.5 CHS pin-ended columns (fer-
ritic steel).

Specimen [38] D (mm) t (mm) L (mm) L/(ω0 + e0) (-) ω0 + e0 (mm) D/t (-) A (mm2) I (mm4)

80 × 1.5-300-P 80.00 1.34 299.4 1270 0.236 59.70 331.1 256 184.3

80 × 1.5-450-P 80.01 1.34 448.9 1290 0.348 59.71 331.1 256 282.0

80 × 1.5-700-P 80.04 1.34 698.6 1151 0.607 59.73 331.3 256 575.3

80 × 1.5-900-P 80.03 1.34 899.1 1068 0.842 59.72 331.2 256 477.5

80 × 1.5-1100-P 80.13 1.34 1099.1 1109 0.991 59.80 331.6 257 456.3

80 × 1.5-1600-P 80.00 1.34 1599.3 1019 1.569 59.70 331.1 256 184.3

Table 7. Measured and calculated geometric properties of the cross-section set 101.6 × 1.5 CHS pin-ended columns
(ferritic steel).

Specimen [38] D (mm) t (mm) L (mm) L/(ω0 + e0) (-) ω0 + e0 (mm) D/t (-) A (mm2) I (mm4)

101.6 × 1.5-350-P 101.66 1.34 349.4 917 0.381 75.87 422.3 531 379.4

101.6 × 1.5-500-P 101.68 1.34 499.6 1183 0.422 75.88 422.4 531 697.3

101.6 × 1.5-800-P 101.70 1.34 799.3 1180 0.677 75.90 422.4 532 015.2

101.6 × 1.5-1100-P 101.82 1.34 1099.5 1079 1.019 75.99 422.9 533 925.7

101.6 × 1.5-1600-P 101.71 1.34 1599.3 1124 1.423 75.90 422.5 532 174.3

3.1. Geometry of the Numerical Models, Formulations of the Adopted Finite Elements

Several approach variants of the numerical model have been considered:

• #A = shell elements model, default mesh size, global imperfection only;
• #B = #A, however finer mesh;
• #C = #A + local imperfection;
• #D = solid elements model, default mesh size, three elements through the cross-section

thickness t, selective reduced integration element formulation [39];
• #E = #D, however with “uniform reduced integration” [39] element formulation;
• #F = #D, however with “enhanced strain” [39] element formulation.

All the 74 finite element analyses (which differ in material and geometrical parameters)
to validate the numerical model results have been conducted only considering only the
modeling approach #A. The other model variants (#B–#F) have been conducted only for
chosen geometries, and the results are documented and compared as well.

3.1.1. Modeling Approach #A

Four-node structural shell elements (SHELL 181) with 3 translational degrees of
freedom (DOF) and 3 rotational DOF per node have been used to model the CHS columns.
The elements possess bending and membrane stiffness (Mindlin-Reissner theory). A
reduced integration with hourglass control has been considered with one integration point
(three through the thickness). The elements include the linear effect of transverse shear
deformation. An assumed shear strain formulation of Bathe-Dvorkin is used to alleviate
shear locking [39]. The geometrical shapes of all the shell elements used to model the CHS
column are rectangles, with a maximal edge size of 8 mm in the longitudinal direction
and 5 mm in the tangential direction (along the circumference) (Figure 1a). This differs
from the mesh size adopted by Buchanan [38], where the longitudinal and circumferential
dimensions of the mesh are considered the same as the wall thickness of the CHS tube, t.
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3.1.2. Modeling Approach #B

In this study, only a few selected cases have been reanalyzed considering a finer mesh
(3 mm × 3 mm), and the results are discussed. The difference in mesh sizes is depicted in
Figure 1a,b (depicted on the geometry of the specimen 88.9 × 2.6-400-P [38]).

3.1.3. Modeling Approach #C

For these cases, initial local geometrical imperfections have also been considered
(Section 3.2). The global imperfections and the mesh size are the same as in approach #A.

3.1.4. Modeling Approach #D

Several model cases have been recalculated by adopting the solid structural finite
elements (SOLID 185) for the CHS tube instead of the shell elements (Figure 1c). The mesh
sizes in the longitudinal and tangential directions are the same as in approach #A. Three
elements have been considered in the radial direction, along the cross-section thickness t.
The default key option (0) of the element technology has been considered; therefore, there
is a full integration with the B-bar method [39] (selective reduced integration) which helps
to prevent volumetric locking in nearly incompressible cases.

3.1.5. Modeling Approach #E

For few cases, the uniform reduced integration of the solid finite elements with
hourglass control has been adopted. One integration point per solid element is considered
in this formulation. Note: key option No. 2 is set up as 1 [39].

3.1.6. Modeling Approach #F

To compare the results, the enhanced strain formulation of solid elements has been
adopted for selected cases. Shear locking, as well as volumetric locking in nearly incom-
pressible cases, are both prevented if this formulation is considered [39]. Certain numbers
of internal degrees of freedom are introduced, and therefore, this option is less efficient.
Note: key option No. 2 is equal to 2 [39].

3.2. Geometrical Imperfections

A global imperfection was incorporated into the FE model using the form of the
lowest global buckling modal shape obtained from prior modal analysis (an example is
given in Figure 2a). A global imperfection amplitude was used to simulate an initial global
imperfection, as well as eccentricity. The amplitudes of ω0 + e0 (Tables 3–7) were considered.
Local imperfections were generally neglected. Only in a few selected cases (#C), a local
imperfection amplitude of t/10 was considered (where t is the section thickness). The
local imperfection took a shape of the lowest local buckling modal shape (an example of
88.9 × 2.6-400-P [38] is in Figure 2b,c. Note: shape according to “b” was considered).
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3.3. Material Model

To describe the behavior of the stainless-steel material, a stress-strain relation proposed
by Ramberg and Osgood [10], modified by Hill [11] has been adopted:

ε =
σ

E0
+ 0.002 ·

(
σ

σ0.2

)n
, (1)

where σ and ε are engineering stress and strain, respectively, E0 is the material elastic
Young’s modulus, σ0.2 is the material 0.2% proof stress, and n is a strain-hardening exponent.
At strains higher than σ0.2 value, this model overestimates the stress values [41]. A two-
stage compound stress–strain curve devised by Mirambell and Real [42] provides a better
agreement with experimental data for stress values above the 0.2% proof stress [41]. For
the case of the compressive loading, a certain modification of the second stage is proposed
by Gardner [33]:

ε =
σ− σ0.2

E0.2
+

(
0.008− σ1.0 − σ0.2

E0.2

)
·
(

σ− σ0.2

σ1.0 − σ0.2

)n′0.2,1.0
+ εt0.2 ⇔ σ > σ0.2, (2)

where σ1.0 is the 1% proof stress of the material, n’0.2,1.0 is a strain-hardening exponent, and
E0.2 is the stiffness (tangent modulus) at the 0.2% proof stress given as:

E0.2 =
E0

1 + 0.002 · n · E0/σ0.2
. (3)

For the finite element (FE) numerical analyses, a multilinear material model with
isotropic hardening has been considered (Mises plasticity). A more detailed description
is presented in the author’s previous study [14]. In this study, however, the stress-strain
behavior only up to the value of 0.1 σ0.2 is considered as ideal elastic (to neglect plasticity
at low strains), instead of the previously considered value of 2/3 σ0.2 [14] (which was too
high for some cases). The engineering (nominal) stress-strain material curves have been
transferred into true stress and logarithmic strain dependences to match the results of
geometrically nonlinear FE analyses:

σtrue = σnom · (1 + εnom), (4)
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εtrue = ln(1 + εnom), (5)

where σnom is the nominal engineering stress, εnom is the nominal engineering strain, and
εtrue is the true total (mechanical) strain. For the compressive material properties, εnom have
been introduced with negative values. As it is impossible to define a negative tangent of
the stress-strain relation while adopting isotropic hardening [39], the stress-strain relation
has been defined as ideal plastic (with its tangent slope close to 0 but positive) instead
of any kind of softening after the peak stress. An example of material model verification
(parameter values of 106 × 3-400-FR in Table 4 in [38]) is depicted in Figure 3.
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In cold-formed CHS, small values of the membrane residual stresses have been ob-
served, and as such can be neglected [43]. The residual stresses through thickness are
implicitly incorporated by considering the measured values of the material properties [44].

3.4. Boundary Conditions and Loading

To simulate a pin-ended column, all the circumferential nodes at the end of the CHS
tube are connected (in the radial direction) with a single node located on the section axis.
The offset of the node is either 50 (40 + 10) or 77 mm in dependence on the experimental
setups described in [38] p. 301. The nodal connections are modeled using rather stiff beam
elements. Such a boundary condition is considered at both ends of the CHS tube (see
Figure 1). All translational and 2 rotational degrees of freedom of the bottom node are
constrained. The loading during the FEA has been conducted by a prescribed displacement
of the upper node (in the direction of the CHS tube axis). Two translational and 2 rotational
degrees of freedom of the upper node were constrained.

4. Results

The results of all the 74 FEA (finite element analyses) of the approach #A (shell el-
ements), the ultimate axial loads Nu,FE, and corresponding ultimate midheight lateral
deflections ωu,FE, together with the experimental results (Nu,exp and ωu,exp) [38], are docu-
mented in Tables 8–12.

The results of variants in accordance with the approach #B or #C (shell elements, finer
mesh variant, or local imperfection variant) are not documented in tables but rather only
graphically (Figures 4–6).

In the case of the modeling approach #D (solid elements, selective reduced integra-
tion), two whole sets of lengths (two chosen cross-sections) have been reanalyzed, and
the results are summarized in Tables 13 and 14. The difference between approaches #D
and #A was very negligible in the matter of monitored data, and therefore, the remain-
ing geometries have not been reanalyzed considering solid model (the presented results
in Table 8 are almost the same as those in Table 13, and the results of Tables 9 and 14
likewise). Statistical comparison of the monitored data (Nu,FE/Nu,exp and ωu,FE/ωu,exp
values) between approaches #A and #D are summarized in Table 15. For approach #A,
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only the results which are presented in Tables 8 and 9 are applicable for this statistical
evaluation (as for approach #D, only the results of corresponding cross-section geometries
are available—Tables 13 and 14).

FE models of approach #A were validated by comparing the averaged normalized ul-
timate loads Nu,FE/Nu,exp and the averaged normalized deflections ωu,FE/ωu,exp (Table 16).
The validation results are also compared with the results of Mr. Buchanan et al. [38].

Furthermore, the selected model cases of the different solid element formulations
considered in approaches #E and #F have not seemed to yield significantly different results
in the matter of the observed outputs and are therefore documented only graphically in
this study.

Table 8. Approach #A, FEA, and experiment results of the cross-section set 106 × 3 CHS pin-ended columns.

Specimen [38]
Material Set SCP Material Set TP Experiment

λ cl. Nu,FE1
(kN)

ωu,FE1
(mm) λ cl. Nu,FE2

(kN)
ωu,FE2
(mm)

Nu,exp
(kN)

ωu,exp
(mm)

106 × 3-550-P 0.18 1 270.6 2.61 0.17 1 247.9 2.92 267.0 −9.56

106 × 3-750-P 0.25 1 265.0 3.33 0.23 1 241.4 4.20 244.8 4.02

106 × 3-750-PR 0.25 2 249.2 3.38 0.23 1 227.2 4.27 242.2 4.66

106 × 3-950-P 0.32 1 242.9 4.74 0.29 1 221.8 4.83 253.4 3.76

106 × 3-1150-P 0.38 1 234.1 6.13 0.36 1 214.9 5.67 248.8 4.10

106 × 3-1650-P 0.55 1 198.7 7.35 0.51 1 187.3 5.25 201.3 7.10

106 × 3-2150-P 0.71 2 176.2 7.97 0.66 1 170.4 5.88 185.5 10.66

106 × 3-2650-P 0.88 2 156.6 9.84 0.82 1 155.2 7.07 159.4 13.27

106 × 3-3080-P 1.02 2 139.0 11.70 0.95 1 140.4 9.31 150.8 10.57

Table 9. Approach #A, FEA, and experiment results of the cross-section set 104 × 2 CHS pin-ended columns.

Specimen [38]
Material Set SCP Material Set TP Experiment

λ cl. Nu,FE1
(kN)

ωu,FE1
(mm) λ cl. Nu,FE2

(kN)
ωu,FE2
(mm)

Nu,exp
(kN)

ωu,exp
(mm)

104 × 2-550-P 0.21 3 228.8 2.24 0.20 3 224.2 3.12 241.1 −2.21

104 × 2-750-P 0.28 3 218.9 2.44 0.28 3 211.1 3.63 232.1 −1.95

104 × 2-950-P 0.35 3 206.7 3.68 0.35 3 197.5 4.84 204.2 5.17

104 × 2-1150-P 0.43 3 195.9 5.06 0.42 3 186.7 5.54 180.8 6.24

104 × 2-1650-P 0.62 3 163.5 10.21 0.61 3 158.4 9.30 154.8 10.50

104 × 2-2150-P 0.79 4 132.3 14.05 0.79 3 132.4 9.79 126.4 15.19

104 × 2-2650-P 0.97 4 108.5 15.35 0.97 4 111.5 11.59 109.0 19.40

104 × 2-3080-P 1.14 4 95.4 17.84 1.13 3 99.2 14.10 89.7 22.81
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Table 10. Approach #A, FEA, and experiment results of the cross-section set 88.9 × 2.6 CHS pin-ended columns.

Specimen [38]
Material Set SCP Material Set TP Experiment

λ cl. Nu,FE1
(kN)

ωu,FE1
(mm) λ cl. Nu,FE2

(kN)
ωu,FE2
(mm)

Nu,exp
(kN)

ωu,exp
(mm)

88.9 × 2.6-400-P 0.22 3 382.8 1.59 0.23 4 410.4 1.89 425.2 2.91

88.9 × 2.6-550-P 0.30 3 370.9 1.25 0.31 4 394.6 1.55 404.6 2.60

88.9 × 2.6-750-P 0.41 3 361.6 2.08 0.43 4 378.7 2.83 389.6 2.75

88.9 × 2.6-950-P 0.51 3 333.4 3.82 0.54 4 349.9 4.20 344.4 4.54

88.9 × 2.6-1150-P 0.62 3 306.9 5.88 0.65 4 325.3 5.65 295.3 8.09

88.9 × 2.6-1650-P 0.89 3 232.4 12.03 0.93 4 257.6 7.59 243.4 10.32

88.9 × 2.6-2150-P 1.15 4 168.9 17.60 1.20 4 184.2 15.25 164.7 19.79

88.9 × 2.6-2650-P 1.42 4 134.0 20.95 1.49 4 140.1 24.23 126.4 20.63

88.9 × 2.6-3080-P 1.65 4 106.5 26.39 1.73 4 107.4 36.61 100.5 25.81

Table 11. Approach #A, FEA, and experiment results of the cross-section set 80 × 1.5 CHS pin-ended columns.

Specimen [38]
Material Set SCP Material Set TP Experiment

λ cl. Nu,FE1
(kN)

ωu,FE1
(mm) λ cl. Nu,FE2

(kN)
ωu,FE2
(mm)

Nu,exp
(kN)

ωu,exp
(mm)

80 × 1.5-300-P 0.14 3 121.3 0.09 0.14 3 124.8 0.09 126.1 0.17

80 × 1.5-450-P 0.21 3 117.5 0.49 0.21 3 120.6 0.72 119.4 1.71

80 × 1.5-700-P 0.32 3 112.7 1.29 0.33 3 114.3 1.69 111.1 2.89

80 × 1.5-900-P 0.42 3 105.7 2.94 0.42 3 108.1 3.35 105.8 3.36

80 × 1.5-1100-P 0.51 3 98.9 4.68 0.51 3 102.3 4.32 97.8 4.52

80 × 1.5-1600-P 0.74 3 79.6 9.89 0.75 3 86.6 6.19 77.9 8.76

Table 12. Approach #A, FEA, and experiment results of the cross-section set 101.6 × 1.5 CHS pin-ended columns.

Specimen [38]
Material Set SCP Material Set TP Experiment

λ cl. Nu,FE1
(kN)

ωu,FE1
(mm) λ cl. Nu,FE2

(kN)
ωu,FE2
(mm)

Nu,exp
(kN)

ωu,exp
(mm)

101.6 × 1.5-350-P 0.12 4 141.0 0.07 0.12 4 151.7 0.09 148.6 1.07

101.6 × 1.5-500-P 0.17 4 140.7 0.44 0.17 4 149.7 1.26 145.4 2.34

101.6 × 1.5-800-P 0.27 4 136.5 1.10 0.27 4 142.7 2.43 137.5 2.70

101.6 × 1.5-1100-P 0.37 4 127.8 3.51 0.38 4 135.4 3.26 121.2 4.92

101.6 × 1.5-1600-P 0.54 4 111.9 7.73 0.55 4 124.0 4.33 104.1 8.39
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Table 13. Approach #D, FEA and experiment results of the cross-section set 106 × 3 CHS pin-ended columns.

Specimen [38]
Material Set SCP Material Set TP Experiment

λ cl. Nu,FE1
(kN)

ωu,FE1
(mm) λ cl. Nu,FE2

(kN)
ωu,FE2
(mm)

Nu,exp
(kN)

ωu,exp
(mm)

106 × 3-550-P 0.18 1 270.2 2.40 0.17 1 247.7 2.96 267.0 −9.56

106 × 3-750-P 0.25 1 264.6 3.53 0.23 1 241.1 4.07 244.8 4.02

106 × 3-750-PR 0.25 2 248.8 3.58 0.23 1 226.9 4.14 242.2 4.66

106 × 3-950-P 0.32 1 242.5 4.70 0.29 1 221.5 4.86 253.4 3.76

106 × 3-1150-P 0.38 1 233.6 6.22 0.36 1 214.4 5.84 248.8 4.10

106 × 3-1650-P 0.55 1 198.2 7.35 0.51 1 186.9 5.66 201.3 7.10

106 × 3-2150-P 0.71 2 175.7 8.19 0.66 1 169.9 6.12 185.5 10.66

106 × 3-2650-P 0.88 2 156.1 9.25 0.82 1 154.6 7.36 159.4 13.27

106 × 3-3080-P 1.02 2 138.5 11.05 0.95 1 139.9 8.70 150.8 10.57

Table 14. Approach #D, FEA and experiment results of the cross-section set 104 × 2 CHS pin-ended columns.

Specimen [38]
Material Set SCP Material Set TP Experiment

λ cl. Nu,FE1
(kN)

ωu,FE1
(mm) λ cl. Nu,FE2

(kN)
ωu,FE2
(mm)

Nu,exp
(kN)

ωu,exp
(mm)

104 × 2-550-P 0.21 3 228.7 2.29 0.20 3 224.4 3.15 241.1 −2.21

104 × 2-750-P 0.28 3 218.6 2.33 0.28 3 211.0 3.54 232.1 −1.95

104 × 2-950-P 0.35 3 206.4 3.48 0.35 3 197.3 4.61 204.2 5.17

104 × 2-1150-P 0.43 3 195.6 4.68 0.42 3 186.5 5.63 180.8 6.24

104 × 2-1650-P 0.62 3 163.2 10.42 0.61 3 158.1 9.10 154.8 10.50

104 × 2-2150-P 0.79 4 132.0 14.05 0.79 3 132.0 9.92 126.4 15.19

104 × 2-2650-P 0.97 4 108.2 15.65 0.97 4 111.1 12.01 109.0 19.40

104 × 2-3080-P 1.14 4 95.15 18.32 1.13 3 98.91 14.70 89.7 22.81

Table 15. Comparison of approaches #A and #D. Summary of the average Nu,FE/Nu,exp and ωu,FE/ωu,exp values for varying
material properties, based on the results of the cross-section sets 106 × 3 and 104 × 2 (Tables 8, 9, 13 and 14).

Approach of this Study Approach #A (Only Two Sets) Approach #D (Only Two Sets)

Material parameter value set TP SCP TP SCP

Local imperfection amplitude 0 0 0 0

Global imperfection amplitude ω0 + e0 ω0 + e0 ω0 + e0 ω0 + e0

Mean Nu,FE/Nu,exp 0.964 1.001 0.962 0.999

COV Nu,FE/Nu,exp 0.065 0.051 0.065 0.051

Mean ωu,FE/ωu,exp 0.489 0.611 0.493 0.613

COV ωu,FE/ωu,exp 1.753 1.188 1.728 1.173
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Table 16. Approach #A; Summary of the average Nu,FE/Nu,exp and ωu,FE/ωu,exp values for varying material properties.

Study Approach #A, This Study C. Buchanan et al. [38]

Material parameter value set TP SCP TP SCP

Local imperfection amplitude 0 0 t/10 t/100

Global imperfection amplitude ω0 + e0 ω0 + e0 ω0 + e0 ω0 + e0

Mean Nu,FE/Nu,exp 1.010 0.998 1.024 1.013

COV Nu,FE/Nu,exp 0.073 0.050 0.081 0.046

Mean ωu,FE/ωu,exp 0.627 0.660 0.612 0.708

COV ωu,FE/ωu,exp 1.006 0.825 0.920 0.834

Global slenderness λ is calculated in dependence on the compressive cross-section
class (according to EN 1993-1-4 [15]) considering Equation (6) for section class (cl.) 1–3, and
Equation (7) for cross-section class 4:

λ =

√
A · σ0.2 · L2

π2 · E · I , (6)

λ =

√
Ae f f · σ0.2 · L2

π2 · E · I , (7)

where A is the cross-section area, σ0.2 is the 0.2% proof stress, E is Young’s modulus, I is
the second moment of area, L is the effective length, and Aeff is the effective cross-sectional
area determined in accordance with the formula from BS 5950-1 [45]:

Ae f f = A ·
[(

90
D/t

)
·
(

235
σ0.2
· E

210000

)]0.5
. (8)

Compressive class slenderness limits have been considered in accordance with EN
1993-1-4 [15]. The global slenderness λ and the compressive classes (cl.) have been
calculated for all the model geometries for both sets of material properties (SCP and
TP) and are documented in Tables 8–14 (values of λ in Tables 13 and 14 are, of course, the
same as in Tables 8 and 9, respectively).

The N-ω (axial load—midheight deflection) curves are provided in Figures 4–11. For
each figure, the “a” part is used to depict the whole force-deflection curve, and the “b”
(zoomed) part of each Figure focuses on the area near the peak forces Nu,exp, and Nu,FE, so
the negligible differences of the N-ω curves in these areas between considered modeling
approaches are also visible. In some cases, the “a” part of the figure is described as
“whole*”-in these cases, certain N-ω curves of the graph are not depicted until the very last
converged or analyzed step of that case.

The differences in the matter of the force-deflection curves between modeling ap-
proaches #A, #B, and #C (shell numerical model with default mesh size, finer mesh size,
and local imperfection, respectively) are depicted for selected specimens of the cross-
sectional set 88.9 × 2.6 in Figures 4–6.

The differences in the matter of the force-deflection curves between modeling ap-
proaches #A and #D (shell vs. solid numerical model) are depicted for the selected
specimens of the cross-sectional set 106 × 3 and 104 × 3 in Figures 7–11. Moreover,
in Figures 10 and 11, the results of the approaches #E and #F (different solid element for-
mulations) are also documented and available for comparison.
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As described in [38], three specimens from those of shorter lengths (104 × 2-550-P,
104 × 2-750-P, and 106 × 3-550-P) changed the initial direction of the midheight lateral
deflection (induced by the applied eccentricity) before reaching the peak force Nu,exp (hence
the minus values of ωu,exp in Tables 8 and 9). One specimen (80 × 1.5-300-P) changed the
deflection direction after the peak force Nu,exp had been reached (hence positive value of
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the ωu,exp for this case in Table 11). Note: the deflection reference data of the specimen
104 × 2-550-P was multiplied by−1 only for the purpose of depiction in Figure 8b. Original
data were considered for the statistical evaluation.

In the case of modeling approach #F (solid elements, enhanced strain formulation),
the convergence of the numerical solution was more sensible to the step size of the analysis.
When the step size in approach #F was adopted, the same as in all the other approaches,
the last converged substeps were at the values of midheight lateral deflection ω approx.
Six mm and 11.3 mm for specimens 104 × 2-950-P and 104 × 2-1650-P, respectively, (orange
dash-dotted curves in Figures 10 and 11; note: the last point of the orange curve in
Figure 11 is also a converged state). To obtain further analysis data, a finer step size has
been adopted for the case 104 × 2-1650-P, and the results are described by the pink curve
in Figure 11. However, in the postpeak region of this N-ω curve, certain oscillations
have developed. The amplitudes of these oscillations are not significantly higher than the
oscillation amplitudes of the reference data (red curve). Further analyses of the approach
#F have not been conducted due to much lower computational efficiency, as well as not a
very significant difference in the matter of the monitored results (ultimate axial load Nu,FE,
and the corresponding midheight lateral deflection ωu,FE).

The differences in the results for approach #E are rather negligible near the areas of the
ultimate axial loads Nu,FE and noticeable only in the areas of large deformations. Therefore,
further analyses considering this approach have not been conducted, either.

Contour plots of the equivalent plastic strains and, more importantly, deformed
geometries for selected cases are depicted in Figures 12–14. For each contour plot, the values
of deformation load uz and the corresponding axial load Nz are provided. Furthermore,
the modeling approach is stated, and the link of the case with the corresponding F-u curve
and figure number of the graph is provided.

Global buckling was the most common failure mode in the case of longer specimens
(e.g., Figure 12c). Shorter specimens have rather developed a local buckle near the mid-
height of the compressed side of the tubular cross-section after the peak load has been
reached (e.g., Figure 12a,b). The buckling modes are very similar to those described in the
study by Buchanan et al. [38].
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Figures 13 and 14 depict the differences in the deformed shape at the compressed
face near the midheight of the selected specimens when adopting the modeling approach
of #A (shell elements), #D (solid elements), or #E (solid elements with uniform reduced
integration). The area near the local buckling is deformed differently in these cases.

Figure 15 depicts energy ratios of the case 104 × 2-1650-P (SCP) modeled by ap-
proaches #A and #E. The energy ratios are monitored at states of the last analyzed steps
(Figure 15a,b), and also at the states of the maximal peak axial loads Nu (Figure 15c,d).
In the course of the computation, the artificial energy is introduced to sustain hourglass
control of the reduced integration elements, either shells from case #A or solids from
case #E. In the case of modeling approaches #D (selective reduced integration) or #F (full
integration), no artificial energy is being introduced. The solution is generally acceptable
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if the ratio of artificial energy to the total energy is less than 5% [39]. Mesh refinement is
recommended otherwise.
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Figure 15 depicts the ratio of the artificial to total energy for each element. In the case
of approach #A, the recommended value of 5% has been exceeded in the last step of the
analysis only locally, with the maximal value of 23% in two shell elements (Figure 15a).
However, in the modeling approach #E, the limit value has been exceeded in a significant
number of the finite elements (Figure 15b). In the step where the peak loads Nu have been
achieved (Figure 15c for approach #A and Figure 15d for the approach #E), the energy ratios
are far below the recommended value of 5%, with generally lower values for the modeling
approach case #A (shell elements). Note: pay attention to the different contour scales.

5. Discussion
5.1. Validation Data (Approach #A)

The average and COV (coefficient of variation) values of normalized ultimate load
Nu,FE/Nu,exp and deflection ωu,FE/ωu,exp are depicted in Table 16 (based on the values from
Tables 8–12). These results are in good agreement with the research of Mr. Buchanan
et al. [38] (also depicted in Table 16). The mean value of the normalized ultimate load
Nu,FE/Nu,exp is close to one for both sets of the material properties, TP and SCP (tensile
properties, stub-column properties), and the COV values are close to zero; therefore, it
is possible to consider the accuracy as sufficient. COV is smaller when the material set
of SCPs has been adopted in the FEA, the same as observed in the study by Buchanan
et al. [38]. The value of the normalized ultimate deflection ωu,FE/ωu,exp is closer to one
when the SCP set of material properties has been considered, again in accordance with
the conclusions in [38]. The values of ωu,FE/ωu,exp are 0.627 and 0.660 for TP and SCP,
respectively, and are in accordance with the result values of 0.612 and 0.708 from [38]. These
values seem to be rather far from the accurate match (the value of 1), with quite a high
coefficient of variation: 1.006–0.825 in this study and 0.920–0.834 in the study [38]. This is
firstly due to the flat shape of the load-deflection curves near their maximum. Secondly
and more importantly, as a consequence of the lateral deflection in the direction opposite to
the initial geometrical imperfection before reaching the peak value of the axial force, which
was observed in three (out of 37) reference cases, hence considered with the negative value
(also see [38]). Note: in the fourth reference case, the deflection evolved into the opposite
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direction after reaching the peak load, and therefore, is not considered with the negative
value of the lateral deflection [38].

Statistical values, the average (mean) value of the ultimate load Nu,FE/Nu,exp, and
deflection ωu,FE/ωu,exp along with the standard deviations bars are graphically depicted in
Figure 16 (based on Table 16). These values are based on the results of this study and of the
study by Mr. Buchanan [38].
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In general, the validation data are very similar to the values discussed in [38], and
therefore, the considered numerical FE model is possible to be considered as validated
with no dispute. Consistency between FEA results and the experimental data has been
achieved (especially for the case of SCP material properties depicted in Figure 8).

5.2. Mesh Size Influence (Approach #A vs. #B)

The difference between these two mesh sizes, coarser (8 mm × 5 mm, approach
#A) or finer (3 mm × 3 mm approach #B), has been observed for the geometries of three
different slenderness values from the set of the same cross-section (Figures 4–6, cross-
section 88.9 × 2.6), considering the lowest structural length from the set (400 mm, Figure 4),
the largest one (3080 mm, Figure 6), and the third value from (950 mm, Figure 5). This
choice of various lengths for one selected cross-section is being considered as a sufficiently
representative sample (all the cross-sections of this study are geometrically very similar).

Only in the case of little slenderness, the initial model stiffness is considerably larger
when the finer mesh has been adopted (Figure 4). This might be the reason for the adopted
boundary conditions as well (the connection of the constrained nodes with the circumfer-
ential nodes at the CHS tube ends), with possibly larger influence in cases of the shorter
specimens. The influence is greater for finer meshes due to the utilized automatized APDL
macro (finer mesh = more circumferential nodes = more beams to connect the circumfer-
ences with the appropriate loading nodes). This issue is not considered a concern, as the
real stiffness of the boundary conditions was not determined with certainty. In addition,
the postpeak behavior is slightly different, when the finer mesh has been considered only
in a few cases (Figure 5). In some model cases, the analyses considering the finer mesh
had more convergence difficulties while the same time step was considered (e.g., Figure 4,
#B, SCP).
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Based on the results of these selected geometries, the difference between various
mesh sizes is very negligible in the matter of the monitored results (Nu, ωu), which are the
principal interest of this study.

5.3. Local Imperfection Influence (Approach #A vs. #C)

Influences of the local initial imperfections are investigated for the same selected cases
as described previously (Section 5.2). The difference between cases with adopted and
neglected local imperfection is very small (Figures 4–6) for all the cases. Therefore, the
local imperfections have not been implemented for the other cases to conduct the general
validation of the numerical FE model. The effort invested in the implementation of the
local initial geometrical imperfections is not meaningful for the objectives of this study.
For different lengths of the column specimens, different modal shapes might be applicable
to incorporate the local imperfection. Therefore, a manual check of the modal shapes
themselves is required. On the other hand, the global imperfection shape has always been
obtained from the first modal shape, which is much more feasible if the analysis process is
to be automatized (e.g., via APDL macros).

5.4. Shell or Solid FE Model (Approach #A vs. #D)

The comparison between the shell model and the solid model in the matter of the glob-
ally monitored results (normalized ultimate load Nu,FE/Nu,exp and deflection ωu,FE/ωu,exp)
are depicted in Table 15. In the case of approach #D (solid model), two whole sets of
lengths (considering two different cross-sections) have been reanalyzed. These results are
summarized in Tables 13 and 14 (and are very similar to the corresponding results of case
#A, Tables 8 and 9, respectively). The mean values and the values of the coefficient of
variations are practically the same for both approaches (Table 15). Load-deflection curves
are compared in Figures 7–11. The behavior in the postpeak softening region (where the
large strains are involved) is different for some modeled cases. However, this is not the
objective of this study.

5.5. Full Integration of the Solid Elements (approach #F)

This approach has been investigated for only two selected cases, the cross-section of
104 × 2, and structural lengths of 950 mm (Figure 10) and 1650 mm (Figure 11). When the
same step size (and the same maximal number of Newton-Rhapson iterations within one
step) has been considered, the convergence problems occurred shortly after reaching the
peak force Nu,FE. A finer time step needed to be implemented to achieve the convergence
after the peak load. This has been introduced for one case (Figure 11). Although the
convergence has been secured, certain oscillations have developed. The amplitude of these
oscillations is not significantly higher than the oscillation amplitudes of the reference data,
and therefore, the results are considered sufficiently good. Further analyses considering
this approach, however, have not been conducted due to much higher computational
demands. Moreover, the investigated results (Nu, ωu) are very similar to those obtained by
much more efficient approaches.

5.6. Uniform Reduced Integration (Approach #E), Selective Reduced Integration (Approach #D),
Shell Elements with Reduced Integration (Approach #A)

The differences in the monitored results are very negligible, again (Figures 10 and 11).
A noticeable difference is in the shape of the local buckling area in the midspan of the
column height (Figures 13 and 14). The distortion in this area seems to be rather smoother
for cases where the #E approach has been considered (Figure 13c or Figure 14c), in compar-
ison with the sharper area of local buckling when either the #D approach (Figure 13b or
Figure 14b) or the default #A approach (Figure 13a or Figure 14a) have been adopted.

The energy ratio (artificial to total energy) [39] is depicted in Figure 15. In order to
consider the results, where the elements with the reduced integration have been considered
as good, this energy ratio needs to be below 0.05 (5%), as recommended in [39]. The
ratio is below the recommended value at the time of the peak load for both cases, #A
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(Figure 15c) and #E (Figure 15d), with slightly better (lower) values for approach #A. For
the last observed step, however, the energy ratio exceeds 0.05 in a large number of the
elements when approach #E has been adopted (Figure 15b), and only in few elements in
the case of approach #A (Figure 15a). For the modeling approach #D, there is no additional
artificial energy (this approach is considered to be more precise). Therefore, the postpeak
results of approach #A are considered more convenient.

5.7. Other Observations

In all of the modeled cases, the region with the largest plasticity has developed in the
midspan, on the compressed face of the columns. Examples are depicted in Figure 12. The
shape of this area was slightly different when the finer mesh has been adopted (Figure 12b),
compared to the coarser mesh of the same geometry (Figure 12a). In addition, the difference
in the shape of the high plasticity area is between cases of various structural lengths
(Figures 12 and 13). For the large lengths (Figure 12c), the global buckling occurred much
sooner, and the analyses have not been conducted long enough to observe any local
distortion of the cross-sectional shape.

Although proper statistical evaluation among all the discussed modeling approaches
is not provided, further cases have not been reanalyzed, as the results of approach #A are
very satisfactory, compared to the results documented in the study by Mr. Buchanan [38],
which was the main objective of this study.

5.8. Further Application

In future work, the initial imperfections will be considered as random variables. This
will make it possible to study their influence on the ultimate limit state using stochastic
sensitivity analysis [46–49], where the main influences and interaction effects between
imperfections can be the subject of research.

6. Conclusions

The performed simulations aimed at the comparison of advanced numerical mod-
els and the determination of their limitations in the simulation of the pressure test of
thin-walled stainless-steel columns, considering the loss of stability. The study shows a
significant effect of the correct description of boundary conditions on the overall response.
In addition to the comparative (normalized ultimate load Nu,FE/Nu,exp and deflection
ωu,FE/ωu,exp), several generalizable conclusions could be obtained by cross-comparison,
which is discussed in detail in Section 5. Experimentally determined data from extensive
research were considered as reference values. Very good agreement was reached for all
used models.

The mean (average) value of the normalized ultimate axial load Nu,FE/Nu,exp was
1.010 (standard deviation 0.074) in this study and 1.024 (standard deviation 0.083) in the
study by Mr. Buchanan, for the numerical analyses based on the “tensile test material
properties” (TP) values. In the case of numerical simulations based on the values of the
“stub-column material properties” (SCP), the average normalized ultimate axial load was
0.998 (standard deviation 0.050) in this study and 1.013 (standard deviation 0.047) in the
study by Mr. Buchanan et al. These statistical values are graphically depicted in Figure 16a
(and also in Table 16). The values of normalized ultimate forces are very close to 1, and the
standard deviation is also low. The validation results for the ultimate forces presented here
are in good agreement with the experimental study.

In the case of the normalized ultimate deflection ωu,FE/ωu,exp, the average values for
numerical analyses utilizing the TP material values are 0.627 (st. dev. 0.631) and 0.612
(st. dev. 0.563) for this study and the study conducted by Mr. Buchanan et al., respectively.
For numerical simulations utilizing the SCP values of material properties, the average
values are 0.660 (st. dev. 0.545) and 0.708 (st. dev. 0.591) for this study and the study of
Mr. Buchanan et al., respectively. These values are graphically depicted in Figure 16b
(and in Table 16). The values seem to be rather scattered (normalized average not close
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to 1.00, large deviation). However, these values are very similar to those from the study
by Mr. Buchanan et al., where the finite element models are successfully validated. The
large deviation of values is the reason for the flat nature of the load-deflection curve near
its maximal value of the ultimate load; therefore, larger values of standard deviations
are expected.

Another objective was to describe a robust design procedure with the appropriate
use of numerical simulation. This was achieved by a comparison of several modeling
approaches. The modeling approaches differ in the adopted type of finite elements (either
shell or solid), in varying element formulations (e.g., full integration or reduced integration),
in varying mesh sizes (finer, coarser) or local geometrical imperfection incorporation or
absence. The effects of these modeling approaches on the monitored main objective model
outputs (ultimate axial load Nu and the corresponding midheight lateral deflection ωu)
are relatively very small and therefore negligible. Considering the shape of the whole
force-deflection curve and the local buckling area, the type of adopted finite elements
along with their formulation set up have the highest importance on the numerical model
response. The most suitable, and also the most effective, are shell elements. The influence
of the mesh size (considering two types of mesh, either the finer 3 mm × 3 mm or coarser
5 mm × 8 mm) is slightly more important for shorter specimens than for the longer ones.
The most negligible influence on the results, in general, is caused by the effect of the local
geometrical imperfection within the considered amplitude value of t/10 (where t is the
section thickness—various value for various cross-sectional sets).

The validated numerical FE models presented here will be used for future analyses,
where a study of initial imperfections influence on the ultimate limit state using stochastic
sensitivity analysis will be conducted. These are simulations of large sets of samples,
and therefore, it is necessary to choose the most concise computational model with the
minimum time requirement.
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